
© SCK•CEN Academy

Karel Lemmens

klemmens@sckcen.be

Belgian Nuclear Research Center

Competence Center High-Level Waste*

Interaction of HLW glass with cement 

or cement waters

*Collaborators : Karine Ferrand, Sanheng Liu, Christelle Cachoir, 

Thierry Mennecart, Sébastien Caes, Ben Gielen, Pieters Schroeders

Joint ICTP-IAEA International School on Nuclear Waste Vitrification, Trieste (Italy) 23-27 September

mailto:klemmens@sckcen.be


© SCK•CEN Academy

Reference Belgian geological disposal design for
vitrified HLW foresees a concrete buffer with OPC*  
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*OPC = Ordinary Portland Cement
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◼ Most countries consider geological disposal of vitrified 

nuclear waste and/or spent nuclear fuel 

◼ Host rock and disposal design vary between countries

◼ Concrete can be present in near field as backfill material, as 

a construction material, as container material, or HLW can 

be close to ILW repository, and affected by an alkaline 

plume . 

◼ Study of high pH conditions to better understand the 

mechanisms of secondary phase formation 

Why study interaction of HLW glass with cement ?
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◼ Concrete made with Ordinary Portland Cement (OPC)

◼ Clinker phases (3CaO۰SiO2, 2CaO۰SiO2, 3CaO۰Al2O3, 4CaO۰Al2O3۰ Fe2O3, 

CaSO4۰ 2H2O, K2O, Na2O)

◼ Cement pore water has pH 13.5

◼ Low pH cement  (addition of pozzolanic materials)

◼ Cement pore water has pH ≤11

◼ Minerals in the hardened OPC paste: 

◼ Calcium Silicate Hydrates (C-S-H)  (= low Ca/Si for low pH cement)

◼ Portlandite Ca(OH)2 (= low for low pH cement) 

◼ Ettringite Ca6Al2(SO4)3(OH)12:26H2O

◼ Hydrogarnet Ca3Al2(OH)12

◼ Hydrotalcite Mg4Al2(OH)14:3H2O

◼ Hematite Fe2O3

◼ K2O, Na2O

Types of cement considered in (geological) disposal 
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Microstructure of 
Portland cement paste
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Picture taken from text book (Concrete, Mindess et al.)

Portlandite in C-S-H matrix 

C-S-H

Unhydrated material

Portlandite

C-S-H

Water-filled pores
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◼ OPC Concrete (Cem I) : pH evolution from 13.5 → <12

Ordinary Portland Cement induces high pH
Example of evolution in contact with Boom Clay 
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Low pH cement induces moderately alkaline pH
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◼ Low pH concrete : addition of pozzolanic compounds

◼ Siliceous or siliceous and aluminous materials which in

themselves possess little or no cementitious value but will, in

finely divided form and in the presence of moisture, chemically

react with calcium hydroxide at ordinary temperatures to form

compounds possessing cementitious properties (e.g. silica fume)

◼ Effect of pozzolanic compounds:

◼ portlandite consumption : portlandite + silicate → C-S-H

◼OPC dilution (less portlandite per unit of volume)

◼ decrease of the Ca/Si ratio of the C-S-H, which decreases their

equilibrium pH and enhances their sorption capacity of alkalis

◼ Target pH ≤11
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◼ Why study interaction of HLW glass with cement ?

◼ Main types of cement considered in (geological) disposal

◼ Effects of cement on HLW glass dissolution mechanisms

◼ Effect of high pH of pore water

▪ On ion exchange

▪ On Si network hydrolysis and gel formation 

▪ On secondary phase formation

◼ Effect of cement phases on glass alteration 

◼ Effect of cementitious environment on glass dissolution rate

◼ Possible causes of pH decrease by reactions with the glass

◼ Dissolution kinetics

◼ Summary
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◼ ≡Si-O-A + H3O
+ → Si-OH + A+ + H2O (ion exchange)

≡Si-O-A + H2O → Si-OH + A+ + OH-

◼ ≡Si-O-Si≡ + H2O → 2 ≡Si-OH (hydrolysis) 

≡Si-O-Si(OH)3 + H2O → ≡Si-OH + H4SiO4

◼ ≡Si-OH + ≡Si-OH → ≡Si-O-Si≡ + H2O (condensation)

Main glass dissolution mechanisms

11

Illustration from Caurant et al. 2009
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Ion exchange rate decreases at high pH
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◼ ≡Si-O-A + H3O
+ → Si-OH + A+ + H2O (ion exchange)

◼ The interdiffusion coefficient for H3O
+ and cations and the release

rate by interdiffusion decreases with pH (Ojovan et al., 2007).

