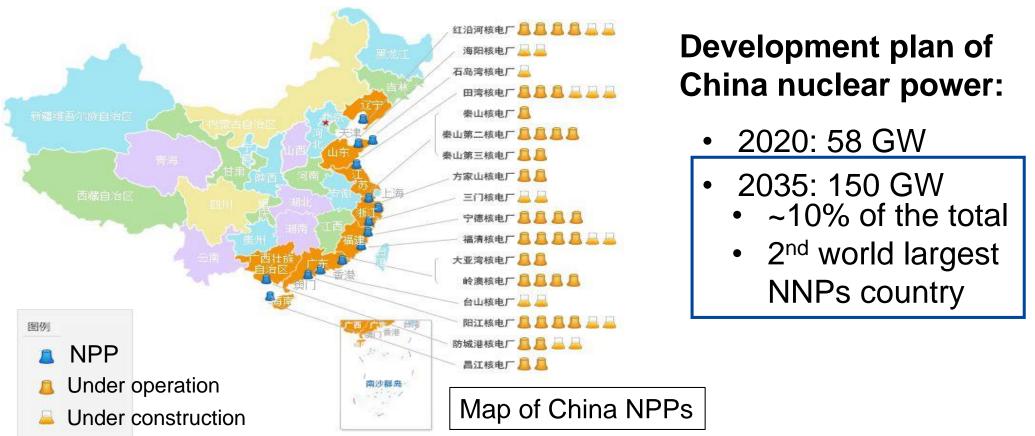


Vitrification Programme in China

Kai Xu

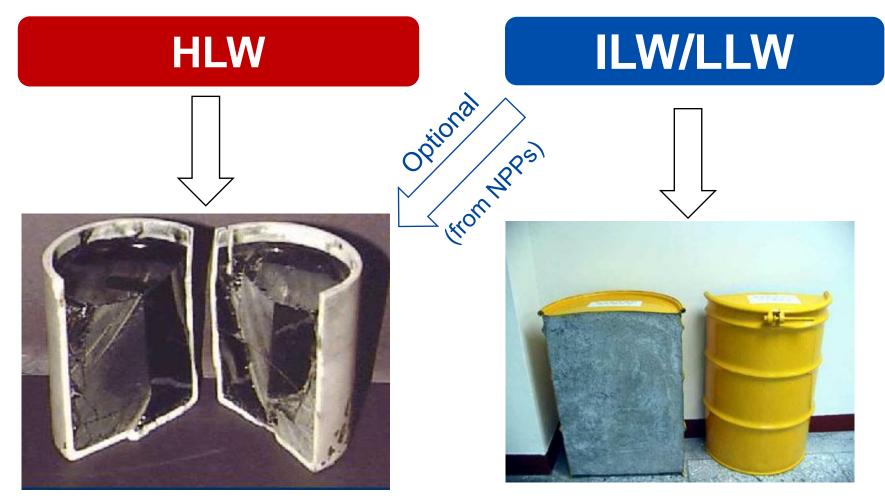
E-mail: kaixu@whut.edu.cn

Stake Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology


September 24th, 2019

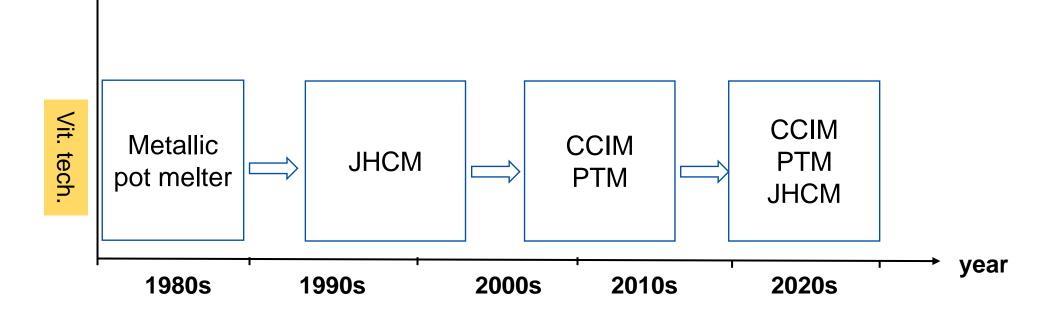
Joint ICTP-IAEA International School on Nuclear Waste Vitrification

