

Effects of Nitrate on Potassium Perrhenate(KReO₄) Volatilization

Chenchen Niu (Master Student)

Adviser: Kai Xu

Stake Key Laboratory of Silicate Materials for Architectures
Wuhan University of Technology

Outline

- Background
- Experimental
- Results and Discussion
 - ☐ The path of Tc/Re volatilization
 - ☐ The effect of nitrate- at low temperature
 - ☐ The effect of nitrate- at high temperature
- Conclusion

Background-The concern of Tc

Tc-99

- Long half-life: 2.1 × 10⁵ years
- High yield: 6.1% (²³⁵U fission)
- High solubility and mobility of TcO₄⁻
 (the dominant species)

Re: as a nonradioactive surrogate

Redox

Measured single-pass Tc retentions for seven waste glass formulations with and without ferrous oxalate

Tc retention almost increases with the addition of reductant

Inorganic Salt

Single-pass retention (%) Waste				
Тс	Re			
18	25			
34	43			
31	39			
20	36			
19	27			
36	NA			
66	57			
	Tc 18 34 31 20 19 36			

Pegg *et al.*, VSL-10R1920-1 (2010) Pegg *et al.*, VSL-11R2260-1 (2011)

Kim et al., JNCS (2015); Xu et al., JNM (2015)

Tc/Re shows different volatility in different kinds of waste glass feeds

Inorganic Salt

AN-102 (Hanford site)

AN-103 (Hanford site)

· ,		,		
<u></u>	Feed ^a (M)	107	Feeda (M)	
Na ⁺	5.98 E + 00	Na ⁺	4.00 E ± 00	
K ⁺	2.92 E - 02		4.99 E + 00	
Al	2.72 E - 01	K ⁺	1.17 E - 01	
Ca	5.14 E - 03	Al	8.40 E - 01	
Cr	1.69 E - 03	Ca	2.00 E - 03	
P	4.27 E - 02	Cr	1.40 E - 03	
Si	2.68 E - 03	Si	3.40 E - 03	
NO ₃	1.89 E + 00	NO ₃	9.98 E - 01	
NO ₂ -	8.32 E - 01	NO_2^-	8.66 E - 01	
SO ₄ ²⁻	6.20 E - 02	SO_4^{2-}	9.00 E - 03	
PO ₄ 3-	< 1.26 E - 02	PO ₄ 3-	5.90 E - 03	
Cl	4.35 E - 02	Cl ⁻	8.50 E - 02	
OH (free)	1.69 E + 00	OH (free)	1.87 E + 00	
⁹⁹ Тс	4.60 E - 05	⁹⁹ Тс	3.07 E - 05	
U (mg/L)	7.80 E + 00	U (mg/L)	4.08 E + 00	
TIC (mg/L)	1.09 E + 04	TIC (mg/L)	3.68 E + 03	
TOC (mg/L)	4.66 E + 04	TOC (mg/L)	5.68 E + 02	

Compositions of the feed of the AN-102 and AN-103 samples

Nuclear waste contains various inorganic salts (nitrates/nitrites, chlorides, sulfates)

Inorganic Salt

0								
200	400	600 800						
Temperature (C)								
Elemental retention								
	100°C	700°C	1000°C					
Cl	67	56	49					
S	100	72	48					
Re	100	94	93					

Reaction and foaming layer in Cold-cap

Decomposition of inorganic salt occurred in the reaction layer of cold-cap, which affect Tc/Re retention, however, the detail is not clear

Background-The argument of Tc/Re volatilization path

Congruent evaporation of MTcO₄ melt $MTcO_4(s/I) \rightarrow MTcO_4(g)$

Decomposition of MTcO₄ melt

 $2MTcO_4(I) \rightarrow Tc_2O_7(g) + M_2O (s/I/g)$

Motivation

The Tc/Re volatilization path

Effects of nitrate on KReO₄ volatilization

Experimental

Results & Discussion-The Tc/Re volatilization path

- K, Re congruently lost between 800°C to 1200°C
- 2. $KReO_4 + SiO_2 \xrightarrow{\Delta} KReO_4(g) + SiO_2$

Results & Discussion-The effect of nitrate

Results & Discussion-The effect of nitrate-at low temperature

- 1. With increase of N ratio, mass loss in mixed samples is closer to that of pure N
- 2. No new phases are formed at low temperatures

XRD semi-quantitative analysis

	SiO ₂			
1Re0.25N	KNO_3			
	$KReO_4$			
	Amorphous phase			
	SiO ₂			
	KNO_3			
1Re0.5N	KReO ₄			
1Re1N	Amorphous phase			
	SiO ₂			
	KNO ₃			
	KReO ₄			
	Amorphous phase			
	SiO ₂			
	KNO ₃			
1Re2N	$KReO_4$			
	Amorphous phase			
	SiO ₂			
	KNO ₃			
1Re4N	KReO ₄			
	Amorphous phase			
T/°C		700	800	900

Results & Discussion-The effect of nitrate-at high temperature

- 1. The mass loss in mixed samples at temperature above 1000°C is higher than pure N, but lower than pure Re
- 2. Amorphous phase appear at high temperature zone

XRD semi-quantitative analysis

Results & Discussion-The effect of nitrate-at high temperature

Re retention

- At 1300°C, Re still retained in the mixed samples, whereas all Re was gone in pure Re
- At 1300°C, Re retention in mixed samples increases with the increase of N ratio

Conclusion

1. At the designed system, KReO₄ evaporates by

$$KReO_4(l) \xrightarrow{\Delta} KReO_4(g)$$

- 2. At the low temperature: KReO₄ starts to evaporate at 600°C when Re:N<1, because KReO₄ and KNO₃ formed an eutectic body
- 3. At the high temperature : after the addition of KNO₃, the mass fraction of amorphous increases, which leads to the increase of retention of Re

Thanks for your attention