

IAEA

International experience on vitrification Michael Ojovan

Department of Materials, Imperial College London, United Kingdom Immediate past – Nuclear Engineer, Department of Nuclear Energy, IAEA

Contents

- I. Background
- II. Nuclear waste
- III. Nuclear waste vitrification
- **IV. LILW vitrification**
- V. Vitreous wasteforms
- VI. Safety of vitrified waste VII. Some IAEA support activities VIII. Summary

Michael I. Ojovan William E. Lee Stepan N. Kalmykov

Third edition

An Introduction to Nuclear Waste Immobilisation

I. Background

IAEA International Atomic Energy Agency Atoms for Peace and Development

"It is difficult to see how the world will be able to meet the challenge of securing sufficient energy, and mitigating the impact of climate change, without making more use of nuclear power."

> Yukiya Amano IAEA Director General

The IAEA is the world's centre for cooperation in the nuclear field and seeks to promote the safe, secure and peaceful use of nuclear technologies. "Nuclear power will have an important role to play in achieving the Sustainable Development Goals and in meeting the targets in the Paris Agreement."

Mikhail Chudakov, IAEA Deputy Director General, Head of the Department of Nuclear Energy

Hvdro

Wind

Solar

Gas with CCS

Coal with CCS

Riomass

M Ojovan at IAEA, 2011-2018

Unchanged drivers behind the nuclear power

- •Global energy demand is set to grow : Nuclear power expands supply options
- Environmental pressures are rising: Nuclear power has low lifecycle GHG emissions
- Energy supply security back on the political agenda: Nuclear power contributes to energy security
- Reliable base load electricity at predictable and affordable costs: Nuclear power offers stable and predictable generation costs based on low resource costs

	Year: 2019 ∨				
New connections to the grid					
NOVOVORONEZH 2-2	(1114 MW(e), PWR, RUSSIA) on 1 May				
SHIN-KORI-4	(1340 MW(e), PWR, KOREA, REP.OF) on 22 April				
Permanent shutdowns					
BILIBINO-1	(11 MW(e), LWGR, RUSSIA) on 14 January				
GENKAI-2	(529 MW(e), PWR, JAPAN) on 9 April				
PILGRIM-1	(677 MW(e), BWR, USA) on 31 May				
Construction starts					
KURSK 2-2	(1115 MW(e), PWR, RUSSIA) on 15 April				
UNITED STATES OF AMERICA FRANCE CHINA JAPAN RUSSIA KOREA, REPUBLIC OF	NPP Status Changes (2019) Map Satellite NORTH AMERICA Asia EUROPE AFRICA Desan				
	Google				

UKRAINE

UNITED KINGDOM

Status Change Trends Construction Starts First Grid Connections 🌆 Permanent Shutdown

Google

9

Map data ©2019 Terms of Us

Grande-Bretagne Export : 14,7 TWh Import : 1,8 TWh

2018 data

Export : 18,5 TWh Import : 12,4 TWh

CW

https://www.linkedin.com/feed/ update/urn:li:activity:650143924 0772030464 France Export : 86,3 TWh Import : 26,1 TWh Solde : 60,2 TWh

Suisse Export : 17,6 TWh Import : 7,0 TWh

Export : 19,1 TWh Import : 0,5 TWh

Espagne Export : 16,4 TWh Import : 4,4 TWh

- Nuclear energy has a potentially exceedingly valuable role to play in securing electricity supplies, and can do it **safely**;
- When integrated with other power sources it gives both long-term security of supply against economic and political threats, and short-term load following capabilities with maximised efficiency;
- We need to build the trust of the public and an important way to do this is to demonstrate safe decommissioning of existing nuclear plants and safe management of all radioactive waste.

Table 10.17 Global estimate of radioactive waste inventory for 2014						
	Waste in storage ×10 ³ ,	Waste disposed of ×10 ³ ,				
Waste class	m ³	m ³				
Very low level waste	173	273				
Low level waste	56,703	65,192				
Intermediate level	8745	10,589				
waste						
High level waste	2745	72				

An estimate of global radioactive waste inventory is given in Table 10.17 (IAEA, 2015). The estimate for very LLW (VLLW) is much lower than for LLW because many countries do not use a VLLW waste class. The annual accumulation of processed HLW is fairly constant, at an average accumulation rate of ~850 m³/y worldwide (not including SNF).

Disposal

- The generally preferred approach is to concentrate the waste and to contain the radionuclides in it by means of a waste form and waste container followed by disposal in an appropriate repository.
- The effectiveness and safe isolation of radioactive waste depends on the performance of the overall disposal system which consists of three major components, namely:
- I. The site (the host rock and surrounding geological media representing natural barriers aiding waste isolation);
- II. The repository (the facility into which waste packages are emplaced for disposal, including any engineered barriers); and
- III. The waste package (the wasteform in any suitable container).

Only waste packages, which comply with so called "waste acceptance criteria" (WAC) are accepted for disposal.