Background - fast growing of China nuclear power


Reactors under construction: 18 (2018 data)

- By 2035, 50,000 m³ of HLW will be produced from reprocessing
- Legacy waste (HLW) is going to be vitrified soon

Background – China nuclear waste management policy

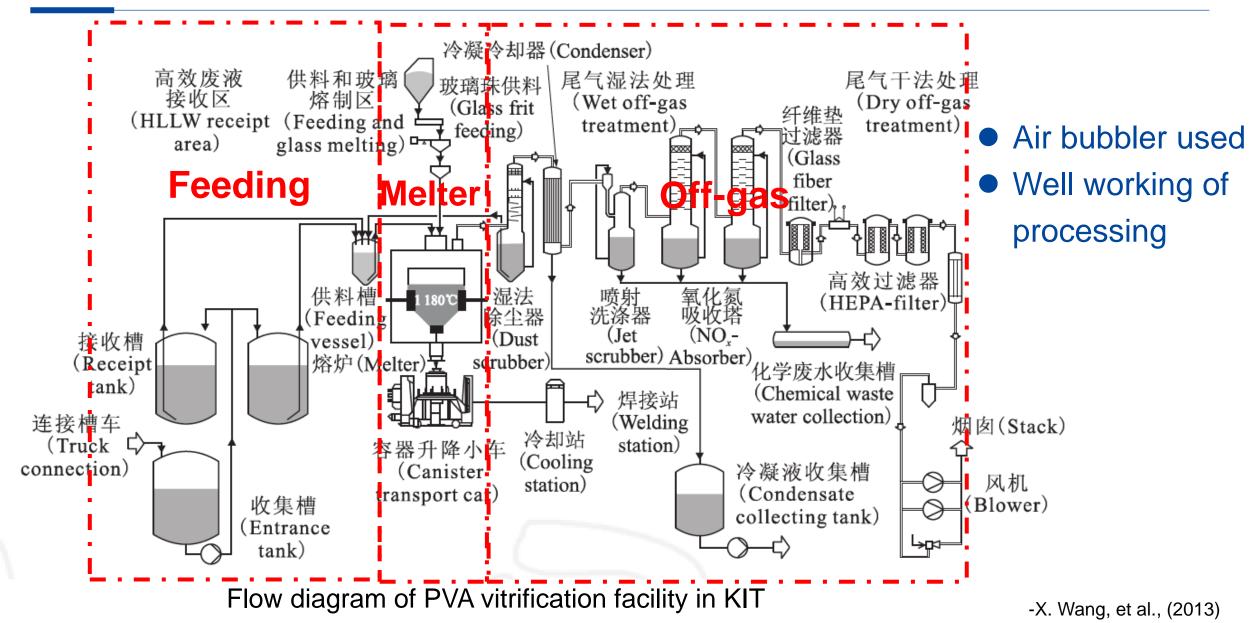

Glass

Background – China nuclear waste vitrification R&D

• R&D of nuclear waste vitrification draws attention in China in the past decade

(I) JHCM -Vitrification Plant China (VPC) Programme

VPC: the first nuclear waste vitrification facility in China


VPC programme (Phase 1) – glass formulation

	w/%								
氧化物 (Oxides)	——————————————————————————————————————		候选玻璃		预选玻璃		最后推荐玻璃		
	(Former glass)		(Candidate glass)		(Preselect glass)		(Final recommend glass)		
(Oxides)	玻璃料	废物玻璃	玻璃料	废物玻璃	玻璃料	废物玻璃	玻璃料	废物玻璃	
	(Frit)	(Waste glss)	(Frit)	(Waste glss)	(Frit)	(Waste glss)	(Frit)	(Waste glss)	
SiO_2	59, 80	50, 23	50,96	42,55	53, 76	44.89	53,76	44.89	
$\mathbf{P}_{B_2O_3}$	22, 00	18 48	14,68	12,26	14.68	12.26	14.68	12, 26	
Na ₂ O	5, 00	4, 20	7.04	5,88	5, 25	4.38	5, 25	4, 38	
Li ₂ O	2, 30	1, 93	2,61	2, 18	2, 61	2, 18	2,61	2, 18	
Al_2O_3	3, 50	2, 94	4,43	3,70	4.43	3, 70	4,43	3, 70	
CaO	5.40	4, 54	8,05	6.72	8,05	6.72	8,05	6, 72	
MgO	1.00	0, 84	5, 23	4.37	5. 23	4, 37	5, 23	4.37	
${ m TiO_2}$	1, 00	0, 84	1,01	0.84					
BaO			5, 99	5, 00	5, 99	5,00	4, 16	3, 50	
V_2O_5			-	-			1, 79	1.50	
$\mathrm{Sb}_2\mathrm{O}_5$			-	-			0, 60	0, 50	
玻璃料中氧化物合计	100,00	84,00	100,00	83, 50	100.00	83, 5	100.00	84.00	
(Total in frit)									
废液中氧化物合计	16.00	16,00		16.00		16,00			
(Total in HLLW) ¹⁾									
添加的氧化物(Additives)									
BaO		-		-		-	-		
