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The Tulukuevskoe Open Pit (TOP): 50,000 tU@0.2%U
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Dynamics of water table recession and changing
of oxidizing/reducing conditions during the TOP mining



General view of the NW block of the TOP with mineral zoning
of hydrothermal and hypergene transformations of rocks



Pitchblende (a) and pitchblende-molibdenite (b) ores
and consecution of U mineralization



Hydrochemistry of fracture-vein waters and atmospheric precipitates
of the TOP (2002-2015)

Eh-pH diagram of U-O2-H2O-CO2 system, T=25oC, 
P=1 atm for U=10-6 mol, PCO2=10-2 atm (after 

Langmuir, 1978).
U speciation dominated by carbonate complexes

Variations of Eh-pH
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U ore formation, modification and redeposition in the context
of spatial-temporal changes of oxidizing/reducing conditions at the TOP



Location for glass samples
1 m

SamplingA
30

 m

A

B

5 m

B Sampling

1. Highly siliceous massive volcanic 
glass and apoglassy rock

2. Glass in form of fiamme and matrix 
in ignimbrites

3. Massive and fluidal rhyolite-
rhyodacite volcanic glass

Krasniy Kamen volcano

Tulukuevskoe Open Pit



Volcanic glass in felsite rhyolite of the Novogodnee deposit
(mine horizon at depth of 300 m)

Obsidian

Perlite

Felsite rhyolite

Glasses

Cataclastic

Altered

Near-contact parts of a volcanic glass bed-like 
body in felsite rhyolite: 

(a) the top of the fresh obsidian-perlite 
volcanic glasses bed 

(b) well-preserved obsidian-perlite glasses 

(c) bottom of the cataclastic and altered
glasses bed
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Note: chemical composition is determined  with the use of the XRF, IGEM RAS laboratory. Oxides sum is 
reduced to 100%.

F2a-F10 - volcanic glasses transformed to a various degree: F10 -relatively fresh glass; F9, F8, F7-0 - slightly 
devitrificated and altered glasses; F7, F2-a, F6, F5 - intensly altered and devitrificated glasses (highly siliceous 
apoglass rock); F2-c - ignimbrite of rhyodacite composition, formed by glassy and partly recrystallized welded tuff and 
the basic mass, the sample was picked out from the area immediately adjacent to volcanic glass 

NN SiO2 TiO2 Al2O3 SFe MnO MgO CaO Na2O K2O P2O5 S LOI

F2-a 83.09 0.09 6.99 4.05 0.06 0.68 0.50 0.50 1.79 0.015 0.030 2.21
F2-c 67.90 0.57 15.22 4.45 0.06 1.02 0.61 4.42 3.39 0.091 0.041 2.23
F5 88.19 0.09 2.30 1.89 0.05 1.27 2.40 0.21 0.55 0.012 0.040 3.00
F6 83.53 0.13 4.33 5.13 0.11 0.54 1.46 0.47 1.17 0.272 0.039 2.79
F7-0 50.25 0.12 3.99 33.03 0.15 0.96 3.11 0.18 1.14 0.087 0.019 7.00
F7 80.95 0.12 3.97 9.16 0.05 0.45 0.71 0.27 1.11 0.035 0.039 3.12
F8 73.06 0.11 4.69 15.96 0.10 0.38 0.45 0.30 1.54 0.064 0.019 3.31
F9 64.23 0.22 9.69 10.21 0.46 1.15 3.11 1.32 2.92 0.035 0.019 6.62
F10 72.02 0.18 10.53 2.60 0.06 1.10 1.42 3.14 1.95 0.027 0.090 6.88

Table B6-1
Chemical composition (w. % ) of volcanic glasses with different intensity
of devitrification and epigenetic transformations



Highly siliceous massive volcanic glasses and apoglassy rocks of the TOP

5 cm

Glass  nodule

Ignimbrite

SEM image in backscattered electrons 
of the crystallites of scopulite type

50 µm

Stages of crystallization and devitrification
of volcanic glasses at formation of crystallites and spherulites of 

quartz-micaceous-feldspathic composition (aÞbÞcÞdÞeÞf). 
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High density of tracks is connected with mineralized fracture (1). The most density area of tracks in spherulites is associated with
near-contact rim (2), especially with Fe and Ti oxides (3). Extremely irregular distribution of tracks is associated with cataclastic
areas (4) and banded textures (5). High density and uniform distribution of tracks in brown-red siliceous glass (6) near the
contact with ignimbrite.

TOP: U distribution in massive highly-siliceous glasses from center to periphery 
(from a to d) of zonal nodules (FTR data)
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Glass in form of matrix and fiamme in ignimbrites of the TOP

(a) glass flattened lenses 
(fiamme) and glassy 
matrix in ignimbrite
of trachydacites

(b) Microstructure
of ignimbrite: partly 
crystallized zonal fiamme 
(1) in glassy matrix (2). 
Porphyric  segregations of 
polysynthetically twinned  
plagioclase (3) and 
opacitized and hematitized  
biotite (4) are fixed 
distinctly

(c – e) samples of the 
weakly and intensively
alterated glassy fiamme
and matrix of the 
ignimbrite
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TOP: U distribution in fresh (a) and altered (b Þ c Þ d) vitrous matrix, 
fiamme and phenocrysts of ignimbrites

Dense and uniform tracks distribution in matrix (1) and 
fiamme (2) of ignimbrites. Quartz and feldspars  (3) 
contain no uranium. Tracks rarefaction is connected 

with devitrification of fiamme and formation of spotted 
textures (4). The highest tracks density is marked in 

leucoxenized biotite (5) and near accumulations of 
mineral phenocrysts and rock fragments (6). 