TABLE 2.1 Principal Waste Streams, Waste Forms, and DispositionPathways for the DOE-EM Cleanup Program

	Waste Stream	Approximate Quantities	Current Principal Waste Forms ^a	Likely Disposition Pathways			
	Spent nuclear fuel	2,400 MTHM	As is ^b	Deep disposal (Federal repository)			
	High-level waste						
	Tank waste	340,000 m ³	HAW: Glass LAW: Grout, glass, other	HAW: Deep disposal (Federal repository) LAW: Shallow disposal			
	Bin waste	4,400 m ³	Glass-ceramic	Deep disposal (Federal repository)			
	Transuranic waste	164,000 m ³	As is ^c	Deep disposal (WIPP)			
	Low-level waste (including mixed LLW)	1,400,000 m ³	LLW: As is ^d Mixed LLW: Grout, other ^e	Shallow disposal			
	Mill tailings (byproduct waste)	> 2 million m ³	As is	Shallow disposal			
	Depleted uranium	737,000 MT	Uranium oxide	Shallow disposal			
	Plutonium and uranium residues	108 MT	MOX fuel Glass	Deep disposal (Federal repository)			
	Excess facilities ^f	5,200	As is for decommissioning waste	Shallow disposal for LLW; WIPP for TRU waste			
	Orphan waste streams						
	Cs and Sr capsules	5 m ³	TBD^{g}	TBD			
	Other	various	TBD	TBD			

<section-header>

Imperial College London III. Nuclear waste vitrification

- Vitrification is the worldwide accepted technology for the immobilization of high level radioactive wastes (HLW).
- **Glass** can accommodate the range of constituents that are present in the waste into the glassy structure.
- The excellent **durability** of vitrified radioactive waste ensures a high degree of environmental protection.

Waste vitrification is a mature technology at industrial scale.

- Continued advancements in glassy
 wasteforms and nuclear waste
 vitrification technologies will be keys in
 enabling widespread deployment of
 nuclear energy.
- Additionally, the pressing issues regarding hazardous waste disposal may also be effectively solved using vitrification technologies.
- Stricter regulations regarding waste characterization and land disposal for hazardous wastes will necessitate the need for effective waste treatment methods.

MRS Advances © 201 Materials Research Society DOI: 10.1557/adv.2017.209

Vitreous Materials for Nuclear Waste Immobilisation and IAEA Support Activities Rebecca A. Robbins, Michael I. Ojovan Table I. Operational data of vitrification programmes.

A				
Facility	Waste type	Melting process	Operational period	Performance data
R7/T7, La Hague, France	HLW	IHC^1	Since 1989/92	5573 tonnes in 14045 canisters to 2008, 6430 $10^6\mathrm{Ci}$
AVM, Marcoule, France	HLW	IHC	1978 - 2008	1138 tonnes in 3159 canisters, 45.67 10^{6} Ci
R7, La Hague, France	HLW	CCM ²	Since 2003	GCM: U-Mo glass
WVP, Sellafield, UK	HLW	IHC	Since 1991	1800 tonnes in 4319 canisters to 2007, 513 $10^6{\rm Ci}$
DWPF, Savannah River, USA	HLW	JHCM ³	1996 - 2011	5850 tonnes in 3325 canisters, 40 10 ⁶ Ci.
WVDP, West Valley, USA	HLW	JHCM	1996 - 2002	~500 tonnes in 275 canisters, 24-10 ⁶ Ci
EP-500, Mayak, Russia	HLW	ЛСМ	Since 1987	~6200 tonnes to 2013, 643·10 ⁶ Ci (P. Poluektov has earlier reported on 8000 tonnes and 900 10 ⁶ Ci to 2009 [1])
CCM, Mayak, Russia	HLW	CCM	Pilot plant	18 kg/h by phosphate glass
Pamela, Mol, Belgium	HLW	JHCM	1985-1991	~500 tonnes in 2200 canisters, 12.1 10^6 Ci
VEK, Karlsruhe, Germany	HLW	JHCM	2010 - 2011	~60 ${ m m}^3$ of HLW (24 10 ⁶ Ci)
Tokai, Japan	HLW	JHCM	Since 1995	>100 tonnes in 241 canisters (110 L) to 2007, 0.4 $10^{6}{\rm Ci.}$
Radon, Russia	LILW	JHCM	1987-1998	10 tonnes
Radon, Russia	LILW	CCM	Since 1999	> 30 tonnes
Radon, Russia	ILW	SSV ⁴	2001-2002	10 kg/h, incinerator ash
VICHR, Bohunice, Slovakia	HLW	IHC	1997-2001, upgrading work to restart operation	1.53 m ³ in 211 canisters
WIP, Trombay, India	HLW	IHPT ⁵	Since 2002	
AVS, Tarapur, India	HLW	IHPT	Since 1985	18 tonnes to 2010 (110 10 ³ Ci)
WIP, Kalpakkam, India	HLW	JHCM	Under testing & commissioning	
WTP, Hanford, USA	LLW	ЛСМ	Pilot plant since 1998. LLW/HLW vitrification plants under construction.	~ 1000 tonnes to 2000. Capacities: LLW plant 2 x 15 tonnes/day; HLW plant 2 x 3 tonnes/day
Taejon, Korea	LILW	CCM	Pilot plant, planned 2005	?
Saluggia, Italy	LILW	CCM	Planned	?

¹IHC - Induction, hot crucible, ²CCM – Cold crucible induction melter, ³JHCM – Joule heated ceramic melter, ⁴SSV - Self-sustaining vitrification, ⁵IHPT – Induction heated pot type melter. Note that 1 Ci = 3.7 10¹⁰ Bq.

Imperial College London Vitrification technology

Vitrification is most suitable for aqueous radioactive wastes. Waste vitrification is attractive because of:

•High capability of glass to immobilise various elements,

- •Simple production technology adapted from glass production industry,
- •Small volume of the resulting wasteform,
- •High chemical durability of glasses in natural waters and

•High tolerance of glasses to radiation damage.

