

Aging of nuclear glass analogues

Aurélie Verney-Carron

Since 2010: Assistant Professor at LISA, France 2009-2010: Post-doc at CRPG on Li isotopes to trace basaltic glass alteration 2005-2008: PhD at CEA on the Study of archaeological analog for the validation of nuclear glass long-term behavior models

Joint ICTP-IAEA International School on Nuclear Waste Vitrification, 27 Sept. 2019

Objectives of analogs study

□ To know the long-term alteration

REASONING BY ANALOGY

- A is similar to C in certain known respects.
- A has some further feature B.
- Therefore, probably, C also has the feature B.

- ✓ Different examples : long-term durability of natural glasses, retention of transition elements used as colorants in stained glass windows, contribution of cracks of Roman glass blocks, ...
- \checkmark It requires to demonstrate the analogy between the different glasses

Objectives of analogs study

□ To validate the predictive capacity of alteration models

Order

A- NATURAL GLASSES

I. Volcanic glasses

II. Properties: long-term durability

III. Analogy between basaltic glass and nuclear glass

IV. Analogy between obsidian and nuclear glass

V. Primitive meteorites (chondrites)

B- HUMAN-MADE GLASSES

I. The stained glass windows

II. Vitreous slags : interactions glass / iron

III. Roman glass alteration modeling

IV. Pre-viking Swedish hillfort glass / LAW glasses

A- Natural glasses

I. Volcanic glasses

Volcanic rocks are formed by the fast cooling of magma (lava) at the Earth surface in different geodynamic contexts.

The composition influences the viscosity and the vitrification.

Glass < high viscosity (to inhibit the crystallization) + sudden cooling to chill the material to a glass

BASALTIC GLASS

Low viscosity → high cooling rate (oceanic seafloor, subglacial volcanoes)

Pillow lavas in Iceland (vitreous crust)

Hyaloclastites

Main locations of natural glasses: oceanic seafloor and Large Igneous Provinces (LIP)

OBSIDIAN high viscosity but rare

II. Properties : long-term durability

J.-L. Crovisier et al. / Journal of Nuclear Materials 321 (2003) 91-109

Fig. 7. Optical micrograph of subglacial Icelandic glass sample (3-4 My). Vatnajökull Region [43].

Richet (2009) Verre

Rocks from Figeac (Lot, France) – 280 My

 \Rightarrow **Old** natural glasses despite tectonic and erosion

- \Rightarrow The apparent alteration rate decreases with time.
- \Rightarrow The field alteration rate (confined medium) is lower than the lab alteration rate.

Parruzot et al. (2015)

D = $2.5 \cdot 10^{-25}$ g/m²/d at 90°C D = $4.7 \cdot 10^{-26}$ g/m²/d at 30°C

Fig. 3. Normalized mass losses versus time for BG_{Li} and BG_B main leaching experiments. Left axis, filled symbols: NL(Na), red squares; NL(Li), green triangles; NL(B), green hexagons and NL(Mg), magenta circles (BG_B 30 °C only) Right axis, empty symbols: NL(Si), blue diamonds and NL(Mg), magenta circles (all experiments except BG_B 30 °C only) Brown dashed line represents NL(Na) regression versus time on the residual rate domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

 \Rightarrow Measurement of the residual rate using a t-dependent law and Na diffusion coefficients using a Vt law

III. Analogy between BG and NG

• Phenomenology

From Gin et al. (2017) Gin et al. (2001)

Fibrous particular of the second seco

BASALTIC GLASS

Smectites, calcite, oxides, zeolites)

From Zhou & Fyfe (1989) Zhou et al. (2001)

TEM image of an Icelandic basaltic glass (0,1 My) [Crovisier et al., 2003]

TEM image of an oceanic basaltic glass (10,1 Ma): saponite at 10 Å [Zhou et al., 2001].

\Rightarrow Similar alteration facies

• Kinetics

NUCLEAR / BASALTIC GLASS

Residual rate

- $r_r (ISG) = 2 \cdot 10^{-4} \text{ g/m}^2/\text{d} (90^{\circ}\text{C})$
- $r_r (BG) = 9.6 \cdot 10^{-6} \text{ g/m}^2/\text{d} (90^{\circ}\text{C}) \text{ at pH 7}$ Parruzot et al. (2015)
- r_r (BG) = 4·10⁻³ g/m²/d (90°C) at pH 9,3 Ducasse et al. (2018)

 \Rightarrow Similar alteration rates

Techer et al. (2000)

