

Hydration of Nuclear Waste Glass in Vapor Phase - Jeet PATEL

Joint ICTP-IAEA International School on Nuclear Waste Vitrification 23 - 27 September 2019, Trieste, Italy

Laboratory Introduction

Subatomic Physics and Associated Technologies (SUBATECH) Laboratory

- High energy universe
- Nuclear and environment (Radiochemistry Group)
- Nuclear and Health (Radiochemistry Group)

Under the Guidance of

Prof. Abdesselam ABDELOUASHead of Radiochemistry Group
(SUBATECH Laboratory)

Dr. Tomo SUZUKI-MURESANAssociate Professor, IMT Atlantique
(SUBATECH Laboratory)

Ms. Haohan ZHANG
Ph.D. fellow
(SUBATECH Laboratory)

Subatech laboratory & IMT Atlantique (Nantes)

<u>Outlines</u>

- Background
- Objectives
- Literature review
- Materials and Methods
- Characterization Techniques
- Results and Discussion
- Conclusion

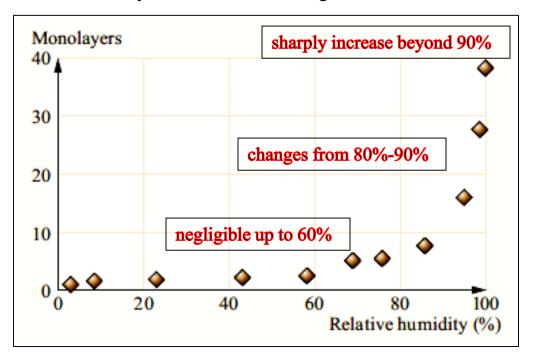
8

Background

- French policy for Spent Nuclear Fuel
 - recycling/reprocessing
- Immobilization of fission products and minor actinides in **borosilicate glass** named R7T7
- High level nuclear waste glass in Deep geological repository
 - Current project at Meuse/Haute-Marne centre (Cigéo project- ANDRA)

Background (cont.)

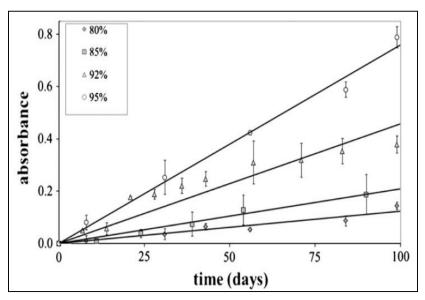
Corrosion of Water contact to waste package waste package $H_2(g)$ production, prevent the entrance of creates internal groundwater fluid pressure Water (vapor) **contact** to waste Glass alteration package (glass+container)

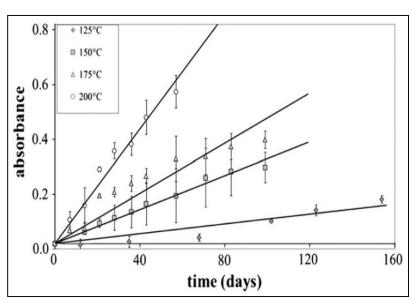


Picture- Retrieval Test of HLW package in the Cigeo Project, Andra (IGD-TP Technical Forum, Berlin- 2018)

Literature review: evolution of glass under vapor condition

• Number of water layers adsorbed on the glass surface


W.L.Ebert et al., The Sorption of Water on Obsidian and a Nuclear Waste Glass (1991)


Figure- Chemical durability of Glasses (Abdelouas et al.- 2019)

Literature review: evolution of glass under vapor condition (cont.)

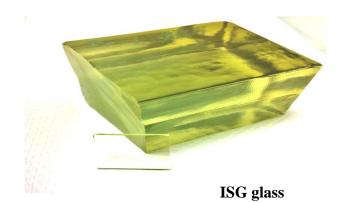
• The hydrated layer thickness depends on RH (%), Temperature (°C), Hydration time and also Glass composition.

