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Introduction

In machine learning,

I We are given data

X = [x1, x2, . . . , xn] ∈ Rp×n

I We aim at performing

Regression, Classification, Clustering etc.

I At the heart of these tasks, we compute similarities

Example: xᵀi xj

Quite naturally, the Gram matrix XᵀX appears in ML.

I How does it behave?
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Behavior of Large Random Gram Matrices

I The behavior of XᵀX “depends” on p and n.

I In ML, we generally face large and numerous data.

Dimension: 150,528
N◦ of images: 14,197,122

I Which is the Random Matrix Theory Regime

p, n→∞, with p/n→ c ∈ (0,∞)
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The Marc̆enko–Pastur law [Marc̆enko,Pastur’67]
I If we assume all xi ∼ N (0, Ip)
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Eigenvalues
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Merc̆enko-Pastur Law

Empirical eigenvalue distribution

Figure 1: Histogram of the eigenvalues of 1
pXᵀX for n = p = 1000.
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The Marc̆enko–Pastur law [Marc̆enko,Pastur’67]

Definition (Empirical Spectral Density)

Empirical Spectral Density (e.s.d.) µn of Hermitian matrix
An ∈ Rn×n is µn = 1

n

∑n
i=1 δλi (An).

Theorem (Marc̆enko–Pastur law)

X ∈ Rp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with n/p → c ∈ (0,∞), e.s.d. µn of 1

pXᵀX satisfies

µn
a.s.−−→ µc

weakly, where µc has continuous density fc with compact support
[λ−, λ+] = [(1−√c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x − λ−)(λ+ − x)
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The Marc̆enko–Pastur law
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Figure 2: Marc̆enko-Pastur law for different limit ratios c = limp→∞ p/n.
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Gaussian Mixtures (Spiked Model)

I Let m ∈ Rp such that ‖m‖ = O(1)

I Consider

X = [x1, . . . , x n
2︸ ︷︷ ︸

∼N (+m,Ip)

, x n
2

+1, . . . , xn︸ ︷︷ ︸
∼N (-m,Ip)

]

I Which can be written as

X = m yᵀ + Z

where y ∈ {+1,−1}n is the vector of labels and Z has
N (0, 1) entries.

I We have then

1

p
XᵀX = ‖m‖2 ȳȳᵀ︸ ︷︷ ︸

(Low-rank) Information

+
1

p
ZᵀZ + ∗︸ ︷︷ ︸

Noise

where ȳ = y/
√
p
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(Low-rank) Information

+
1

p
ZᵀZ + ∗︸ ︷︷ ︸

Noise

where ȳ = y/
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Gaussian Mixtures (Spiked Model)
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Visible if ‖m‖2 ≥ √c

Figure 3: Histogram of the eigenvalues of 1
pXᵀX for n = p = 1000.
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Gaussian Mixtures (Spiked Model)

Figure 4: Histogram of the eigenvalues of 1
pXᵀX and its dominant

eigenvector for n = p = 1000.
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Spiked Models

Theorem (Eigenvalues [Baik, Silverstein’06])

Let

I Z with i.i.d. zero mean, unit variance, E|Zij |4 <∞
I X = myᵀ + Z

Then, under the RMT regime, if ‖m‖2 >
√
c

λ`

(
1

p
XᵀX

)
a.s.−−→ 1 + ‖m‖2 + c

1 + ‖m‖2

‖m‖2
> (1 +

√
c)2
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Spiked Models

Theorem (Eigenvectors [Paul’07])

Let

I Z with i.i.d. zero mean, unit variance, E|Zij |4 <∞
I X = myᵀ + Z

Then, under the RMT regime, for a,b ∈ Rp deterministic and û

eigenvector corresponding to λmax

(
1
pXᵀX

)
,

aᵀûûᵀb− 1− c‖m‖−4

1 + c‖m‖−2
aᵀûûᵀb · 1‖m‖2>

√
c

a.s.−−→ 0

In particular,

|ûᵀu|2 a.s.−−→ 1− c‖m‖−4

1 + c‖m‖−2
· 1‖m‖2>

√
c .
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Spiked Models
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Figure 5: Simulated versus limiting |ûᵀu|2, p/n = 1/3, varying ‖m‖2.
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Kernel Spectral Clustering
Problem Statement

I Given data x1, . . . , xn ∈ Rp

I Objective: “cluster” in k similarity classes.

I Based on a kernel matrix

K =

{
f

(
1

p
‖xi − xj‖2

)}n

i ,j=1

Intuition (from small dimensions)

K

I K mainly low rank with class information in eigenvectors.
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Gaussian Mixture Model and Growth Assumptions

Consider data distributed in k classes as

X = [x1, . . . , xn1︸ ︷︷ ︸
∼N (m1,C1)

, xn1+1, . . . , xn2︸ ︷︷ ︸
∼N (m2,C2)

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∼N (mk,Ck )

]

And let

m =
k∑
`=1

n`
n

m`, m̄` = m` −m, C =
k∑
`=1

n`
n

C`, C̄` = C` − C

Assumption (Growth rate)

As n→∞,

1. Data: p
n → c0 ∈ (0,∞), n`

n → c` ∈ (0, 1)

2. Mean: ‖m̄`‖ = O(1)

3. Covariance: ‖C̄`‖ = O(1), trC̄` = O(
√
p), trC̄aC̄b = O(p)
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Small Dimension vs High Dimension!
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Random Matrix Equivalent [Couillet, Benaych’15]
I Key Observation: The between and within class vectors are

“equidistant” in high-dimension.

max
1≤i 6=j≤n

{∣∣∣∣1p‖xi − xj‖2 − τ
∣∣∣∣} a.s.−−→ 0

where τ = 2
p trC.