Carbonate-hydromica aggregate, replacing 
plagioclase, does not contain tracks (7). Tracks 

connected with hematite dissolution (8) are observed 
into the near-contact part of carbonate veinlet (9). 
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Massive and fluidal rhyolite-rhyodacite volcanic glasses
of the Tulukuevskoe and Novogodnee deposits

Fresh massive (a) and fluidal (b) glasses with nonmineralized
and serpentin filled cracks (c). 

Stages of glass devitrification: (I) formation of crystallites (hair-like crystallites - trichites, globulites and 
scopulites), (II) spherulites and (III) microcrystalline crystallization. Crystallites are changed by spherulites and 

mineral phases crystallization (quartz-feldspathic aqqregate, carbonate and fluorite - CFA).
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SEM image in backscattered 
electrons of the light glass lense
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Tulukuevskoe and Novogodnee deposits: U distribution in massive and fluidal 
rhyolite-rhyodacite volcanic glasses as function of devitrification (FTR data)
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Uniform and dense tracks distribution in massive 
(1) and  fluidal (2) volcanic glasses. “Fresh” grains  
of quartz (3), plagioclase (4) and orthoclase (5)
do not contain tracks. The most dense track 
accumulations (6) and areas with the through out 
holes (7) are associated with fractures filled by Fe 
and Ti oxides and hydroxides. Stages of 
successive devitrification  [(a, b)ÞcÞd] of glasses 
with various degree of crystallization, accompanied 
by distinct uranium extraction: (c) - crystallites and 
spherulites formation (8) with crystallization center 
(9); (d) formation of local sites of quartz-feldspar-
fluorite composition crystallization (10).
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Tulukuevskoe and Novogodnee deposits: U distribution in cataclasites, 
microbrecciation and near-contact minerals (Ti-bearing accessory, phenocryst)

in massive and fluidal rhyolite-rhyodacite volcanic glasses (FTR data)
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(a) Formation of lenticular-banded, partly crystallized 
(quartz, feldspar) glasses (1) with the textures specific
for cataclase and microbrecciation (2). 
(b) U extraction from the glasses near micro-veinlets of 
quartz-feldspatic composition (3) and from the sites (4) 
with the intensive veinlet formation. 
(c) U redistribution (5)  in near-contact zone of Ti-bearing  
accessory minerals with U accumulation in leucoxene (6) 
and U extraction (7) of neighboring glasses sites.
(d) Tracks of high density are associated with near-
contact parts of orthoclase grains (8),  quartz (9), and 
intersecting fractures (10) as well as fractures
in the glass (11).
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Samples, section 
 

The 
number 
of  sites1 

U content, ppm Coefficient 
of 

variation Average2 Range 

Relatively unaltered massive and fluidal glasses 
Fresh glass (NY22_1) 8 25.26 23-97-27-47 5.31 
Fresh glass (NY5_1) 9 19.30 18.17-21.03 4.97 

Initial devitrification3 I (NY22_1) 9 17.85 17.30-19-11 3.59 
Initial devitrification II (NY5_1) 9 14.12 12.54-15-18 6.94 

Alteration and devitrification of glasses 
Altered4 I glass (NY23_1) 9 14.75 13.12-17.75 10.78 
Altered II glass (NY0_1) 9 11.42 9.49-12.19 8.06 
Altered III glass (NY2_1) 9 5.34 5.06-6.62 10.86 
Altered IV glass (NY26_1) 9 1.72 1.60-2.69 26.16 
Area with HEM (NY26_1) 5 39.55 32-12-55.33 22.66 

Deformated glasses (fissure (contact) 
Contact of fissure5 /min/ (NY2_1) 5 2.20 1.44-3.24 29.55 
Contact of fissure /max/ (NY2_1) 5 41.96 20.51-53-32 30.67 

 

U distribution in different intesity of alteretions and devitrification rhyolite-rhyodacite 
glasses (massive and fluidal) at the Tulukuevskoe (A) and Novogodnee (B) deposits
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Samples, section 

 

The 
number of  

sites1 

U content, ppm Coefficient of 
variation Average2 Range 

Massive glass 
Fresh glass (F10-1) 6 27.35 22.75-28.98 8.45 
Altered3 I glass (F10-2) 6 23.16 20.08-28.35 14.16 
Altered II glass (F10-3) 3 18.07 17.34-18.42 3.04 

Fluidal glass 
Fresh glass (F10A-1) 5 27.26 23.54-33.24 14.35 
Altered I glass (F10A-2) 4 11.55 9.81-17.04 27.53 
Area with HEM (F10A-3) 4 49.79 30.74-59.21 26.61 
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Tulukuevskoe and Novogodnee deposits: U distribution in fresh and altered 
massive and fluidal glasses (A, B)  and in vitrous matrix and fiamme 

of trachyrhyodacite ignimbrites (C)
(FTR data)
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Simplified matrix showing interrelation of U transport processes
into the TOP vadose zone

Summing up the obtained field and 
lab test data we could say that the 
overriding characteristic of the 
interactions in the vadose zone of 
the Tulukuevskoe Open Pit results 
from coupled processes. 
The dominant processes can be 
grouped into two categories: those 
contributing to U release and those 
contributing to U retardation. 
The significance and magnitude of 
the coupling varies both spatially 
and temporally. 
To identify priorities, the dominant 
processes were considered. 
The forward and back coupling of 
processes makes the vadose zone 
an environment typified by 
interrelated interactions. 
This idea can be shown conceptually 
by using an interaction matrix of the 
type proposed by Hudson (1989) 
and developed by Wilder (1997). 
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