Sb_2O_5			-	0. 500		0.500	-		
V_2O_5			-		-	-	-		
$\mathrm{SO}_3^{2)}$			-	0, 586		0.586		0, 586	
废物玻璃中氧化物总计		100,00		100.00		100.00		100.00	
(Total,glass frit+waste oxides)	1								

-X. Wang et al., (2013)

VPC programme (Phase 1) – glass formulation

VPC programme (Phase 1) – glass formulation

China :	standard					
参数(Parameters)	数位	值(Data) KIT	test data <u>Be</u>	ijing test data		
	EJ1186-2005 ^[6]	INE	CIAE			
密度(Density)	2. 5 \sim 2. 8 g/cm ³	2 67 g/cm ³	2 65 g/cm ³			
粘度(Viscosity)	1 150 °C :(50±15) dPa • s	$(32\pm 1, 6)$ dPa • s	(29. 2±1. 4) dPa•s			
	950 ℃ : (550±100) dPa • s	(379 ± 24) dPa • s	(309.5±5.9) dPa•s			
电阻率	$1 150 ^{\circ}C; (7\pm 2) \Omega \cdot cm$	7. 43 Ω • cm	$(6, 54 \pm 0, 18) \Omega \cdot cm$	Acceptable of		
(Electrical resitivity)	950 °C : (22±5) Ω • cm	22 79 Ω • cm	(19.87 \pm 0.31) Ω · cm			
结晶倾向	φ<5%,730∼750 ℃/28 d	<i>q</i> ≤3 %	<i>¢</i> ≤5 %	glass properties		
(Crystallization tendency)				No yellow phase		
MCC-1 浸出率	总失重应小于 15 g/m ² ; Na、Si、B、Cs、U 的归	(10, 96 \pm 0, 75) g/m ²	(9, 50 \pm 0, 16) g/m ²			
(MCC-1 leaching rate)	ー化元素浸出率均应小于1g/(m ² ・d)(Total	B 0. 91 g/(m ² · d)	B 0.659 g/($m^2 \cdot d$)			
	mass loss $<\!15~{ m g/m^2}$; leaching rate of Na, Si,	Na 0. 82 g/($m^2 \cdot d$)	Na 0. 675 g/(m ² · d)			
	B,Cs,U <1 g/($m^2 \cdot d$))	Si 0. 52 g/(m ² · d)	Si 0. 354 g/($m^2 \cdot d$)			
		Cs 0, 75 g/($m^2 \cdot d$)	Cs 0. 863 g/(m ² · d)			
		La -	La 2 $4 \times 10^{-4} \text{ g/(m^2 \cdot d)}$			
Soxhlet 浸出率	行标无要求(No requests)	$(168 \pm 13) \text{ g/m}^2$	$(190, 33 \pm 26, 94) \text{ g/m}^2$			
(Soxhlet leaching rate)						
均匀性(Homogeneity)	均匀(Yes)	均匀(Yes)	均匀(Yes)	-X. Wang, et al., (2013)		

