Introduction to Beam Optics

Joint ICTP-IAEA Workshop on Accelerator Technologies, Basic Instruments and Analytical Techniques

21 - 29 October 2019
Lowry Conradie

The aim of beam transport

- There is a beam of charged particles. Each particle has a mass, charge, and a kinetic energy.
- We want to transport the beam from one place (e.g. an accelerator) to another (e.g. an experiment)
- This requires:

1. The beam must follow the right path
2. The beam must remain focussed around the path

- This is achieved using magnetic or electric fields

The reference path

- Reference path (or central trajectory): The ideal designed path, followed by the middle of the beam. Usually in the horizontal plane
- Consists of straight lines connected with bends:
- Straight line: called a drift space. It is just a length of beam pipe without any optical components
- Bends: A magnetic or electric field is used to change the direction of the entire beam

Coordinates for off-reference particles

- Real particles do not follow the exact reference path

At each path length s, the deviation from the reference path is described by:

$x(s) \quad$ The horizontal displacement
$y(s) \quad$ The vertical displacement
$\ell(s) \quad$ The displacement in the forward direction, relative to a reference particle
$x^{\prime}=\frac{d x}{d s}=\frac{P_{x}}{P_{s}} \quad$ The horizontal angle $\left(\tan x^{\prime} \approx x^{\prime}\right)$
$y^{\prime}=\frac{d y}{d s}=\frac{P_{y}}{P_{s}} \quad$ The vertical angle
$\delta=\frac{\left(P_{S}-P_{0}\right)}{P_{0}} \quad$ The longitudinal momentum

Reference path: Bending Magnets

Reference path: Electrostatic Deflectors

$$
\mathrm{Er}=\frac{P v}{q}
$$

E - Electric field
r - radius of curvature
q - particle charge
v-speed
P-momentum

Electrostatic deflectors are only used at low speeds (E scales with Pv while B only scales with P)

Electrostatic Bend

- Electrodes are parts of cylinders
- No vertical forces

Focussing described by the field index:

$$
n_{E}=-\frac{r_{0}}{E_{0}} \frac{\partial E_{x}}{\partial x}
$$

r_{0} - bending radius of central path
E_{0} - field on central path

- Can make a double focussing device
- Electrodes are parts of spheres
- Vertical focussing, horizontal defocussing

Magnetic Quadrupole (1)

Aperture of quadrupole $=2 \mathrm{a}$

- A quadrupole focusses in one direction (y in picture) and defocusses in the other direction (x in picture)
- The magnetic field is given by:

$$
B_{x}=\frac{B_{a}}{a} y \quad B_{y}=\frac{B_{a}}{a} x
$$

- Where a is the pole radius, and B_{a} the field strength at the pole tip

Electrostatic Quadrupole

- Poles faces are rotated 45 degrees compared to magnetic quadrupole

$$
\begin{aligned}
& E_{x}=\frac{2 V_{a}}{a^{2}} x \\
& \mathrm{E}_{\mathrm{y}}=-\frac{2 V_{a}}{a^{2}} y
\end{aligned}
$$

- As drawn in picture: focusses vertically, defocusses horizontally
- Transfer matrix: same as magnetic quadrupole, but:

$$
k=\sqrt{\frac{q}{P v} \frac{2 V_{a}}{a^{2}}}
$$

P - momentum, v-speed, q - charge

Solenoid Lens

- Magnetic field parallel to beam pipe
- Focusses in both x and y
- Rotates the beam in (x, y) plane
- Action depends on B and effective length L

Transfer function

- For any optical system, the deviation of a particle at the exit (\mathbf{x}_{2}) is a function of the deviation at the entrance (\mathbf{x}_{1}):

$$
\boldsymbol{x}_{2}=T\left(\boldsymbol{x}_{1}\right)
$$

- Where T is the transfer function
- If the deviation is small, then we can approximate this linearly:

$$
x_{2}=R x_{1}
$$

- Where the transfer matrix R is a 6×6 matrix

Transfer Matrix R

$$
\left[\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
\ell \\
\delta
\end{array}\right]_{2}=\mathrm{R}\left[\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
\ell \\
\delta
\end{array}\right]_{1}
$$

General Transfer Matrix for a magnetic system with mid-plane symmetry

$$
R=\left[\begin{array}{llllll}
R_{11} & R_{12} & 0 & 0 & 0 & R_{16} \\
R_{21} & R_{22} & 0 & 0 & 0 & R_{26} \\
0 & 0 & R_{33} & R_{34} & 0 & 0 \\
0 & 0 & R_{43} & R_{44} & 0 & 0 \\
R_{51} & R_{52} & 0 & 0 & 1 & R_{56} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& x_{2}=R_{11} x_{1}+R_{12} x_{1}^{\prime}+R_{16} \delta_{1} \\
& x_{2}^{\prime}=R_{21} x_{1}+R_{22} x_{1}^{\prime}+R_{26} \delta_{1} \\
& y_{2}=R_{33} y_{1}+R_{34} y_{1}^{\prime} \\
& y_{2}^{\prime}=R_{43} y_{1}+R_{44} y_{1}^{\prime}
\end{aligned}
$$