• Hydration rate increases with the RH and Temperature increases

Figures- Vapor hydration of SON68 glass from 90°C to 200°C: A kinetic study and corrosion products investigation (J. Neeway et al.- 2012)

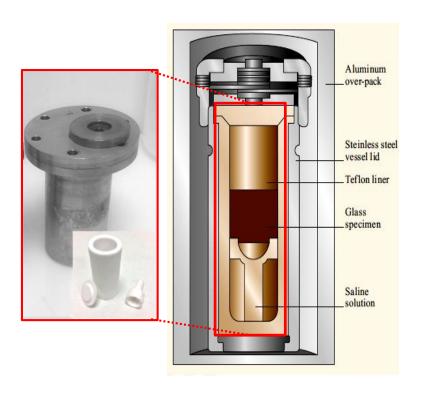
<u>Objectives</u>

- I. Investigation of hydration kinetics in Vapor phase of French surrogate SON68 glass and ISG (International Simple Glass).
 - at two temperatures (90°C and 125°C)
 - at two RH- Relative Humidities (95% and 99%)
- II. In **Autoclave** and **Climate Test Chamber** (which is not widely used).

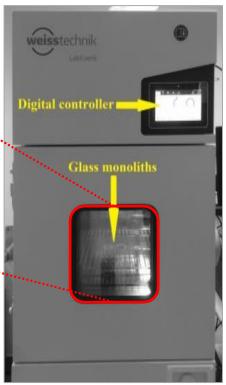

Materials & Methods

Materials

Oxides	ISG (wt %)	SON68 (wt %)
SiO_2	56.2	45.85
$\mathrm{B_2O_3}$	17.3	14.02
Na_2O	12.2	9.86
Al_2O_3	6.1	4.91
CaO	5.0	4.04
ZrO_2	3.3	2.65
Fe_2O_3	-	2.91
Li_2O	-	1.98
MoO_3	-	1.70
Others	-	12.08



Glass composition- ISG (Chaoua et al.- 2014), SON68 (K M Davis et al.- 1996)

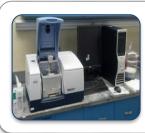

Autoclave (AC)

Autoclave figure- Chemical durability of Glasses (Abdelouas et al.- 2019)

Experimental conditions

	Glass	RH (%)	Temperature (°C)	Time of hydration (days)		
		99 95 99	125	112		
	gove		90	112		
	SON68		00	47		
Autoslava (AC)			90	37		
Autociave (AC)	Autoclave (AC) ISG		00	00	125	112
			90	112		
		95	90	47		
				37		
Climate Test Chamber (CC)	SON68	95	90	44		
				37		
	Inc			44		
	ISG			37		

Characterization Techniques



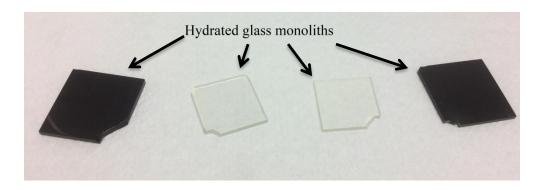
Characterization Techniques

SEM

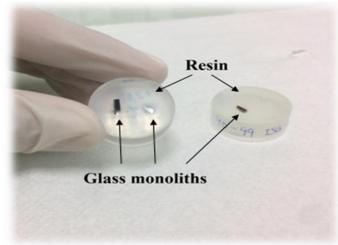
• Determination of hydrated thickness

FTIR

- To follow the glass hydration
- To determine the physical hydration thickness



ICP-MS


• Determination of chemical hydration thickness

Sample preparation for SEM analysis

SEM- Scanning Electron Microscopy

FTIR Spectroscopy

Deconvolution - five Gaussian using Origin 8.0 software (OriginLab) H.Tomozawa, M.Tomozawa. Diffusion of water into a borosilicate glass

Boron

Normalized mass loss:
$$NL_i = \frac{NC_i}{(S/V)} = \frac{(C_i/X_i)}{(S/V)}$$

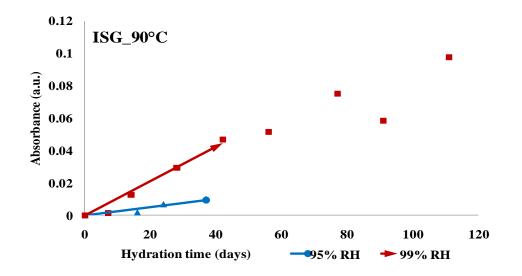
 NL_i - normalized mass loss (g/m²)