Vitrification of Radioactive Wastes

Nuclear energy continues to receive considerable attention as a potential solution to issues such as global warming. However, the management of radioactive nuclear waste remains an obstacle to a true 'Nuclear Renaissance.' James C. Marra* and Michael I. Ojovan** discuss.

Vitrification:

Vitrify: to convert (something) into glass or a glass-like substance, typically by exposure to heat. Late Middle English: From French vitrifier or based on Latin vitrum 'glass'.

Energy balance:

The vitrification process generally involves evaporating the liquid HLW, decomposing the volatile anions (e.g., nitrates) if not removed by calcining, fusing the waste with oxide glass additives, pouring the glass into canisters, and cooling to form the solid glass containing the waste.

The thermal energy required for the conditioning of **1 liter** of typical commercial HLW containing 120 g of salts is roughly **1.2 kWh**. The major portion of this energy (about 67%) is required for evaporation. The energies required for decomposition of nitrates and fusion amount to 20% and 13% of the total respectively.

The primary methods of heating:

Joule heating – the passing of a current through the resistive melt which generates heat within the melt as used in the Joule Heated Ceramic Melter (JHCM).

Low-frequency (\leq 4 kHz) **induction heating** – the use of a low frequency induction to couple to the melter body (Hot Wall Induction Melter and in-can melter).

High-frequency (150 to 2,000 kHz) **induction heating** – the use of radio frequency to induce current directly into the glass melt which causes a Joule-heating effect.

Resistance heating – heating of the melt from an external or internal resistance heater. Heat transfer to the melt is generally by radiation heating.

Microwave (0.3 to 300 GHz) heating – the use of higher frequency electromagnetic waves to couple directly to the melt. These waves excite different vibrational and rotational modes in the melt molecules which relax by conduction into the melt.

Plasma heating – The focusing of a plasma torch (partially ionized gas) on the melt which directly heats the melt primarily by radiative heat transfer.

The melters:

Ceramic refractory melters – high temperature (typically fuse) cast) ceramics. Refractory ceramics have the advantage of corrosion resistance, high thermal efficiency, high-temperature operation, and relatively high melter life. The disadvantages include the large size and weight of the refractories (which take up large hot-cell volume and require disposal), difficulty in decontamination after use, and difficulty in cooling and reheating due to thermal shock.

Metal melters – metal alloy glass melt containment materials. Metals have the advantages of high thermal conductivity, thermal shock resistance, low volume, and ability to decontaminate after use. The disadvantages include low temperature (or expensive alloys), microstructural changes at high temperature creating failure modes, welding flaws, and, in the case of induction heating, the potential for hot-spots.

Cold wall melters – frozen glass contact materials maintained by

active cooling (as in the case of cold crucible induction melters, CCIM). The advantage of this material is very-high temperature process capability, relatively low volume, and tolerance to corrosive melts.

The feeding system:

Direct liquid feeding or one step. The glass forming additives are either premixed with the liquid waste or fed separately onto the glass surface.

Evaporation on top of the melt results in cooling of the upper glass layers in the melter which helps to control the release of volatiles and semi-volatiles from the melt, but, may reduce melting rate. In more recent applications stirring is implemented, either by sparging (bubblers or an air lift glass pump) or by mechanical stirrers to increase the heat transfer rate to the reacting batch and thereby increase production rate. Liquid feeding avoids dusting issues with radionuclides in the waste.

Dry feeding or two step. ter is removed and the waste feed is partially reacted in a calciner ahead of the melter. This generally increases the melt processing rate as calciners tend to be more efficient at removing water than are melters. However, the calciners currently deployed in HLW vitrification facilities are rotary calciners which require significant maintenance and dusting control to prevent the spread of airborne radionuclides.

Imperial Colle	de la	-			*.*.*.*.*.
Facility	Waste type	Meting process	Operational period	Performance	
DWPF, Savannah River, USA	HLW	JHCM ³	Since 1996	6300 tonnes in 3591 canisters, 1.8·10 ⁶ TBq to 2012	

Savannah River Defence Waste Processing Facility DWPF

Mission Impossible? Socio-Technical Integration of Nuclear Waste Geological Disposal Systems

François Diaz-Maurin ^{1,2,*} ⊠ ^[0] and Rodney C. Ewing ^{1,3} ⊠

Sustainability 2018, 10, 4390

¹ Center for International Security and Cooperation (CISAC), Stanford University, Stanford, CA 94305, USA
 ² Amphos 21 Consulting S.L., C/Venezuela 103, 08019 Barcelona, Spain

30 of 39

³ Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA

Table A1. Present waste types and projected waste forms and thermal output of defense HLW in the U.S. Source: [89], unless otherwise noted.