Horizontal and Vertical Transfer Matrix

In systems with mid-plane symmetry, the horizontal and vertical motions are decoupled. So they can be expressed separately:

$$
\begin{array}{cc}
{\left[\begin{array}{c}
x \\
x^{\prime} \\
\delta
\end{array}\right]_{2}=R_{H}\left[\begin{array}{c}
x \\
x^{\prime} \\
\delta
\end{array}\right]_{1}} & {\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]_{2}=R_{V}\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]_{1}} \\
R_{H}=\left[\begin{array}{cc}
R_{11} R_{12} R_{16} \\
R_{21} R_{22} R_{26} \\
0 & 0
\end{array}\right] & R_{V}=\left[\begin{array}{l}
R_{33} R_{34} \\
R_{43} R_{44}
\end{array}\right]
\end{array}
$$

Example: Drift Space

Straight line motion:

$$
\begin{aligned}
& x\left(s_{2}\right)=x\left(s_{1}\right)+x^{\prime}\left(s_{1}\right) L \\
& x^{\prime}\left(s_{2}\right)=x^{\prime}\left(s_{1}\right)
\end{aligned}
$$

This can be written in a Matrix form:

$$
\left[\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]
$$

Example of a transfer matrix: A thin lens

- Thin lens:
- $x=0$ path (red):
- $\mathrm{x}^{\prime}=0$ path (blue): $\quad x_{2}^{\prime}=-\frac{x_{1}}{f}$

This means that the transfer matrix for the lens is:

$$
\left[\begin{array}{l}
x_{2} \\
x_{2}{ }^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]
$$

Magnetic Quadrupole (2)

- When focussing vertically:
- When focussing horizontally:

$$
\begin{array}{ll}
{\left[\begin{array}{l}
x_{2} \\
x_{2}{ }^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cosh k L & k^{-1} \sinh k L \\
k \sin k L & \cosh k L
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]} & {\left[\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos k L & k^{-1} \sin k L \\
-k \sin k L & \cos k L
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]} \\
{\left[\begin{array}{l}
y_{2} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos k L & k^{-1} \sin k L \\
-k \sin k L & \cos k L
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{1}^{\prime}
\end{array}\right]} & {\left[\begin{array}{l}
y_{2} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cosh k L & k^{-1} \sinh k L \\
k \sin k L & \cosh k L
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{1}^{\prime}
\end{array}\right]}
\end{array}
$$

Where:
L is the equivalent path length through the quadrupole

$$
k=\sqrt{\frac{B_{a}}{a} \frac{q}{P}}
$$

P - momentum, q-charge

Bending magnet: Dispersion

Dipole with entry and exit pole face rotation at right angle to the beam with momentum p. The path of the dispersed ray with momentum $p+\Delta p$ is also shown

Bending Magnet (1)

- Dipole field
- Only produces horizontal forces
- Shape described by:
r - radius of curvature
L - path length along central trajectory
$k_{x}=1 / r$

$$
\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]_{2}=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]_{1}
$$

$\left[\begin{array}{l}x \\ x^{\prime} \\ \delta\end{array}\right]_{2}=\left[\begin{array}{ccc}\cos k_{x} L & k_{x}^{-1} \sin k_{x} L & k_{x}^{-1}\left(1-\cos k_{x} L\right) \\ -k_{x} \sin k_{x} L & \cos k_{x} L & \sin k_{x} L \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ x^{\prime} \\ \delta\end{array}\right]_{1}$

Vertically: just a drift space
Horizontal: depends on the momentum δ This is called chromatic dispersion

Bending magnet: Edge focussing

From: Beam Extraction and Transport, T.Kalvas

$$
\left[\begin{array}{l}
x_{2} \\
x_{2}{ }^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
r^{-1} \tan \beta & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{1}^{\prime}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
y_{2} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-r^{-1} \tan \beta & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{1}^{\prime}
\end{array}\right]
$$

- The entrance and exit edge are not always perpendicular to the beam path (angles α and β in the picture)
- This produces quadrupoles in the fringe field regions
- Usually used to focus vertically and defocus horizontally, to produce double-focussing bending magnets
- For double focussing:
see next slide