◼ Ion exchange only relevant below pH 10

→ At higher pH, most Na or Li are released by matrix dissolution

◼ Local network reorganization causes dissolution and out-diffusion

of boron → diffusion coefficient of boron in SON68 decreases for

increasing pH between pH 8 and 10 (30 – 50 – 90°C) (Chave et al., 2007).

𝐷𝑖𝐻 ≈ α𝑖𝐷𝐻10
−𝑝𝐻

𝑟𝑥𝑖 = ρ𝑓𝑖(
α𝑖𝐷0𝐻

π𝑡
)0,5 10−0.5𝑝𝐻 exp(

−𝐸𝑑𝑖

2𝑅𝑇
)
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≡Si-O-Si≡ + H+

Hydrolysis of silica network catalyzed by H+ and OH-
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H[ ]≡Si-O-Si≡
+

2 ≡Si-OH + H+

H2O

≡Si-O-Si≡ + OH-

OH[ ]≡Si-O-Si≡
-

≡Si-OH + ≡Si-O-

Low pH

High pH

High pH of cement water accelerates hydrolysis

Equation for SON68 in range 25 – 100 °C and pH 6 - 10

r0 (T, pH) = k+ [H
+]n e-Ea/RT  

r0 = forward rate (g∙m-2∙d -1); k+ = 1.2 x 108 (g∙m-2∙d -1); n = -0.4; Ea = 76 kJ∙mol-1; 

R = 8.31 x 10-3 kJ∙mol-1∙K-1 (source: Frugier, 2008)
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Hydrolysis catalyzed by H+ and OH-

Illustration for glass PO798
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Strachan 2017 and Inagaki 2006
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Effect of high pH on forward dissolution rate 

(~on hydrolysis) depends on glass composition
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(wt%) SON68 SM539 SM513

SiO2 45.48 35.28 52.15

Al2O3 4.91 19.83 3.61

Na2O 9.86 9.21 9.12

CaO 4.04 5.05 5.54

B2O3 14.02 25.58 13.08

Others 21.69 5.05 16.50

◼ Stronger pH effect for Al-rich glass SM539

◼ Weaker pH effect for Si-rich glass SM513

Tests at 30°C
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◼ Increase of SiO2 solubility with increasing pH

◼ ≡Si-O-Si(OH)3 + H2O → ≡Si-OH + H4SiO4

Gel formation (condensation) decreases at high pH
≡Si-OH + ≡Si-OH → ≡Si-O-Si≡ + H2O

16

Solubility of amorphous 

silica as a function of pH 
at 25 °C

◼ Less Si retention, porous gel with little protective properties 
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Example of porous alteration gel 

with little protective properties
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HRTEM micrographs of SON68 glass powder in contact with hardened 
OPC paste powder after 713 days at 30°C. (left) pristine glass/gel 

interface, (right) the glass gel/C-S-H interface (Ferrand et al., 2013)

◼ Pores around 10 nm, 2-5 times larger than in gels formed 

at neutral pH

◼ Homogeneously distributed and interconnected

◼ Fast transport of water molecules through the gel
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Effect of high pH on secondary phase formation 
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◼ pH < 10 : (crystalline) secondary minerals of the phyllosilicate 

type and calcium and rare-earth phosphates (for SON68)

◼ Low residual dissolution rate 

◼ pH > 10 : zeolites and C-S-H phases are

observed on top of the phyllosilicate layer 

for SON68

→ Alteration resumption 

◼ More amorphous phases at low temp. 

◼ Precipitation accelerated at high temp.

◼ Precipitation accelerated at higher pH
.