Waste Type	Present Quantity of Waste Type	Projected Quantity of Waste Packages in 2048	Physical Description of Projected Waste Type and Waste Form	Thermal Output of Projected Waste Type in 2048 (W/container)
		Existing defense HLW		
SRS HLW tank waste	3600 m ³ of vitrified waste in canisters (estimated) ^(a)	4050 canisters (estimated) ^(a)	glass in canisters	4 to 120 W/canister (at time of production, 1996–2012)
FRG glass at Hanford	anford 34 canisters 34 canisters		glass in canisters (containing strontium and cesium) ^(b)	375 W/canister
		Projected defense HLW		
Hanford tank waste	~207,000 m ³ of reprocessing waste in tanks	10,586 canisters of glass, 3735 kg per canister (filled)	glass in canisters (planned)	360 W/canister
SRS HLW tank waste	98,000 m ³ of reprocessing HLW in tanks (estimated) ^(a)	4150 canisters (estimated) ^(a)	glass in canisters (planned)	Up to 500 W/canister (at time of production)
Calcine waste at INL	4400 m ³ of solid granular material (calcine) in six Calcine Solids Storage Facility (CSSF) bin sets	11,400 canisters (estimated)	glass in canisters (planned) ^(c)	1.2 to 15.4 W/canister (unknown time)
Cs/Sr capsules at Hanford	1335 Cs capsules, 601 Sr capsules stored underwater	340 canisters	glass in canisters (planned) ^(d)	349 W/canister
Sodium-bearing waste (SBW) at INL	3200 m ³ of liquid waste in tanks	688 canisters	solids and powders in canisters (planned) ^(e)	2.5 W/canister

Abbreviations used: Cs, cesium; FRG, Federal Republic of Germany; INL, Idaho National Laboratory; kg, kilogram; m³, cubic meter; Sr, strontium; SRS, Savannah River Site; W, watt. Notes: ^(a) Liquid waste processing at Savannah River has been on hold since February 2017. Values estimated including 17,000 m³ expected additional volume by year 2019 through continued reprocessing at H Canyon facility [90–93]. ^(b) Contains known amounts of Cs-137 and Sr-90; contains an unknown amount of Cs-135. ^(c) This waste form disposal pathway is an alternative to the planned disposal pathway for this waste type. It assumes calcine waste can be vitrified. Calcine waste has also been proposed to be treated by hot isostatic pressing or disposed of without further treatment. Other possible waste forms include crystalline powder in canisters or glass ceramic in canisters. Disposal strategy not finalized. ^(d) This waste form assumes Cs and Sr from capsules can be vitrified. Cs/Sr capsules have also been proposed to be disposed as untreated overpacked capsules. Both of these waste form disposal pathways are alternative pathways, as neither has been finalized. ^(e) This waste form assumes sodium-bearing waste have been treated by fluidized bed steam reforming.

Special Issue "Nuclear Waste Management and Sustainability of

Nuclear Systems" https://www.mdpi.com/journal/sustainability/special_issues/nuclear_systems

Imperial Co Facility	Waste type	Meting process	Operational period	Performance	
WVP, Sellafield, UK	HLW	IHC	Since 1991	2200 tonnes in 5615 canisters, 33.10 ⁶ TBq to 2012	
Highly Active	Calcinati	on			

.

Imperial College London Pot vitrification processes

Simple pot vitrification processes that do not employ a separate calcination stage have been initially considered (e.g. in Canada, France (Pilote Verre – PIVER), US, UK, Russia, India, Italy, Japan, China ..).

Such a process is currently used commercially in India (WIP, Tarapur) for the immobilization of HLW generated during the reprocessing of spent fuel.

Waste vitrification plants in India

	WIP - TARAPUR	WIP - TROMBAY	WIP - KALPAKKAM
Commissioned Year	1985	2002	Under testing & commissioning Stage
Type of waste	Power reactor waste	Research reactor waste (sulphate issue)	Power Reactor waste
Layout concept	Single cell concept	Multiple cell concept	Multiple cell concept
Process steps	Evaporation followed by vitrification of HLW	Vitrification of HLW with pretreatment processes	Evaporation Followed by vitrification fof HLW
Glass matrix	Sodium Borosilicate	Barium Borosilicate	Sodium Borosilicate
Vitrification process	Pot type - with no freeze valve	Pot type - with Freeze valve concept	Ceramic melter
Off-Gas Treatment	Single off-gas treatment system	Two off-gas treatment Systems segregated as per specific activity handling	Multiple off-gas treatment systems segregated for each process

PROCESS FLOW SHEET FOR VITRIFICATION OF HLW

HIGH LEVEL WASTE FROM PLUTONIUM PLANT

Simple pot (in-can) vitrification processes are **currently** considered for immobilisation of legacy and decommission radioactive waste.

Pot vitrification is the most simple process for immobilisation of radioactive wastes in glass. In this method radioactive wastes (HLW, ILW or LLW) are mixed with glass-forming additives, and fed at a constant flow rate directly into vessels where water evaporation, calcination and vitrification occur.

In the in-can vitrification process the **melting pot is disposable** and serves as the primary canister for both metallic and the glassy wasteforms. Refractory canisters-containers are needed to ensure containment of radioactive waste during processing (glass melting), storage, transportation and disposal.

Conference, March 5-9, 2017, Phoenix, Arizona, USA

WM2017 Conference, March 5-9, 2017, Phoenix, Arizona, USA

Energy & Environment | New Nuclear | Regulation & Safety | Nuclear Policies | Corporate | Uranium & Fuel |

France presents vitrification process for Fukushima

23 October 2018

PIVIC Package concept and vertical cut of a scale 1 the first prototype of the project.

A project to demonstrate the use of innovative radioactive waste vitrification technology, developed in France, at the damaged Fukushima Daiichi nuclear power plant in Japan has been under way for the past six months.

Share

2019

http://www.world-nuclear-news.org/Articles/Francetouts-vitrification-process-for-Fukushima

Proceedings of FDR2019 International Topical Workshop on Fukushima Decommissioning Research May 24-26, 2019. J-Village, Naraha, Fukushima, Japan

An in-can prototype developed at CEA Marcoule (Image: CEA)

Imperial College **IV. LILW vitrification**

Glass offers improved means of storing intermediate level nuclear waste

22 August 2012

A method of storing nuclear waste, normally used only for could provide a safer, more efficient, and potentially cheap Intermediate Level Waste.