Bending magnet: Double focussing

Edge angles may be chosen to bring both the horizontal and vertical point-rays to a focus at the same point. The dipole is then said to be "double-focussing. A pair of identical edge-angles is often used, to form a symmetrical dipole. The double focussing edge-angle Θ_{1} and Θ_{2} may then be calculated from the equation

$$
\tan \Theta_{1}=\tan \Theta_{2}=1 / 2 \tan \alpha / 2
$$

And the image and object distance, D, from the magnet

$$
D=\frac{2 \rho}{\tan \alpha / 2}
$$

With α the bending angle and ρ the bending radius of the magnet

Combining Optical Components

- Start with a particle $\left[\begin{array}{l}x_{1} \\ x_{1}^{\prime}\end{array}\right]$
- After the first optical component the particle is at: $\left[\begin{array}{l}x_{2} \\ x_{2}^{\prime}\end{array}\right]=M_{1}\left[\begin{array}{l}x_{1} \\ x_{1}^{\prime}\end{array}\right]$
- After the next optical component the particle is at: $\left[\begin{array}{l}x_{3} \\ x_{3}^{\prime}\end{array}\right]=M_{2}\left[\begin{array}{l}x_{2} \\ x_{2}^{\prime}\end{array}\right]=M_{2} M_{1}\left[\begin{array}{l}x_{1} \\ x_{1}^{\prime}\end{array}\right]$

$$
\text { So: } \quad M_{1 \text { then } 2}=M_{2} M_{1} \quad \text { (order is important) }
$$

- So, the transfer matrices of the individual components can be multiplied together to get the total transfer matrix of the entire system. For N components:

$$
\text { - } M_{\text {total }}=M_{n} M_{n-1} \ldots M_{2} M_{1}
$$

Quadrupole Doublet

- A single quadrupole cannot focus in both x and y
- But combining two quadrupoles with opposite polarity can
- Known as strong focussing, or alternating gradient focussing

In x direction:
First quadrupole focusses
Second quadrupole defocusses

In y direction: The opposite

Beam profile for a quadrupole doublet

Quadrupole Triplet

- Similar to a quadrupole doublet, but it is symmetric
- The middle lens has the opposite polarity to the others lenses
- The beam is not as wide as in a doublet

Joint ICTP-IAEA Workshop 21 - 29 October 2019 Trieste Italy

Beam profile for symmetric quadrupole triplet

Difference of beam profile for a quadrupole doublet and quadrupole triplet

Combining Quadrupoles: Telescopic Doublet

A symmetric two doublet system
symmetry
plane

A two doublet quadrupole telescope

Combining Quadrupoles: Telescopic Triplet

A symmetric two triplet system

A two triplet quadrupole telescope

Achromatic system with one quadrupole between the dipoles with a mirror and anti-mirror symmetrical systems

Mirror symmetry

Anti-mirror symmetry

Achromatic system with two quadrupole between the dipoles with a mirror and anti-mirror symmetrical systems

Mirror symmetry

Anti-mirror symmetry

Double dispersive system, showing the horizontal point rays and off-momentum rays (broken line) for double dispersion mode

Beam line layout that can produce a achromatic beam and a non-dispersive beam at the end of the beam line. This system can also produce a double dispersive mode. The point rays and off momentum rays are shown.

Describing an entire beam

At any point along the path, the state of a particle can be shown on a (x, x^{\prime}) phase space plot

A simple way to describe the beam, is with an ellipse:

Beam ellipse - Sigma Beam Matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

determinant

We describe the beam ellipse with a sigma beam matrix

If we write $\boldsymbol{x}=\left[\begin{array}{l}x \\ x^{\prime}\end{array}\right]$ then the equation for an ellipse in phase space is:

$$
\boldsymbol{x}^{T} \sigma^{-1} \boldsymbol{x}=1
$$

To see that this is true, write $\sigma=\left[\begin{array}{l}\sigma_{11} \sigma_{12} \\ \sigma_{21} \sigma_{22}\end{array}\right]$ then $\sigma^{-1}=$ $\frac{1}{\operatorname{det} \sigma}\left[\begin{array}{c}\sigma_{22}-\sigma_{12} \\ -\sigma_{21} \sigma_{11}\end{array}\right]$ so the equation becomes:

$$
\sigma_{22} x^{2}-\left(\sigma_{12}+\sigma_{21}\right) x x^{\prime}+\sigma_{11} x^{\prime 2}=\operatorname{det} \sigma
$$

Which is an ellipse in the (x, x^{\prime}) plane. The area of the ellipse is $A=\pi \sqrt{\operatorname{det} \sigma}$

To get the transpose of the X matrix, write the rows of R matrix as the columns of X^{\top}

