Effects of Nitrate on Potassium Perrhenate(KReO₄) Volatilization Chenchen Niu (Master Student) Adviser: Kai Xu Stake Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology #### **Outline** - Background - Experimental - Results and Discussion - ☐ The path of Tc/Re volatilization - ☐ The effect of nitrate- at low temperature - ☐ The effect of nitrate- at high temperature - Conclusion ## Background-The concern of Tc #### Tc-99 - Long half-life: 2.1 × 10⁵ years - High yield: 6.1% (²³⁵U fission) - High solubility and mobility of TcO₄⁻ (the dominant species) Re: as a nonradioactive surrogate #### Redox Measured single-pass Tc retentions for seven waste glass formulations with and without ferrous oxalate Tc retention almost increases with the addition of reductant ## **Inorganic Salt** | Single-pass retention (%) Waste | | | | | |----------------------------------|--|--|--|--| | Тс | Re | | | | | 18 | 25 | | | | | 34 | 43 | | | | | 31 | 39 | | | | | 20 | 36 | | | | | 19 | 27 | | | | | 36 | NA | | | | | 66 | 57 | | | | | | Tc
18
34
31
20
19
36 | | | | Pegg *et al.*, VSL-10R1920-1 (2010) Pegg *et al.*, VSL-11R2260-1 (2011) Kim et al., JNCS (2015); Xu et al., JNM (2015) Tc/Re shows different volatility in different kinds of waste glass feeds #### **Inorganic Salt** #### AN-102 (Hanford site) #### AN-103 (Hanford site) | · , | | , | | | |-------------------------------|-----------------------|--------------------|-------------|--| | <u></u> | Feed ^a (M) | 107 | Feeda (M) | | | Na ⁺ | 5.98 E + 00 | Na ⁺ | 4.00 E ± 00 | | | K ⁺ | 2.92 E - 02 | | 4.99 E + 00 | | | Al | 2.72 E - 01 | K ⁺ | 1.17 E - 01 | | | Ca | 5.14 E - 03 | Al | 8.40 E - 01 | | | Cr | 1.69 E - 03 | Ca | 2.00 E - 03 | | | P | 4.27 E - 02 | Cr | 1.40 E - 03 | | | Si | 2.68 E - 03 | Si | 3.40 E - 03 | | | NO ₃ | 1.89 E + 00 | NO ₃ | 9.98 E - 01 | | | NO ₂ - | 8.32 E - 01 | NO_2^- | 8.66 E - 01 | | | SO ₄ ²⁻ | 6.20 E - 02 | SO_4^{2-} | 9.00 E - 03 | | | PO ₄ 3- | < 1.26 E - 02 | PO ₄ 3- | 5.90 E - 03 | | | Cl | 4.35 E - 02 | Cl ⁻ | 8.50 E - 02 | | | OH (free) | 1.69 E + 00 | OH (free) | 1.87 E + 00 | | | ⁹⁹ Тс | 4.60 E - 05 | ⁹⁹ Тс | 3.07 E - 05 | | | U (mg/L) | 7.80 E + 00 | U (mg/L) | 4.08 E + 00 | | | TIC (mg/L) | 1.09 E + 04 | TIC (mg/L) | 3.68 E + 03 | | | TOC (mg/L) | 4.66 E + 04 | TOC (mg/L) | 5.68 E + 02 | | Compositions of the feed of the AN-102 and AN-103 samples Nuclear waste contains various inorganic salts (nitrates/nitrites, chlorides, sulfates) ## **Inorganic Salt** | 0 | | | | | | | | | |---------------------|-------|---------|--------|--|--|--|--|--| | 200 | 400 | 600 800 | | | | | | | | Temperature (C) | | | | | | | | | | Elemental retention | | | | | | | | | | | 100°C | 700°C | 1000°C | | | | | | | Cl | 67 | 56 | 49 | | | | | | | S | 100 | 72 | 48 | | | | | | | Re | 100 | 94 | 93 | | | | | | #### Reaction and foaming layer in Cold-cap Decomposition of inorganic salt occurred in the reaction layer of cold-cap, which affect Tc/Re retention, however, the detail is not clear ## Background-The argument of Tc/Re volatilization path Congruent evaporation of MTcO₄ melt $MTcO_4(s/I) \rightarrow MTcO_4(g)$ Decomposition of MTcO₄ melt $2MTcO_4(I) \rightarrow Tc_2O_7(g) + M_2O (s/I/g)$ #### **Motivation** The Tc/Re volatilization path Effects of nitrate on KReO₄ volatilization ## **Experimental** #### Results & Discussion-The Tc/Re volatilization path - K, Re congruently lost between 800°C to 1200°C - 2. $KReO_4 + SiO_2 \xrightarrow{\Delta} KReO_4(g) + SiO_2$ #### Results & Discussion-The effect of nitrate #### Results & Discussion-The effect of nitrate-at low temperature - 1. With increase of N ratio, mass loss in mixed samples is closer to that of pure N - 2. No new phases are formed at low temperatures #### XRD semi-quantitative analysis | | SiO ₂ | | | | |----------|--------------------|-----|-----|-----| | 1Re0.25N | KNO_3 | | | | | | $KReO_4$ | | | | | | Amorphous
phase | | | | | | SiO ₂ | | | | | | KNO_3 | | | | | 1Re0.5N | KReO ₄ | | | | | 1Re1N | Amorphous
phase | | | | | | SiO ₂ | | | | | | KNO ₃ | | | | | | KReO ₄ | | | | | | Amorphous
phase | | | | | | SiO ₂ | | | | | | KNO ₃ | | | | | 1Re2N | $KReO_4$ | | | | | | Amorphous
phase | | | | | | SiO ₂ | | | | | | KNO ₃ | | | | | 1Re4N | KReO ₄ | | | | | | Amorphous
phase | | | | | T/°C | | 700 | 800 | 900 | | | | | | | ## Results & Discussion-The effect of nitrate-at high temperature - 1. The mass loss in mixed samples at temperature above 1000°C is higher than pure N, but lower than pure Re - 2. Amorphous phase appear at high temperature zone #### XRD semi-quantitative analysis #### Results & Discussion-The effect of nitrate-at high temperature #### Re retention - At 1300°C, Re still retained in the mixed samples, whereas all Re was gone in pure Re - At 1300°C, Re retention in mixed samples increases with the increase of N ratio #### Conclusion 1. At the designed system, KReO₄ evaporates by $$KReO_4(l) \xrightarrow{\Delta} KReO_4(g)$$ - 2. At the low temperature: KReO₄ starts to evaporate at 600°C when Re:N<1, because KReO₄ and KNO₃ formed an eutectic body - 3. At the high temperature : after the addition of KNO₃, the mass fraction of amorphous increases, which leads to the increase of retention of Re ## Thanks for your attention