(II) CCIM -The latest vitrification technology

Principle

 Induced current supplied by inductor and HF generator

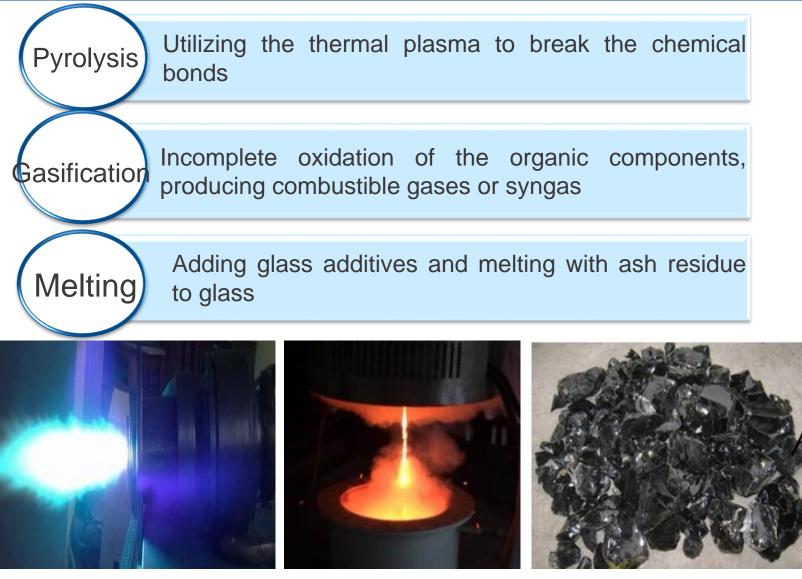
Advantages

- No refractories & internal electrodes
- No corrosion & erosion problems
- Long life-time
- Available high operating temperature

厚潭博学 追求卓越

• Easy start-up & shut-down...

Fundamental study
 Process and key technology study
 Pilot and engineering application study


(III) PTM - Plasma torch melter

Target wastes: LLW (working clothes/gloves, insulation cotton, paper, spent filter etc.) from NPPs

PTM

Plasma arc

Glass pouring

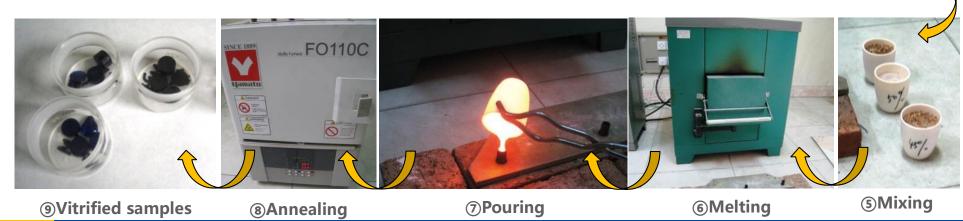
Glass waste-form

PTM – Glass formulation

- Select typical waste from NPPs
- Analyze of the incinerated residues
- Add glass forming reagents + melt glass
- Characterize glass waste-form

