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General Information

A Detector is any device that when radiation (particles, gamma rays, x-rays) interacts
with it produces a measurable effect (e.x. ionization, light,..)

The characteristics of each detector (efficiency, resolution, e.tc.) depend on the type
of ionization and associated electronics

Because of the differences of interaction of radiation with matter different detectors
are needed for a complete IBA setup

Most commonly used detectors for IBA:

RBS — NRA : Charged particles — Surface Barrier Detectors

PIXE : X — rays — Si(Li) and SSD detectors

PIGE: Gamma — rays — Ge(Li), High Purity Germanium, Nal(Tl)

TOF — ERDA: Timing detectors + lonization Chambers or Surface Barrier Detectors
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Interaction with Matter — Charged Particles

Loss of energy (stopping power)
Charged particles <

Deflection from their initial trajectory

Processes of Energy Loss Depth vs. Y-Axis

e Inelastic collisions with atoms
e Elastic scattering from nuclei
* Cherenkov radiation

* Nuclear reactions with nuclei

* Bremsstrahlung

— Target Depth —
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Inelastic Collisions

Charged particle interacts with electrons of matter through the Coulomb interaction
Depending on the proximity the absorber atom may get excited or ionized.
The particle loses energy through this procedure.

The maximum energy transferred from 1 collision of a particle m with kinetic energy E
is 4EmO/m or about 1/500 energy per nucleon

Multiple interactions are needed for a particle to loose all its energy

The inelastic collision are purely statistical BUT because of their number we can

define an average energy loss per unit path length.
This is what we call Stopping Power dE/dx

Analytical description of inelastic collisions:

* Classical approach: Bohr’s calculation

 Quantum approach: Bethe — Bloch formula
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Inelastic Collisions

* Classical approach : Bohr’s calculation
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* Quantum approach: Bethe - Bloch
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Additional Quantities

Bragg Cu rve: {  Energy Loss of Alphas of 5.49 MeV in Air
(Stopping Power of Air for Alphas of 5.49 MeV)

The stopping power increases as

the particle penetrates matter (energy of the
particle decreases) giving a maximum peak
and then goes to zero

Stopping Power [MeV/cm]

0 T T T T T T T
0 1 2 3 4

Path Length [cm]

V€ E— Energy straggling:
Yy, gy ggling
ZZ_ As the particles penetrate matter the distribution
g::\ of energies (assume Gaussian) is getting wider
X<R The energy is no more well defined
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Additional Quantities

Range:
The range is defined as the thickness of material necessary to decrease the intensity of
the particles (beam) at one half

Extrapolated Range:
The range is defined as the thickness of material necessary to stop particles (beam)

— In other words how far the particles travel

Range straggling and Angular straggling:
The same manner as the energy straggling works Range and Angle (assuming a well
defined direction of the particles) have a statistical distribution
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Energy loss tools

Nowadays SRIM is the most common tool to perform energy loss calculations
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Interaction with Matter — Photons

Processes of interaction between photons (gamma — rays) and matter

* Photoelectric Absorption

Z’l’l
Energy of the photoelectron Probability: T= F35
E,- = hv—E, !

n varies between 4 and 5 depending
where Eb is its binding energy on the energy

* Compton Scattering

@ scattered e-
A

hv NAAANS @ =
e 0
scattered hv’

e Pair Production

When Ey > 1022 MeV
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Probabilities
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Additional Quantities

Linear attenuation coefficient

1 = t(photoelectric) + o (Compton) + k (pair production)
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Average distance before an interaction takes place
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General Characteristics

Energy Resolution

Ability to distinguish between two events with different energy

Particle detectors : Energy resolution depends from the particle detected
common values 13-15 keV for a — particles of 5.4 MeV

Gamma detectors : Energy resolution depends on the energy of the gamma
Can be given as a value at a certain energy or as percentage
typical values 2.6 keV @ 1332 keV for Germanium detectors

7% @ 661 keV for Nal detectors
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General Characteristics

Detection Efficiency
Ability to detect radiation
Particle detectors : 100 % in most of the cases independent of particle type

Gamma detectors : Efficiency depends on the energy of the gamma
(in most applications solid angle is incorporated)
Relative efficiency (%) with respect to Nal detectors
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Semiconductors

Radiation ionizes matter. The question is
Can we distinguish (collect) pairs of electron — holes in matter ?

Conductors Insulators Semiconductors

Conduction band Conduction band

Conduction band

Band gap

Valence band

Valence band Valence band

Free electrons No electrons Some free electrons
in room temperature in room temperature in room temperature or
With external voltage Or with external voltage with external voltage
Egap
Si |1.12 eV
Ge |0.66 eV
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Types of Semiconductors

Intrinsic (Pure)

Conduction band

Band gap (1.1 eV)

Valence band

Nelec = Nholes

Question:

Is there a way to
increase number of
holes or electrons ?
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n - type

p - type

Conduction band

Conduction band

P (0.044 eV)

B (0.045 eV)

Valence band

Valence band
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Semiconductors as Detectors

Ohmic Plate Silicon typical resistivity 50.000 Q cm

Semiconductor

Consider 1 cm2 slab

Ohmic Plate Resistivity 5000 Q

Problem: If we apply 500 V leakage current 0.1 A
Radiation will produce 105 carriers i.e. 1 yA. Impossible to be detected

Solution: non - injecting or blocking electrodes p — n semiconductor detectors
The doped surfaces will act as blocking electrodes

Types of realization

« Diffused junction detectors
« Surface Barrier detectors

* p—i—ndetectors

* High purity detectors
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P — nJunction