S-surface area of the sample (m²)

V-volume of solution (m³)

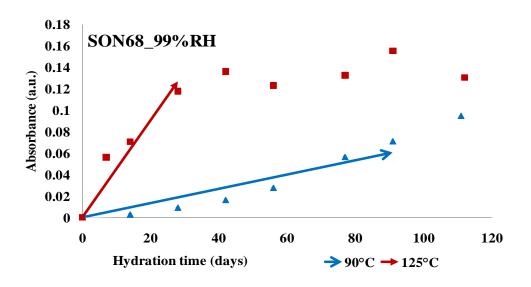
 NC_i - normalized elemental concentration C_i - concentration of the element i in the solution (g/m^3)

 X_i - weight fraction of element \underline{i} in the glass


Equivalent thickness:
$$Eq_i = \frac{NL_i}{\rho_i}$$
 e_i is the glass density

Results & Discussion

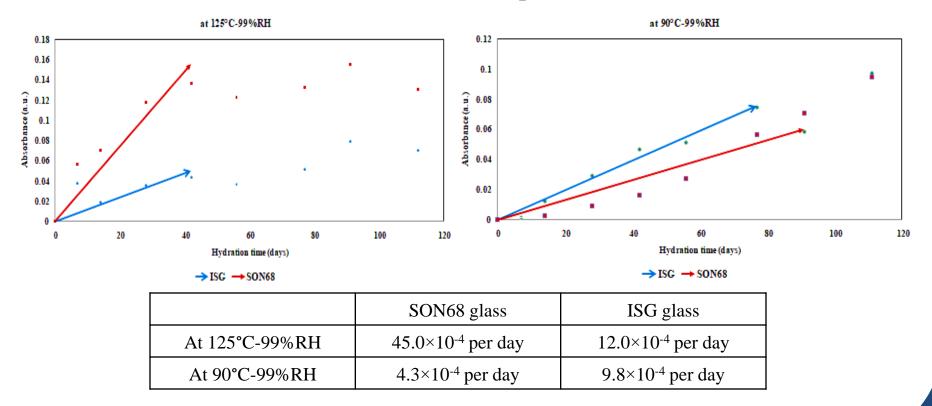
Effect of relative humidity at 90°C


90°C	ISG glass
95% RH	2.6×10 ⁻⁴ per day
99% RH	9.8×10 ⁻⁴ per day
Factor	3.8

- Hydration rate increases with the RH increases
- The results consistent with the literature@

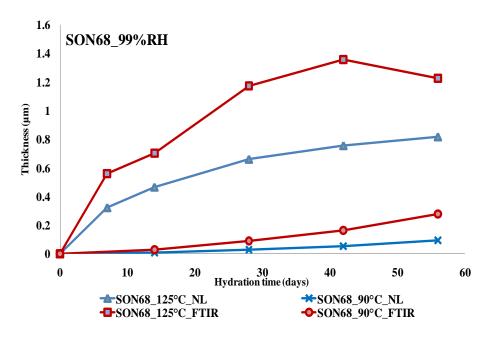
[@] literature (Abdelouas et al.- 2013) (Neeway et al.- 2012) (Chaou et al.- 2017)

Effect of temperature at 99% RH

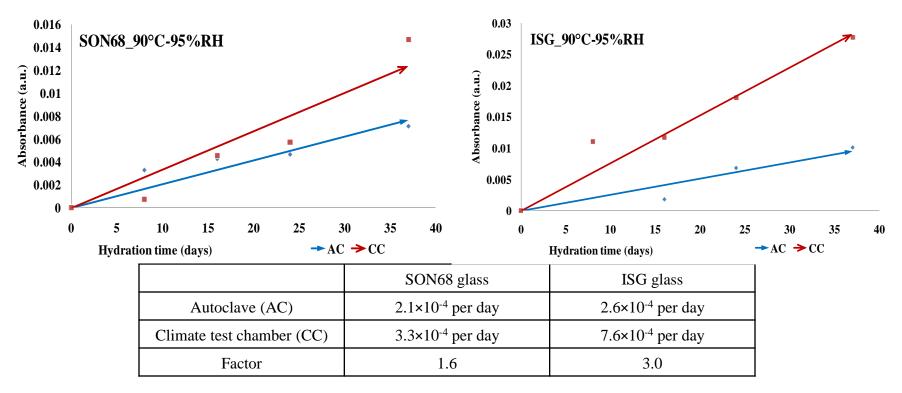

99% RH	SON68 glass
90°C	4.3×10 ⁻⁴ per day
125°C	45.0×10 ⁻⁴ per day
Factor	10.5

- Hydration rate increases with the Temperature increases
- The results consistent with the literature@