①Typical waste

②Shredding



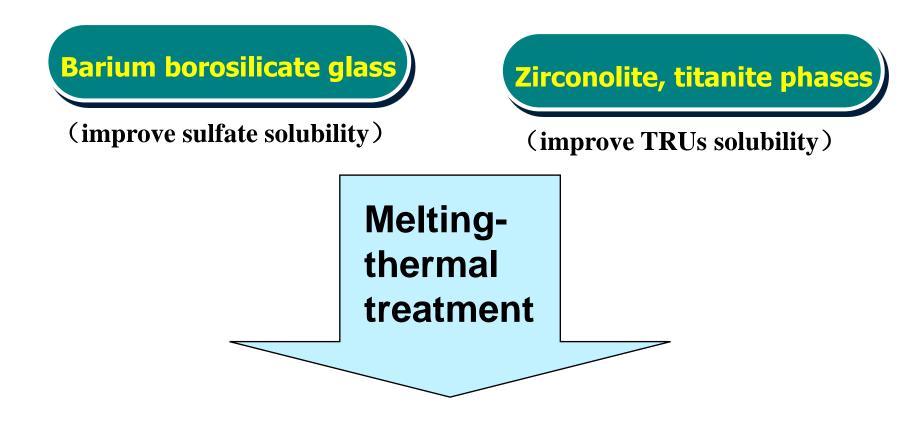
③Incineration

④Glass forming additives

厚灠博学 追求卓越

PTM – Pilot test

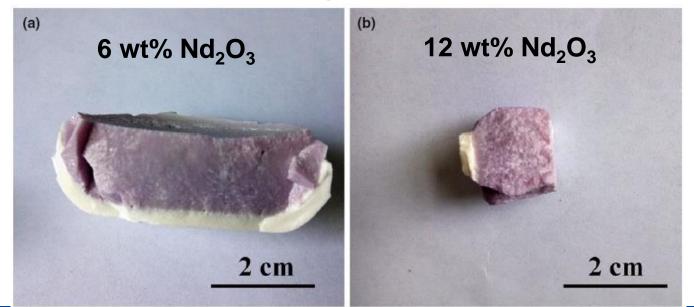
(IV) Waste-form development


•Glass-ceramics

•FeP glass

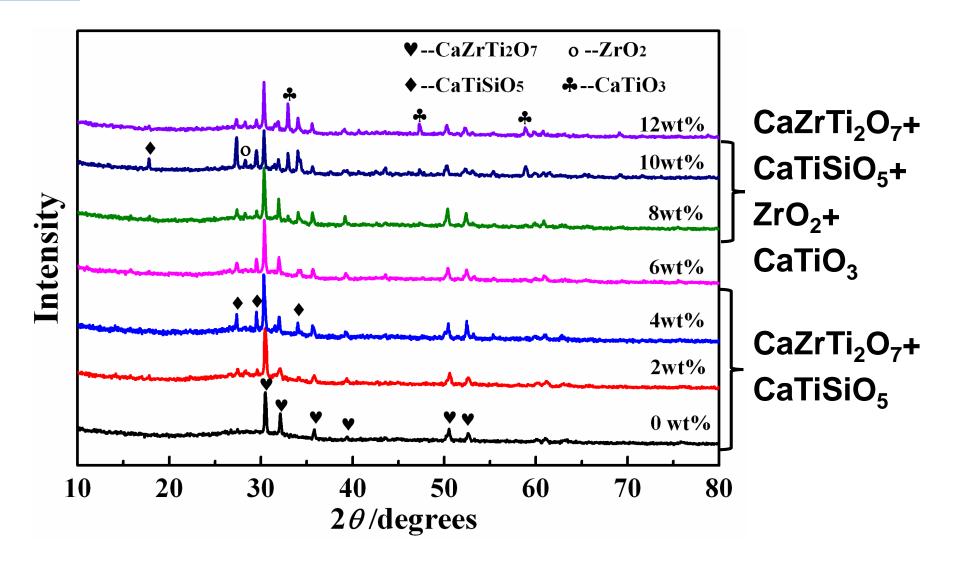
Glass-ceramics

Barium borosilicate glass-ceramics containing zirconolite, titanite phases



BaBSi glass-ceramics (Nd effect)

Composition of glass-ceramics (wt%)								-	
Samples	SiO ₂	B ₂ O ₃	Na ₂ O	BaO	CaO	TiO ₂	ZrO ₂	Nd_2O_3	
Nd-0	27.50	11.00	5.50	11.00	12.77	18.19	14.03	0	
Nd-2	26.50	10.60	5.30	10.60	12.77	18.19	14.03	2	
Nd-4	25.50	10.20	5.10	10.20	12.77	18.19	14.03	4	
Nd-6	24.50	9.80	4.90	9.80	12.77	18.19	14.03	6	
Nd-8	23.50	9.40	4.70	9.40	12.77	18.19	14.03	8	
Nd-10	22.50	9.00	4.50	9.00	12.77	18.19	14.03	10	
Nd-12	21.50	8.60	4.30	8.60	12.77	18.19	14.03	12	