0 2825 0 O o_ 1z[+s+*0 O
p A O &+—-6000 n PA O |- |7 +PO n
C 0 o1 O OO, | ::[**,10
o)(e HO” 0O OO0 {:--| +++H~0
Electrons diffuse towards the p side i :
Holes diffuse towards the n side i i
As charge is accumulated an electric field is ——-i/ i '
created that embeds the further diffusion of ' : '
: Depletion layer
carriers
Unbiased Forward biasing Inverse biasing

Narrow Depletion layer Wider Depletion layer
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Diffusion junction and SSB detectors

Grnd

p - type

[ TTT ]

n — type vapors or implantation

+
Depletion layers between 50 nm (implantation)up to 2 ym (diffusion) v

n+ side acts as a dead layer Energy is lost and low energy particles not detected

Surface Barrier Detectors
Metallization with Al

l l l l l Electrons diffuse into metals.
A junction must alike the p-n junction is formed

n - type

Depletion layers up to several mm
‘ I I I I Thin entrance window
Sensitive to light
Metallization with Gold
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Position Sensitive Detectors

doped p-type

doped n-type
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p —1—n Detectors

p — type (typically Boron) D
Compensation
I I I ‘ I Region
Lithium diffusion (electrons) N
Typical detectors Ge(Li) and Si (Li) |deal for gamma and x-ray detection

Depletion layer up to mm

Germanium due to the photo-electric effect better for gamma — rays
Silicon used for x — ray detection

Low efficiency with respect to Scintillators
Better resolution

Should be always kept in liquid Nitrogen temperature (even when they are not
used) to avoid drifting of Lithium. Can be easily destroyed
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HPGe - Geometries

The idea is the same as compensated detectors.
The compensation region is achieved through Multiple purification processes.

Same characteristics as Ge(Li) but need Liquid Nitrogen only when in use
(noise because of thermal excitation is greater than in silicon — smaller gap)

Coaxial Planar Well
Images from Canberra brochures

n+ contact

p+ contact
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Scintillators

Scintillators can be Organic (also liquid) or Inorganic
In lon Beam Analysis Inorganic are mostly used (Nal, LaBr, CrBr,...)

Conduction band

N Cam— ]

Activator levels 3 T

(Th)
h+ valence band h+

Visible light

The e and h propagate either separately or as an exciton.
The h ionizes the activator and the e fills the gap
De-excitation produces visible light
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Photomultipliers

Visible light must be translated into current

PHOTO-
PHOTOCATHODE ELECTRON
DYNOQODES BLASS VACUUM
WINDOW /

LIGHT
PHOTON

HIGH VOLTAGE
SUPPLY
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Scintillators

Scintillators are highly efficient
Robust with no external cooling
Hydroscopic (enclosed in aluminum cases)
Bad resolution
Gamma-Ray Spectra of Natural Background

1.0E+07 -
Plastic Scintillator (no resolution)
| High Purity Germanium

1.0E+06 (excellent efficiency and resolution)

1.0E+05 \
w 1.0E+04 ﬂf\ I i
g =
8

1.0E+03 o el :

1.0E+02

Cadmium finc Telluride [GZT]
1.0E+01 {very poor efficiency)
1.0E+00 T T

0 500 1000 1500 2000 2500 3000
Energy (keV)

Image taken from Ortec White Paper: Why High-Purity Germanium (HPGe) Radiation Detection
Technology is Superior to Other Detector Technologies for Isotope Identification
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Gas Detectors

Oldest and Simplest detectors

x“ Cathode Electrons are drifted towards the
N anode where they are collected
\ "‘¢‘+ [\ —_—
=%t Anode _
T Voltage selection (and shape) depends on:
-+ Type of detector
t ¢ S8

Gas selection depends on:

o P
. o (] :
Radiation to be detected 3 ! :
. © J i
Number of pairs to be created I : :
. Q ! ;
Stopping powers (also pressure) g : i
S : ' !
: g ;
Minimum-ionizing particles (Sauli. IEEE+NSS 2002) g ' § ;
GAS (STP) Helium | Argon | Xenon | CH 4 | DME g 5
L B | 3
dE/dx (keV/em) | 032 | 24 6.7 15 3.9 £t %
- .
n (ion pairs/cm ) 6 25 44 16 85 L5 i >
Voltage applied — linear scale
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lon Chamber Detectors

.T._T.T. -------------- Frisch Grid

_—
+ ++ +

d

Signal induced

_ ngex
- Ccd
Where C is the Capacitance of the chamber

Problem:
The signal is position dependent
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Electrons are drifted towards the anode
where they are collected

They also induce current at the anode

lons (much slower) are drifted towards the
cathode but induce current at the anode (too)

Solution: Frisch Grid

The anode “sees” the electrons after
they pass the grid
It is “blind” to the movement of ions

BUT the Frisch Grid must be transparent
(depends on construction)
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Timing Detectors

Ancde

—— MCP
T e
Carbon foil Frame of
i the MCP
. ’ « i g
lonss 12 g 3 Internal
L] - s - rid
1% @ _0}. . \ 2
- - W
- "' -
] Rl External grid
-

Acceleration
grid
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Electrons are produced as the ions pass the
carbon foil.

They are accelerated towards an electrostatic
mirror where they bend and are detected by
an MCP detector

Multi Channel Plates act as multiplication and
electron detection devices. Very fast signal
acting as Timing detectors

Commonly a Chevron configuration is used

30 mn
27 mn

N
1.5 mn i m

o T o T ://// A
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i
|
I
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Questions ?

Thank you !
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