Skewness expressed by
the correlation r_{12} :

$$
r_{12}=\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}}
$$

How beam sigma matrix and beam transfer matrix change

Ray X_{0} from location 0 is transported by a 6×6 Matrix R to location 1 by: $\quad X_{1}=R X_{0}$
Ellipsoid in Matrix notation, generalized to e.g. 6-dim. using σ Matrix: $\quad X_{0}{ }^{\top} \sigma_{0}{ }^{-1} X_{0}=1$
Inserting Unity Matrix $I=R R^{-1}$ in equation (2) it follows $X_{0}{ }^{\top}\left(R^{\top} R^{T-1}\right) \sigma_{0}^{-1}\left(R^{-1} R\right) X_{0}=1$ from which we derive $\quad\left(R X_{0}\right)^{\top}\left(R \sigma_{0} R^{\top}\right)^{-1}\left(R X_{0}\right)=1$
The equation of the new ellipsoid after transformation becomes $X_{1}{ }^{\top} \sigma_{1}^{-1} X_{1}=1$
where

$$
\begin{equation*}
\sigma_{1}=R \sigma_{0} R^{\top} \tag{3}
\end{equation*}
$$

Knowing the TRANSPORT matrix R that transports one ray through an ion-optical system using (1) we can now also transport the phase space ellipse describing the initial beam using (3)

The beam sigma matrix is symmetric so that only a triangle of elements is needed

	\mathbf{x}	θ	\mathbf{y}	ϕ	ℓ	δ
\mathbf{x}	$\sigma(11)$					
θ	$\sigma(21)$	$\sigma(22)$				
\mathbf{y}	$\sigma(31)$	$\sigma(32)$	$\sigma(33)$			
θ	$\sigma(41)$	$\sigma(42)$	$\sigma(43)$	$\sigma(44)$		
ℓ	$\sigma(51)$	$\sigma(52)$	$\sigma(53)$	$\sigma(54)$	$\sigma(55)$	
δ	$\sigma(61)$	$\sigma(62)$	$\sigma(63)$	$\sigma(64)$	$\sigma(65)$	$\sigma(66)$

In the program TRANSPORT the printed output of the beam sigma matrix has a different format for ease of interpretation

			x	θ	y	ϕ	ℓ
x	$\sqrt{\sigma}(11)$	CM					
θ	$\sqrt{\sigma}(22)$	MR	$\mathrm{r}(21)$				
y	$\sqrt{\sigma}(33)$	CM	$\mathrm{r}(31)$	$\mathrm{r}(32)$			
ϕ	$\sqrt{\sigma}(44)$	MR	$\mathrm{r}(41)$	$\mathrm{r}(42)$	$\mathrm{r}(43)$		
ℓ	$\sqrt{\sigma}(55)$	CM	$\mathrm{r}(51)$	$\mathrm{r}(52)$	$\mathrm{r}(53)$	$\mathrm{r}(54)$	
δ	$\sqrt{\sigma}(66)$	PC	$\mathrm{r}(61)$	$\mathrm{r}(62)$	$\mathrm{r}(63)$	$\mathrm{r}(64)$	$\mathrm{r}(65)$

where:

$$
r(i j)=\frac{\sigma(i j)}{[\sigma(i i) \sigma(j j)]^{\frac{1}{2}}}
$$

Emittance

From Hamiltonian mechanics (Liouville's theorem): the area of phase space is conserved.

This area is described by the emittance : $\varepsilon=\sqrt{<x^{2}><x^{\prime 2}>-<x x^{\prime}>^{2}}$

For an elliptical beam: Area $=\pi \varepsilon$
A big emittance means the beam is "wide" and "spread out" - it is difficult to work with. A small emittance means the beam is "narrow" and easy to work with.

Elliptical beam in a drift space

The shape of the beam changes, but the emittance stays the same

Beam emittance measurement with three profile monitors in a drift space

The beam transfer Matrix $\mathrm{R}(\mathrm{s})$ for drift space:

$$
R(s)=\left[\begin{array}{ll}
1 & S \\
0 & 1
\end{array}\right]
$$

The beam matrix at any location s with respect to the location of the first profiler $\left(\mathrm{s}_{0}=0\right)$ is given by the formula:

$$
\sigma(s)=R(s) \sigma(0) R(s)^{T}
$$

From above follow at position s_{1} :

$$
\sigma 11\left(s_{1}\right)=\sigma 22(0) s_{1}^{2}+2 s_{1} \sigma 12(0)+\sigma 11(0)
$$

At position S_{2}

$$
\sigma 11\left(s_{2}\right)=\sigma 22(0) s_{2}^{2}+2 s_{2} \sigma 12(0)+\sigma 11(0)
$$

With $\sigma 11(0), \sigma 11\left(s_{1}\right)$ and $\sigma 11\left(s_{2}\right)$ know from the width of the beam at the three profile monitors, $\sigma 22(0)$ and $\sigma 12(0)$ can be calculated from the equation above. The emittance is given by:

$$
\varepsilon=\sqrt{\sigma 11(0) \sigma 22(0)-\sigma 12(0)^{2}}
$$

Thank you