Intermediate Level Waste (ILW) makes up more than three quarters of the volume of material destined for geological disposal in the UK. Currently the UK's preferred method is to encapsulate ILW in specially formulated cement. The waste is mixed with cement and sealed in steel drums, in preparation for disposal deep underground.

London

Two studies, published in the latest issues of The Journal of Nuclear Materials and European Journal of Glass Science and Techno

http://www.dpaonthenet.net/article/52704/Glass-offersimproved-means-of-storing-intermediate-level-nuclearwaste.aspx

HA COSCIER M P. CHIESAN T.C. LEPSATORA O T. SATKORD

СТЕКЛА

Stephanie M. Thornber ", Paul G. Heath ", Gabriel P. Da Costa ", b, Martin C. Stennett ", Neil C. Hyatt **

droni (

Immediation Science Informatory Department of Materials Science & Engineering, The University of Singlicid, Sir Robert Mulfield Bahilug, Nappin Street, She@bid SJ 303, 102 ¹ Department of Orenical Physics ing a Petroleum Engineering, Universidade Federal Huminesce, Ros Passo do Rurio 195, CFP 24210 205, Microi, RJ.

RADON LILW Vitrification Plant

FGUP RADON LILW vitrification plant: 1–LILW interim storage tank; 2–LILW transportation vehicle; 3–pump; 4–concentrate collector; 5–rotary film evaporator; 6, 13, 26– pumps; 7– condenser; 8–condensate collector; 9–batch (feed) mixer; 10–glass formers bins; 11–glass formers mixture bin; 12–screw feeder; 14–cold crucible; 15–bag filter; 16–HEPA filter; 17, 19, 23, 27–heat exchangers; 18–scrubber; 20– heater; 21– catalytic reactor for reduction of nitrogen oxides; 22–catalytic reactor for oxidation of ammonia; 24–fan; 25–sorbent bin; 26-Pump; 28– ammonia balloon; 29–glass canister;

Glass productivity (single crucible), kg/hr	≤ 25
Glass productivity (three crucibles), kg/hr	≤75
Melting ratio, kW∙hr/kg	4-6
Glass block weight, kg	50
Glass specific activity, Bq/kg	10 ⁵ -10 ⁷
Installed electric capacity, kW	1500
Overall dimensions, m	9×12×24

Self-sustaining vitrification

Hanford Tank Waste Treatment and Immobilization Plant (WTP)

WTP will be the world's largest nuclear waste vitrification facility

Design, construction, and commissioning:

- Bechtel: 2001 2019 (22), ~\$13 B
- BNFL: 1996 2000
- Operations: 2019(22) 2050?, ~\$30 50 B
 - However, delays are expected
- Treat 56 million gallons of liquid nuclear waste stored in 177 underground tanks at DOE's Hanford site

Imperial College London WTP LAW Melters

LAW Production = 30 MT glass/day with ES-VSL bubbler technology

Weight: 330 tons

Exterior Dimensions: 29'-6" (L) x 21'-6" (W) x 15'-9" (H)

- 10 m² glass pool surface area
- 7630 L molten glass pool

Design production rate 15 tonnes of glass/day

LAW Melter During Installation

Imperial College London V. Vitreous wasteforms

Development of glasses for the solidification of HLW began at different times in the US, Canada, Europe, and the USSR. Different glass formulations (**borosilicate, aluminosilicate, and phosphate glasses**) and processing strategies were developed.

- The borosilicate glass formulations were developed in the US between 1956 and 1957.
- The aluminosilicate (nepheline syenite based) glass formulations were simultaneously being developed in Canada in 1957.
- Phosphate-based glasses were the last to be investigated for solidification of nuclear waste.

A systems evaluation of phosphate glasses demonstrated that the positive aspects of processing, e.g. low melting temperatures, were outweighed by other negative processing aspects, e.g. melt corrosivity, and by poor product performance. The aluminosilicate glasses and ceramic wasteforms are still being investigated for certain types of nuclear wastes.

Imperial College

London

Glass has become widely used for waste immobilisation because of the amorphous and less rigid structure of glasses. Glasses possesses short range order (SRO) and medium range order (MRO) compared to ceramics that have SRO, MRO, and long range order (LRO). Glass structure enables the incorporation of a very large range of elements that are atomically bonded in the flexible glass. Thus glasses can accommodate larger waste composition variations than most ceramic wasteforms. Immobilisation of Radioactive Waste in Glass 249

The MRO encompasses	Glass/Country Oxide (wt%)	SiO ₂	P ₂ O ₅	B ₂ O ₃	Al ₂ O ₃	CaO	MgO	Na ₂ O	Misc	Waste Oxides
environments around a	R7/T7, France	47.2	_	14.9	4.4	4.1	_	10.6	18.8	28
control atom (radius of	DWPF, USA	49.8	_	8.0	4.0	1.0	1.4	8.7	27.1	33
	SRNL, USA	30.5	1.1	15.2	25.0	6.1	0.1	9.6	13.5	45 ^a
influence ~3-6 A).	WVP, UK	47.2	_	16.9	4.8	_	5.3	8.4	17.4	25 (up to
										35-38)
LRO extends beyond third-	Pamela, Germany-	52.7	-	13.2	2.7	4.6	2.2	5.9	18.7	30
neighbour environments and	Belgium		50.0		10.0				7.0	aab
aives crystalline	Mayak, Russia	_	52.0	_	19.0	_	_	21.2	7.8	33
gives crystannie	Radon K-26, Russia	43	_	6.6	3.0	13.7	_	23.9	9.8	35°
ceramic/mineral structures	P0798, Japan	46.6	_	14.2	5.0	3.0	_	10.0	20.2	
their crystallographic	GC-12/9B, China	46.2	-	13.4	4.2	2.5	1.5	9.1	23.1	
periodicity.	DWPE - Defence Waste I	mossin	a Facility	Savannal	Piver Site		NI _ Sa	annah Riv	er Natior	alLaboratory