[@] literature (Abdelouas et al.- 2013) (Neeway et al.- 2012) (Chaou et al.- 2017)

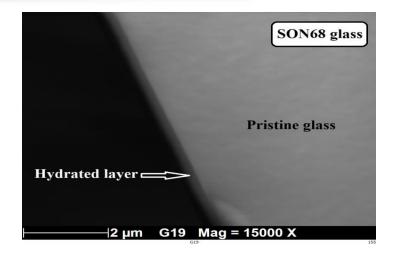

Effect of Glass Composition

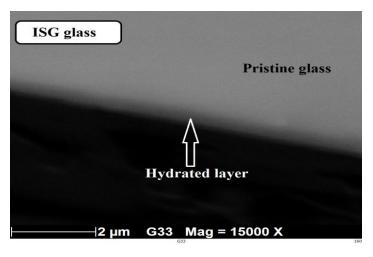
• The glass composition also affect the hydration rate


Physical & Chemical Thicknesses

- The physical thicknesses (FTIR) shows the maximum hydration.
- The difference between physical (FTIR) and chemical (NL) thicknesses is maybe boron were not released from hydrated layer to the solution.

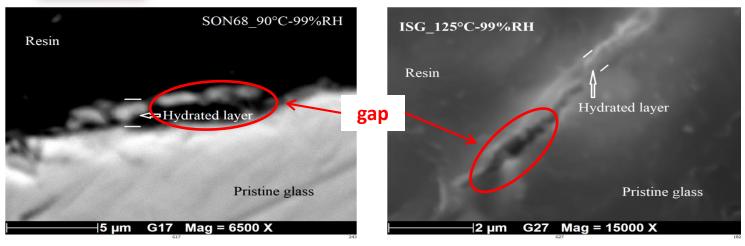
Comparison of Autoclave (AC) and Climate Test Chamber (CC)




• The hydration rate in the climate test chamber is higher than the autoclave

Surface analysis

90°C-95%RH_CC	SON68 glass	ISG glass
SEM analysis	0.24 μm	0.37 μm


• Hydrated layer is not clearly visible in SEM images, not sure about the hydrated layer thickness

CC- Climate Test Chamber

Surface analysis (cont.)

99% RH_AC	SON68 glass	ISG glass
SEM analysis	1.44 μm	0.69 μm
FTIR	1.10 μm	0.63 μm

• Found a gap between Resin and Glass sample

AC- Autoclave

Conclusion

- Correlation factor,
 - ISG 0.1 SiOH absorbance unit per 0.99 μm of hydrated layer (125°C-99%RH)
 - SON68 glass 0.1 SiOH absorbance unit per 1.5 μm of hydrated layer (90°C-99% RH)

Jeet PATEL	Abdelouas et al. @
(for ISG_125°C-99%RH)	(for ISG_175°C-98%RH)
0.1	0.11

Jeet PATEL (for SON68_90°C-99%RH)	J. Neeway # (for SON68 glass)	
0.07	0.09	

- Verifying,
 - The hydration rate increasing with the RH and temperature increases

[@] Primary Investigation of the ISG Glass Vapor Hydration (Abdelouas et al.- 2013), # Ph.D. thesis, University of Nantes (J. Neeway- 2010)

- Guillaume Blain (Subatech) for FTIR formation.
- Nicolas Stéphant from Centre of Micro-characterization, University of Nantes (France) for SEM analysis.

Thank you very much!

Special Thanks to

Prof. Abdesselam ABDELOUAS

Dr. Tomo SUZUKI-MURESAN

Ms. Haohan ZHANG

Jeet PATEL

Email: jeetpatel9409@gmail.com

LinkedIn: www.linkedin.com/in/jeet-patel-b70bbbb7

Mob.: +91-9408247952 (India)