BASATIC GLASS T = 90°C, pH 7 (at 90°C) Si saturated solution

t = 600 d

- \Rightarrow Complete depletion in Na, Ca, B
- \Rightarrow Si (~ Al, Ti) in the alteration layer (clays and amorphous silica)
- \Rightarrow Enrichment in ²⁹Si (// solution)

Ducasse et al. (2018)

BASATIC GLASS

Ducasse et al. (2018) ISG : Gin et al. (2015,2017)

- (a) Quick interdiffusion and hydrolysis \rightarrow release of Na and Ca and B
- (b) Precipitation of clays (Si, Al, Fe, Mg, Ti) and SiO₂(am)
- (c) The remaining silicate network dissolves and SiO₂(am) precipitates
- (d) The layer of secondary phases grows up, sustaining glass dissolution

COMPARISON WITH NUCLEAR GLASS

 \Rightarrow Differences with ISG Glass ISG: selective dissolution \rightarrow passivating layer (glass alteration is limited by water diffusion)

BG: congruent dissolution \rightarrow clays (equilibrium) The dissolution is controlled by the hydrolysis of the glass network and is sustained by the precipitation of secondary phases.

 \Rightarrow A similar phenomenology but different mechanisms controlling the long-term alteration rate (due to composition)

IV. Analogy between obsidian and NG

• Composition

SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	CaO	MgO	Fe_2O_3 tot	TiO ₂	LOI
69.50	12.00	3.50	3.71	1.00	0.07	2.63	0.182	7.11

 Phenomenology: dioctahedral smectite

Fig. 6 SEM-EDS of obsidian glass (after Rani et al. 2013) at different temperatures and time **a** untreated glass specimen, **b** showing boundary where amount of dissolution is noticed in the middle of the glass particles, ${\bf c}$ two distinct morphology of glass is identified and ${\bf d}$ complete transformation of glass into neo-formed mineral

Rani et al. (2013, 2015)

V. Primitive meteorites (chondrites)

- Fe and Mg minerals, Si-Al glass, Fe-Ni metal and clays → glass / iron / clays (storage)
- Different alteration stages between 50 and 150°C

Fig. 3b. (SEM/BSE image) Altered chondrule Al Rais A1 represents the advanced state of Renazzo B4, with the mesostasis is completely hydrated. Metal grain (A) has a thin, already layered rim A/B. Small intrusions penetrate into the metal grain, Grain (B) shows a more advanced alteration, several inner rims with varying composition surround a core of remaining unaltered metal. The alteration features of grains (A) and (B) are reminiscent of metal grain Al Rais A1 in the same sample. The other metal grains (C), (D), and (E, not visible) have been altered completely.

Fig. 1. (Top) Overview of the planned disposal facility, with crosscut of a typical storage container. The schema on the left shows the changes of the container, the nuclide glass, and the surrounding clay with increasing alteration (Situations 1–4) (Source: ANDRA, 2005). The analogous processes for the alteration of the CR chondrites are on the right (Weisberg and Huber, 2007; Libourd et al., 2011).

Morlok et al. (2013)

Paris, musée du Louvre. Inv. BJ652 © Photo RMN - Hervé Lewandows

B- Human-made glasses

Paris, musée du Louvre. Inv. AM1715 © Photo RMN - Franck Raux

I. The stained glass windows

• Archaeological stained glass (buried in soils)

 \Rightarrow High retention of transition elements and heavy metals

• Stained glass weathered in atmosphere

 \Rightarrow Partial retention of transition elements and heavy metals

• Analogy

NUCLEAR GLASS T = 90°C

Valle et al. (2010)

STAINED GLASS T = 30°C 1 month Dynamic conditions

Verney-Carron et al. (2017)

 \Rightarrow Indication on the long-term partition of transition elements and similar mechanisms far from saturation

II. Vitreous slags : interactions glass / iron

De Combarieu et al. (2011)

EXPERIMENT

SON68 + iron (10 μ m) + Bure argilite + water T = 90°C for 18 months

Comparison between experimental results (diamonds), modelling with sorption of Si (dashed lines) and sorption of Si + precipitation of iron silicates.