DWPF - Defence Waste Processing Facility, Savannah River Site, US; SRNL - Savannah River National Laboratory, US; WVP - Waste Vitrification Plant, Sellafield, UK.

Table 17.1 Compositions of Nuclear Waste Glasses

^aThis glass has been developed to host Hanford high-Al radioactive waste.

^b≤10 for fission products and minor actinide oxides.

"This glass is designed for sodium-containing LLW and ILW.

Imperial College London VI. Safety of vitrified waste

Volume Reduction Factor depends on initial concentration of salts in the aqueous waste. At about 200 g/L the volume reduction factor VRF is about 4.5

Real (residual) radiotoxicity of vitrified waste.

Radiotoxicity: volume of water (m³), in which the initial material has to be diluted to obtain permitted contamination levels.

$$H(t) = \sum_{i} \frac{C_i(0) \exp(-\lambda_i t)}{IL_i} \Phi_i V$$

Coefficients Φ_i , account for the real releases of radionuclides.

Aqueous solutions (liquid wastes) have $\Phi_i = 1$. Durable waste forms have $\Phi_i <<1$.

Borosilicate and phosphate glasses are extremely durable materials which do not dissolve in water, thus they hold $\Phi_i \ll 1$

250

An Introduction to Nuclear Waste Immobilisation

Table 17.2 Typical Properties of Glasses for Nuclear Waste Immobilisation

Glass Type	Density (g/cm ³)	Compressive Strength, (MPa)	NR ^a (10 ⁻⁶ g/cm ² day)	TEC ^b , (1/K)	T _{max} °, K (°C)	Damaging Dose ^d (Gy)
Borosilicate	2.7	22-54	0.3 (Cs) 0.2 (Sr)	8×10^{-6}	≥823 (550)	>109
Phosphate	2.6	9-14	1.1 (Cs) 0.4 (Sr)	1.5×10^{-6}	≥723 (450)	>109

^aIAEA test protocol for 28th day.

^bTEC - thermal expansion coefficient.

 $^{c}T_{\text{max}}$ is the maximum allowed temperature of glass representing the limit of its thermal stability. T_{max} is defined as the temperature above which the radionuclide NR's increase >10² times. By definition $T_{\text{max}} < T_{g}$.

^dIrradiation has a small impact on glasses and the damaging dose is the absorbed dose above which the radionuclide NRs increase several times.

A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals

All materials can suffer from environmental degradation; the rate and extent of degradation depend on the details of the material composition and structure as well as the environment. The corrosion of silicate glasses, crystalline ceramics, and metals, particularly as related to nuclear waste forms, has received a lot of attention. The corrosion phenomena and mechanisms of these materials are different, but also have many similarities. This review compares and contrasts the mechanisms of environmental degradation of glass, crystalline ceramics, and metals, with the goal of identifying commonalities that can seed synergistic activities and advance the current knowledge in each area.

npj Materials Degradation (2018)2:15; doi:10.1038/s41529-018-0037-2

Contents lists available at ScienceDirect Journal of Nuclear Materials ELSEVIER journal homepage: www.elsevier.com/locate/journat

Modelling aqueous corrosion of nuclear waste phosphate glass

Pavel P. Poluektov ^a, Olga V. Schmidt ^a, Vladimir A. Kascheev ^a, Michael I. Ojovan ^{b.*}

^a Bochwar All-Russian Scientific Research Institute for Inorganic Materials (VNIDM), Moscow, Bassia

³ Instabilisation Science Laboratory, Department of Materials Science and Engineering, University of Steffield, Mappin Street, Sheffield, S1 3(D, United Kingdom

Fig. 7 Summary of estimates of initial rates of corrosion, r_0 , and residual or steady state rates, $r_{\rm R}$, for ceramics, glasses and corrosion-resistant metal alloys. The very high initial rate shown for metal passivation is a consequence of the very short timescale (μ s) over which such rates can be measured for metals

VII. Some IAEA support activities

IAEA Support: Networks

https://nucleus.iaea.org/sites/connect/Pages/default.aspx

Networks

Geological Disposal Underground Research Facilities for Geological Disposal

Learn More / Join URF

International Decommissioning Network Decommissioning of Nuclear Facilities

Learn More / Join IDN

Management System Network of Excellence Management System Network

Learn More / Join MSN

Network on Environmental Management and Remediation ENVIRONET -

Environmental Remediation and NORM Management Network

International Low Level Waste Disposal Network Near Surface Disposal of Low Level Radioactive Waste

Learn More / Join DISPONET

Coordination Group for Uranium Legacy Sites Coordination Group for Uranium Legacy Sites

Learn More / Join CGULS

International Network of Laboratories for Nuclear Waste Characterization LABONET - International Network of Laboratories for Nuclear Waste Characterization

Learn More / Join LABONET

beta-Delayed Neutron Emission beta-Delayed Neutron Emission

Learn More / Join bDN

Spent Fuel Management International Network on Spent Fuel Management

Learn More / Join SFM

I&C Technologies Instrumenation and Control Technologies Network

Learn More / Join ICT

Nuclear Knowledge Management Network Nuclear Knowledge Management Network

Learn More / Join NKM

Regulatory Supervision of Legacy sites International Working

International Predisposal Network forum for the sharing of practical

and international developments on radioactive waste management activities before disposal.