Phyllosilicates

K- Ca - crystalline phases

Overview in Fournier, M., Gin, S. and Frugier, P. (2014) Resumption of nuclear glass 

alteration : State of the art, Journal of Nuclear Materials 448, pp. 348-363.
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Effect of high pH on secondary phase formation 
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SON68 dissolution rate as a function of time in buffered KOH of pH 7 – 11.5 
at 90 °C (Gin and Mestre, 2001)

◼ pH > 10.5 : alteration resumption for SON68 at 90°C
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Effect of Ca on the HLW glass alteration
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1 2

3 4

Schematic presentation of the four main glass alteration mechanisms in presence of Ca,

depending on the alteration conditions, i.e. pH and reaction progress. Green and red

shading symbolize the dissolution rate decreasing and increasing effects of Ca on glass

alteration, respectively. Picture taken from Mercado-Depierre et al. (2013).
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◼ Ion exchange rate becomes low

◼ Hydrolysis rate increases

◼ Condensation in gel decreases

◼ Secondary phase formation is promoted

→Overall dissolution rate increasing effect

→Ca may favor or slow down hydrolysis

Summary of effects of high pH

21
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◼ C-S-H and C-A-S-H formation

◼ Si-enrichment of C-S-H phases

◼ Ca/Si ratio in OPC cement 1.2 - 2  (Si-poor)

◼ By enrichment with glass Si: Si-poor C-S-H → Si-rich C-S-H (low Ca/Si)

◼ Formation of alkali-silica-reaction (ASR) gel

◼ Advanced hydrolysis of Si-O-Si linkages

◼ ≡Si-O- balanced by Na+ and K + 

◼ Swelling by water absorption

Effect of cement phases on glass dissolution

Formation of typical phases

23

1.6 Ca(OH)2 + H4SiO4 = Ca1.6 SiO3.6 : 2.58 H2O + 1.02 H2O  

1.4 Ca2+ + Ca1.6 SiO3.6 : 2.58 H2O + 2 Al3+ + 8 H2O = Ca3Al2(SiO4)(OH)8 + 8.8 H+ + 2.18 H2O

(katoite)
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Results from experiments of glass with cement:
XRD patterns of altered glass/cement powder mixtures (30°C) 
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Clinkers

Ca/Si = 0,83
CASH

Portlandite ↓ 



© SCK•CEN Academy

Structure of ASR gel
(from Rajabipour, 2015)
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Glass
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Mock-up test to study glass/concrete interface 
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◼ After 30 months, glass particles are much more altered 

within 300 - 400 µm from interface with cement following K 

evolution

◼ Thin alteration layer (< 2 µm)

◼ C-(A)-S-H phases incorporating alkali

Dissolution behavior of the glass

28

200 µm

glass alteration layer

C-S-H

Pristine glass

OPC
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◼ For Al rich glass SM539: lamellar layers

◼ Similar observations with ISG in Young Cement Water at 70°C

◼ Compatible with alternative, dissolution/precipitation model

29

Dissolution behavior of the glass

50 µm

Mann et al., 2019

SM539 International Simplified Glass

Scanning Transmission Electron Microscopy analyses



© SCK•CEN Academy

◼ Changes in composition and microstructure on a few hundred micrometers

Observation on the concrete side

30

➢ Opening of the cement porosity

❑ portlandite and C-S-H dissolution

➢ Enrichment in Si, (Al), K and Na and depletion in Ca, 

Mg and S

❑Dissolution of Calcium Aluminate mono or tri-

sulfate (ettringite)

❑C-S-H and C-A-S-H formation

❑Alkalis (and Al) binding by C-S-H phases

OPC paste in contact with SM539

Typical features reported in cement chemistry 

OPC paste in contact with SM539

100 

µm

50 µm
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◼ SON68 powder in contact with hardened OPC paste powder in young 

cement water (pH 13.5)

◼ Dissolution rate increases when cement/glass ratio increases

◼ It approaches maximum rate of hydrolysis (0.02 – 0.08 g∙m-2∙d-1 ) when 

cement/glass ratio increases to 1/1

◼ Dissolution rate low cement/glass ratio ≈ young cement water without 

cement

Portlandite reacts with glass matrix and triggers 

further glass dissolution

32

0.08 – 0.02 g∙m-2∙d-1

C/G = 0,285
C/G = 0 (Young cement water)
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Summary of SON68 dissolution rates 

in cementitious conditions  

33

(Lemmens and Ferrand, 2019)