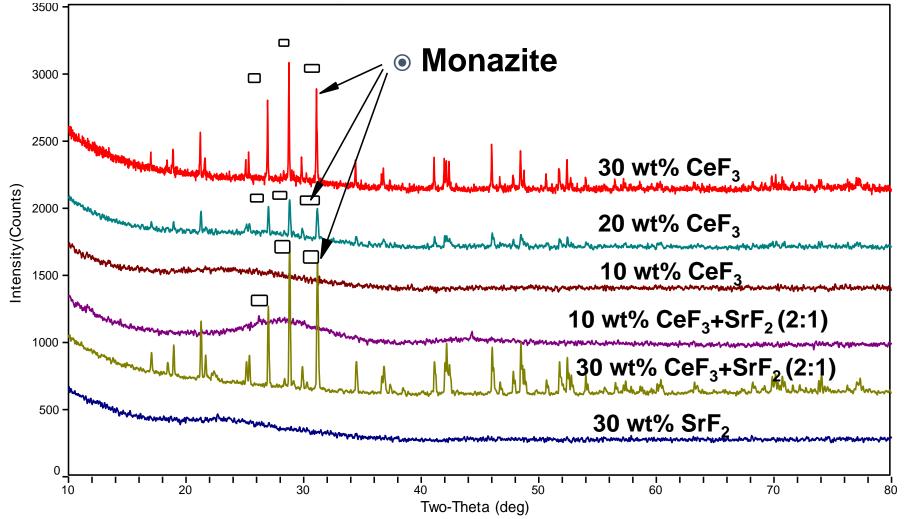

Photos of glass-ceramics

BaBSi glass-ceramics (Nd effect)

XRD patterns with different contents of Nd₂O₃

L. Wu, et al., (2016).

厚德博学 追求卓越



Fluoride wastes from molten salt reactor (MSR)

- MSR utilizes liquid molten fluoride salts as coolant, or even the fuel in the molten salt mixture
- Reprocessing includes fluorination, distillation to separate uranium and other FPs from fluoride salts
- Typical simulated fluoride wastes (mol%)
 - 18.8LiF-23.8NaF-57KF-0.1MgF₂-0.3PF(SrF₂-SrF-CeF₃)
 - 8.4CsF-8.3SrF₂-37.8SmF₃-29.7ZrF₄-15.8CeF₄

FeBP glass immobilization of fluorides

- Monazite formed when CeF₃ ≥20 wt%.
- No crystallization when SrF₂ =30 wt%.

XRD patterns of FeBP glasses

Y. Qiao et al., (2016).

厚德博学 追求卓越

Summary

- R&D of China nuclear waste vitrification started at the early 1980s, and revived at the end of 2010s
- R&D programme mainly includes:
 - The process of JHCM, CCIM, PTM
 - Waste glass formulation
 - Glass-ceramics, FeP glass
 - Radiation effects on glass
- R&D of nuclear waste vitrification in China is highly needed

ICG Wuhan Winter School

THE 3rd WORKSHOP FOR NEW RESEARCHERS IN GLASS SCIENCE AND APPLICATIONS (ICG Wuhan Winter School) Wuhan (China), November 12-17, 2017

2018 ICG Wuhan Winter School - The 4th Workshop for New Researchers in Glass Science and Application Wuhan (China), November 4 - 10, 2018

Glass Formation, Structure, and Properties & Glasses for Nuclear Waste Immobilization

2019 ICG Wuhan Winter School - The 5th Workshop for New Researchers in Glass Science and Application Wuhan (China), October 20 - 26, 2019 International Commission on Glass

Glass Formation, Structure, and Properties & Glass for 5G

Proposing to have a glass corrosion school in 2020 (2021?)

Financial support available for international students

Homepage of ICG: http://www.icglass.org/