Imperial College

CONNECT Home

IPN Public

CRPs

Publications

Members' area

TM Processing and Storage of Institutional Radioactive Waste

Welcome to the IAEA International Predisposal Network - IPN

Prior to disposal, the radioactive waste usually goes through a number of steps such as pre-treatment, treatment, conditioning, storage and transport with characterization utilised within the entire cycle of radioactive waste. Predisposal management encompasses all of these steps that collectively cover the activities from waste generation up to final disposal.

The International Predisposal Network (IPN) is a forum for the sharing of practical experience and international developments on radioactive waste management activities before disposal.

The IPN is being established to increase efficiency in sharing international experience in the application of proven, quality assured practices for the predisposal management of radioactive waste including used nuclear fuel declared as waste.

The IAEA intends to support Member States either currently engaged in or seeking to develop predisposal technologies through their inclusion in the IPN to cooperate and coordinate relevant actions, training and technical advances. IPN members will include organisations and communities with current and future interest in radioactive waste management with focus on predisposal management. These include operators and regulatory bodies, as well as supporting organisations and scientific institutions and organizations that are involved with education and training.

Not a member yet?

Partnering Organizations

Search this site

👤 OJOVAN, Michael

European Commission

Current Highlights

- The 43rd MRS Symposium on Scientific Basis for Nuclear Waste Management organized in cooperation with the International Atomic Energy Agency will be held at IAEA, Vienna on 21 – 24 October 2019.
- New CRP "Long-lived Alpha Bearing Waste Management - Characterization, Processing and Storage" to start in 2018.

Events

Joint ICTP/IAEA Workshop on Radioactive waste management – solutions for countries without nuclear power programme

2 - 6 November 2015

(Miramare - Trieste, Italy)

The Workshop on radioactive waste management – solutions for countries without nuclear power programme is jointly organized by The Abdus Salam International Centre for Theoretical Physics (ICTP) and the International Atomic Energy Agency (IAEA).

Purpose

The Workshop aims to advise countries having small amount of waste from different research, medical, and industrial sources (institutional waste) which physico-chemical characteristics of radioactive waste should be considered and how to interpret them to effectively create infrastructure for safe collection, processing, storage and disposals of their radioactive waste, including intermediate level waste and spent fuel from research reactors, NORM and disused sealed sources.

Focus

This workshop will focus mainly on waste management professionals, both operators and regulators, from countries without nuclear power programme to create awareness of the technical inputs and physical and chemical waste characteristics necessary for establishing or upgrading national infrastructure for safe and efficient management of radioactive waste. The Abdus Solam International Centre for Theoretical Physics www.ictp.it

Joint ICTP/IAEA Workshop on radiation effects in nuclear waste forms and their consequences for storage and disposal

12 - 16 September 2016

Miramare, Trieste, Italy

The Workshop on radiation effects in nuclear waste forms and their consequences for storage and disposal is jointly organized by The Abdus Salam International Centre for Theoretical Physics (ICTP) and the International Atomic Energy Agency (IAEA).

PURPOSE

The Workshop aims to gain awareness on the most recent findings of research into radiation effects in nuclear waste forms and their role for waste storage and disposal. It aims to contribute to the transfer of specific knowledge to Member States towards their capacity building efforts and competence in nuclear waste immobilization and disposal.

FOCUS

The workshop will focus mainly on experts on radiation effects in materials to explore the potential of both experimental and theoretical/computational approaches aiming to understand the consequences of irradiation of materials under extreme conditions, particularly focusing on long-term irradiation conditions envisaged for nuclear waste forms containing long lived fission products and actinides.

TOPICS

The main topics of the Workshop are:

- Fission and fusion power generation: challenges in the use of materials;
- Role of irradiation at different stages of material use in the nuclear industry;
- Nuclear waste forms and envisaged irradiation storage and disposal conditions;
- Behaviour of materials containing actinides and long lived radionuclides;
- Experimental techniques to investigate and simulate radiation effects;
 Theoretical (computational methods to investigate and simulate radiation effects)

IAEA

Co-Sponsors International Atomic Energy Agency (IAEA) Vienna, Austria

Directors

Michael I. OJOVAN (IAEA, Austria) Neil C. HYATT (University of Sheffield, UK)

Joint ICTP/IAEA Workshop on Fundamentals of Vitrification and Vitreous Materials for Nuclear Waste Immobilization

6 - 10 November 2017 Trieste, Italy

The Workshop is devoted to advances in understanding fundamentals of vitrification and utilization of vitreous materials in nuclear applications focusing on topics related to immobilization of nuclear wastes. Joint ICTP-IAEA International School on Nuclear Waste Actinide Immobilization