1 2

3 4
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Possible causes of pH decrease 

by reactions with the glass 

35

◼ Consumption of OH- by hydrolysis of borosilicate network

≡Si-O-Si≡ + 2 OH- → 2 ≡Si-O – + H2O

≡Si-O– + 3 (OH-)aq ↔ (H3SiO4
-)aq

(=B-OH)s + 2 (OH-)aq ↔ (B(OH)3)aq

◼ Dissociation of the H3SiO4
- and H3BO3

H3SiO4
- ↔  H2SiO4

2- + H+

H3BO3 ↔ H2BO3
- + H+

◼ Formation of secondary phases consuming OH- and Na+, K+ or Ca2+

5 Ca2++ 6 HSiO3
- + 4 OH- + 5.5 H2O ---> Ca5Si6H21O27.5 (Tobermorite)

◼ Reactions with opposite effect (pH increase): 

Ion exchange: ≡Si-O-Na + H2O ↔ Si-O-H + Na+ + OH-

Zeolite precipitation : K + + Al(OH)4
- + 3 H2SiO4

2- → KAlSi3O8 + 6 OH- + 2 H2O

(phillipsite)

(dissolving species 

leave Si-O- groups 

on the solid surface 

to charge balance, 

not shown in the 

equation)
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Calculations with PHREEQC

(Thermochimie database, 30°C)

36

Complete 

dissolution

pH

Reaction progress

ISG glass  in KOH solution

450 g/L x 25 L 

space in waste 

container 

= 11,25 kg glass 

= 3% of glass block

450 g/L

Total volume 175 L

Useful volume 150 L

150 g/L

21/27
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◼ ISG glass in KOH solution (Ca-borate precipitation ?)

Latest calculation can explain pH decrease         

without precipitation

37



© SCK•CEN Academy

◼ Why study interaction of HLW glass with cement ?

◼ Main types of cement considered in (geological) disposal

◼ Effects of cement on HLW glass

◼ Effect of cementitious environment on glass dissolution rate

◼ Possible causes of pH decrease by reactions with the glass

◼ Dissolution kinetics

◼ Summary

◼ Literature list

Content 

38



© SCK•CEN Academy

Dissolution in cement water at pH 13.5 

could be  explained by diffusion law

39

Elemental concentrations 

vs square root of time at 

30 °C for tests with SON68

in YCWCa at SA/V = 2412 

m-1. The good fit with the 

straight line suggests that 

the release is diffusion 

controlled (Liu et al., 2015).

𝑑𝐶𝑖

𝑑𝑡
=

𝐴ρ

𝑉𝑀𝑖
𝑥𝑖

𝐷𝑖

π𝑡
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Dissolution in cement water with cement at pH 13.5

could be explained by Ca triggered congruent dissolution 

𝑑𝑀

𝑑𝑡
= −𝑟0

𝐴0

𝑉
(
𝑚

𝑚0
)2/3

[𝐶𝑎2+]

[𝐶𝑎𝑝𝑜𝑟𝑡𝑙𝑎𝑛𝑑𝑖𝑡𝑒
2+ ]

1 −
𝑆𝑖

𝑆𝑖𝑠𝑎𝑡

◼ [Ca] initially imposed by portlandite (1.4 mM)

◼ [Ca] decrease due to C-S-H formation 

◼ [Si] controlled by C-S-H

◼ Gradual portlandite consumption

◼ Threshold [Ca] = 0.4 mM

Ferrand 2013
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Congruent dissolution of SON68
Alteration layers of few nm to 3 µm 

41

364 days, 30°C, cement 540 days, 30°C, cement,

local precipitation layer
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◼ Cementitious conditions (high pH, cement phases) tend to increase glass 

dissolution rate

◼ Dissolution rate decreases with time in the parametrical experiments, and is 

expected to decrease in more realistic conditions

◼ Dissolution rate decreases due to 

◼ Diffusion limited kinetics (protective alteration layers ?)

◼ pH decrease (at high SA/V)

◼ Consumption of portlandite by C-S-H formation

◼ Decrease of porosity of concrete by C-S-H formation (?)

◼ Formation of porous alteration layers and C-S-H on the glass

◼ Sometimes multilayer formation on glass

◼ Dissolution processes are highly coupled (dissolution/precipitation/diffusion)

◼ Low dissolution rates possible if pH decreases to 11.5 at 30°C (10.5 at 90°C)

◼ Risk of alteration resumption 

Summary

42
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Thank you for your attention
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