Godon et al. (2013)

 \Rightarrow Iron increases glass alteration rate due to the precipitation of Fe-silicates

- \Rightarrow Formation of Fe-silicates
- \Rightarrow Alteration thickness = $r_0/2$
- \Rightarrow Iron sustains a high alteration rate

Michelin et al. (2013, 2015)

VITREOUS SLAGS

Site of Glinet (Normandy) Blast furnace 16th c. Soil saturated with anoxic water SiO₂ : 62 à 77 %, Al₂O₃ : 5 à 9 %, CaO : 16 à 25 %

 \Rightarrow Analogy: vitreous slag / glass package and steel container

Alteration thickness: ~ 20 μ m (external cracks) / 2-6 μ m (internal cracks)

 \Rightarrow Fe-silicates precipitation is a long-term mechanism but there is a drop in the alteration rate in cracks

III. Roman glass alteration modeling

Alteration for 1800 years In a stable environment (seawater at 15°C)

 \Rightarrow Low contribution of internal cracks to global alteration (+ sealing)

Verney-Carron et al. (2008)

\Rightarrow Need to model the coupling between chemistry and transport

GEOCHEMICAL MODEL

van der Lee (2005) ; van der Lee et De Windt (2002) ; Lagneau (2005)

HYTEC software Thermodynamic database (Chess – EQ3/6)

Simulation results of 2 cracks (≠ apertures a and ≠ distance from the external surface)

- \Rightarrow Good agreement between simulations and observations
- \Rightarrow Validation of the predictive capacity of the geochemical model

Verney-Carron et al. (2010a,b)

 \Rightarrow If only the internal surfaces were leached, more than 650,000 years would be necessary for complete alteration of the Roman glass blocks, but external surfaces alteration would limit the lifetime to about 20,000 years.

 \Rightarrow If like for Roman glass, internal surfaces are controlled by diffusion, 5% of alteration after 100 000 years.

IV. Pre-viking Swedish hillfort glass / LAW glasses

Broborg, Sweden 500 CE

> FIGURE 1 Back (A) and front (B) image of the sample from Broborg (inset in B shows higher magnification image of the clear glass), X-ray computed tomography image of plane selected for sectioning (C) and image of cut surface after sectioning (D). Green box represents area selected for high resolution μXRF mapping

Weaver et al. (2018)

 \Rightarrow It could be a good analogue of LAW glasses

Outcomes

- No composition analogy BUT
- Important to study other kinds of glasses

→ General understanding of glass alteration (even minerals) : similar mechanisms but different kinetics.

- Important to continue the modeling work
 - \rightarrow To demonstrate the feasibility and the predictive capacity
 - \rightarrow To extend the range of applications of nuclear glass models

Atacama tektite

Impactites:

Lybian desert glass

• Stained glass weathered in atmosphere

Enrichment in D at the interface of samples exposed at 90 %RH (14 months)

Lombardo et al. (2010)

 \Rightarrow No protective role of the alteration layer

Magma can have a different composition \leftrightarrow partial melting, fractional crystallization, assimilation of surrounding crust.

Melting of peridotite (5-20 %) \rightarrow basalt composition

Melting of continental crust \rightarrow rhyolite

The composition influences the viscosity and the vitrification.

Glass < high viscosity (to inhibit the crystallization) + sudden cooling to chill the material to a glass

• Tektites and impactites

Impactite is formed by the impact of a meteorite and tektites from terrestrial debris ejected far from the impact.

	Si02	Al ₂ 03	Na ₂ 0	K ₂ 0	CaO	MgO	Fe2O3	Fe0	Ti02
Lunar glass Ti	39	6	67	15	22	9			
Lunar basalt	51,7	15,1	1,1	1,1	10,6	6,7	0,2	9,8	1,7
Figeac	67,9	12,8	1,6	4,0	1,1	0,6		2,7	1,5
Basalt	49,2	15,7	2,9	1,1	9,5	6,7	3,8	7,3	1,8
Andesite	57,9	17,0	3,5	1,6	6,8	3,3	3,3	4,0	0,9
Phonolite	56,2	19,0	7,8	5,2	2,7	1,1	2,8	2,0	0,6
Rhyolite	72,8	13,3	3,6	4,3	1,1	0,4	1,5	1,1	0,3
Lybian glass	99,4		0,3						
Rochechouart	65,1	14,8	0,2	10,9	0,2	1,2	3,5	0,6	
Fulgurite	98		2						
Impactite	87,0	8,0	0,1	1,0		0,8	0,2	1,9	0,5

EXPERIMENTAL VALIDATION

SUMMARY

✓ Alkalis and pH: good simulation

pH is an important parameter of the coupling between chemistry and transport

- ✓ Ca: underestimated at low pH due to its release by interdiffusion However, Ca is highly concentrated in seawater
- ✓ Si: overestimated at high pH (interactions with Ca) and in seawater (stoichiometry)

Change of the database (smectites)

200

300

400

100

7 +

Experiment in seawater at 50°C and SA/V = 20 cm^{-1}

 \Rightarrow The chemical model can be coupled with transport and tested on long-term