10 - 14 September 2018 Triește, Italy

Further information: http://inefico.ictp.it/event/8333/ smr3237@ictp.it

CTP

Joint ICTP-IAEA International School on Nuclear Waste Vitrification

23 - 27 September 2019 Trieste, Italy

Nuclear waste management is a core issue for sustainable development and long-term viability of nuclear energy as energy supply. Glass is the overwhelming worldwide choice for the immobilisation of radioactive waste resulting from nuclear fuel reprocessing and other nuclear activities. The main goal of this School is the dissemination of knowledge on optimal methods of utilization of vitreous wasteforms for the immobilization of dangerous radionuclides. Another goal is transferring experience of vitrification technologies from leading centers and specialists to participants. Further information: http://indico.ictp.it/event/8772/ smr3325@ictp.it

Course Directors:

Isabelle Hugon Nuclear Research Division, CEA, Bagnols-sur-Ceze Cedex, France

Willie Meyer IAEA, Vienna - Austria

Michael I. Ojovan Imperial College London - UK

Imperial College

MATERIALS RESEARCH SOCIETY® Advancing materials. Improving the quality of life.

The 43rd MRS **Symposium on Scientific Basis for Nuclear Waste Management** organized in cooperation with the International Atomic Energy Agency will be held at IAEA, Vienna on 21 – 24 October 2019 (EVT1801370, BR A, MOE 68,67,69)

Symposium proceedings to be published by "MRS Advances" (Cambridge University Press). Special Volume Editors M.I. Ojovan and R.A. Robbins.

Scientific Basis for Nuclear Waste Management

Advances

VIII. Summary

- Vitrification is the world-wide accepted technology for the immobilization of radioactive waste.
- Vitreous wasteforms provide a high degree of environmental protection.
- The IAEA conducts important activities aiming to share best waste management practice including vitrification technologies.

Facility	Waste	Melting	Operational	Performance	ormance					
	type	process	period							
R7/T7, La Hague, France	HLW	IHC ¹	1989/1992	6555 tonnes in 16885 canisters, 262.10 ⁶ TBq to 20 ⁴	nisters, 262⋅10 ⁶ TBq to	2012				
AVM, Marcoule, France	HLW	IHC	1978 – 2012	1357 tonnes in 3306 canisters, 22.106 TBq to 2012	1357 tonnes in 3306 canisters, 22.10 ⁶ TBq to 20 ⁷					
R7, La Hague, France	HLW	CCM ²	2010 –	GCM: U-Mo glass	J-Mo glass					
				76 tonnes in 190 canisters to 2012	0 canisters to 2012					
WVP, Sellafield, UK	Mich	ael I. Oiova	n	nes in 5615 canisters, 33·10 ⁶ TBq to 2012	nisters, 33⋅10 ⁶ TBq to 2	2012				
DWPF, Savannah River,	Willia	m E. Lee		6300 tonnes in 3591 canisters,	n 3591 canisters,					
USA	Stepa	an N. Kalmy	/kov	1.8-10 ⁶ TBq to 2012	Bq to 2012					
WVDP, West Valley, USA				570 tonnes in 570 canisters,	n 570 canisters,					
				0.9·10 ⁶ TBq	10 ⁶ TBq					
EP-500, Mayak, Russia	Third	edition		~6200 tonnes, 643 10 ⁶ Ci	es, 643 10º Ci					
CCM, Mayak, Russia	An	Introd	luction to	18 kg/h by phosphate glass	hosphate glass					
Pamela, Mol, Belgium		intuou		tonnes in 2201 canisters, 0.5·10 ⁶ TBq	canisters, 0.5⋅10 ⁶ TBq					
Karlsruhe, Germany			ar Wa	55 tonnes in 140 canisters,	n 140 canisters,					
		uulu		0.8·10 ⁶ TBq	10 ⁶ TBq					
Tokai, Japan	In	nmc	obilisat	in 241 canisters (110 L), 0.4-10 ⁶ Ci to 200	rs (110 L), 0.4⋅10 ⁶ Ci to	2007				
Radon, Russia				10 tonnes	tonnes					
Radon, Russia	1.1			> 30 tonnes	tonnes					
Radon, Russia	(10 kg/h, incinerator ash	cinerator ash					
Bohunice, Slovakia	- \ 💭			1.53 m ³ in 211 canisters	211 canisters					
WIP, Trombay, India				18 tonnes, 110·10 ³ Ci to 2012	0·10³ Ci to 2012					
AVS, Tarapur, India			A 1983 444	onnes in 100 canisters, 0.15·10 ⁶ TBg	anisters, 0.15·10 ⁶ TBg					
WIP, Kalpakkam, India			主题就是							
WTP, Hanford, USA				~ 1000 tonnes to 2000	nnes to 2000					
VPC, SEPEC Site, China	ELSEVIE	R	and the second s							
Taejon, Korea	LILW	CCM	Testing							

References:

- **1. An Introduction to Nuclear Waste Immobilisation**, M.I. Ojovan, W.E. Lee, S.N. Kalmykov. Elsevier, Amsterdam, 3rd Edition (2019).
- 2. Radionuclides containment in nuclear glasses: an overview. Gin S., Jollivet P., Tribet M., Peuget S., Schuller S. Radiochim. Acta 2017; 105(11): 927–959 (2017).
- 3. Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience, W.E. Lee, M.I. Ojovan, C.M. Jantzen. Woodhead, Cambridge (2013).
- **4. Handbook of Advanced Radioactive Waste Conditioning Technologies**. M.I. Ojovan (Ed.). Woodhead, Cambridge (2011).
- **5. Waste Immobilisation in Glass and Ceramic Based Hosts.** I.W. Donald Wiley, Chichester (2010).