I Taylor Expanding K entry-wise leads to

K ∝ JAJᵀ︸ ︷︷ ︸
Information

+ f ′(τ)ZᵀZ + ∗︸ ︷︷ ︸
Noise

where A ∝ f ′(τ)MᵀM + f ′′(τ)[ttᵀ + T],and

J = [j1, . . . , jk ], M = [m̄1, . . . , m̄k ]

t =

{
trC̄`√

p

}k

`=1

, T =

{
trC̄aC̄b

p

}k

a,b=1
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Theory (with Gaussian assum.) versus MNIST

Figure 6: Leading four eigenvectors of K for MNIST data (red) and
theoretical findings (blue).
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Why does it work on real data?

I Real data are unlikely close to Gaussian.

I However, using GANs, it is possible to

Real data ≈ F1 ◦ F2 · · · ◦ FN︸ ︷︷ ︸
Lipschitz operations

(Gaussian)

I On the other hand, a concentrated vector z is defined as
For any Lipschitz observation F : Rp → R,

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q denote−−−−→ z ∈ O(e−·

q
)

I Example: G(Gaussian) with G : Rp → Rd Lipschitz.
[Ledoux’05]

⇒ Consider data as concentrated vectors.



29/43

Why does it work on real data?

I Real data are unlikely close to Gaussian.

I However, using GANs, it is possible to

Real data ≈ F1 ◦ F2 · · · ◦ FN︸ ︷︷ ︸
Lipschitz operations

(Gaussian)

I On the other hand, a concentrated vector z is defined as
For any Lipschitz observation F : Rp → R,

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q denote−−−−→ z ∈ O(e−·

q
)

I Example: G(Gaussian) with G : Rp → Rd Lipschitz.
[Ledoux’05]

⇒ Consider data as concentrated vectors.



29/43

Why does it work on real data?

I Real data are unlikely close to Gaussian.

I However, using GANs, it is possible to

Real data ≈ F1 ◦ F2 · · · ◦ FN︸ ︷︷ ︸
Lipschitz operations

(Gaussian)

I On the other hand, a concentrated vector z is defined as
For any Lipschitz observation F : Rp → R,

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q

denote−−−−→ z ∈ O(e−·
q
)

I Example: G(Gaussian) with G : Rp → Rd Lipschitz.
[Ledoux’05]

⇒ Consider data as concentrated vectors.



29/43

Why does it work on real data?

I Real data are unlikely close to Gaussian.

I However, using GANs, it is possible to

Real data ≈ F1 ◦ F2 · · · ◦ FN︸ ︷︷ ︸
Lipschitz operations

(Gaussian)

I On the other hand, a concentrated vector z is defined as
For any Lipschitz observation F : Rp → R,

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q denote−−−−→ z ∈ O(e−·

q
)

I Example: G(Gaussian) with G : Rp → Rd Lipschitz.
[Ledoux’05]

⇒ Consider data as concentrated vectors.



29/43

Why does it work on real data?

I Real data are unlikely close to Gaussian.

I However, using GANs, it is possible to

Real data ≈ F1 ◦ F2 · · · ◦ FN︸ ︷︷ ︸
Lipschitz operations

(Gaussian)

I On the other hand, a concentrated vector z is defined as
For any Lipschitz observation F : Rp → R,

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q denote−−−−→ z ∈ O(e−·

q
)

I Example: G(Gaussian) with G : Rp → Rd Lipschitz.
[Ledoux’05]

⇒ Consider data as concentrated vectors.



29/43

Why does it work on real data?

I Real data are unlikely close to Gaussian.

I However, using GANs, it is possible to

Real data ≈ F1 ◦ F2 · · · ◦ FN︸ ︷︷ ︸
Lipschitz operations

(Gaussian)

I On the other hand, a concentrated vector z is defined as
For any Lipschitz observation F : Rp → R,

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q denote−−−−→ z ∈ O(e−·

q
)

I Example: G(Gaussian) with G : Rp → Rd Lipschitz.
[Ledoux’05]

⇒ Consider data as concentrated vectors.



30/43

Outline

Introduction

Behavior of Large Random Gram Matrices
Standard Gaussian Model
Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices
Context of Kernel Spectral Clustering
Under Gaussian Mixture Model
Random Matrix Equivalent

Universality aspects
Why does it work on real data?
Large Kernel Matrices of Concentrated Data
Application to GAN-generated Images



31/43

Concentrated Mixture Model

Consider data distributed in k classes as

X = [x1, . . . , xn1︸ ︷︷ ︸
∈O(e−·

q1 )

, xn1+1, . . . , xn2︸ ︷︷ ︸
∈O(e−·

q2 )

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∈O(e−·

qk )

]

Recall

m =
k∑
`=1

n`
n

m`, m̄` = m` −m, C =
k∑
`=1

n`
n

C`, C̄` = C` − C

Assumption (Growth rate)

As n→∞,

1. Data: p
n → c0 ∈ (0,∞), n`

n → c` ∈ (0, 1)

2. Mean: ‖m̄`‖ = O(1), E‖xi‖ = O(
√
p)

3. Covariance: ‖C̄`‖ = O(1), trC̄` = O(
√
p), trC̄aC̄b = O(p)
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MP Law Still Valid for Concentrated Vectors!

Theorem (Spectrum of 1
pZᵀZ [Louart’18])

Let z ∈ C+ and define the resolvent matrix

Qδ(z) ≡
(

k∑
`=1

c`
C`

1 + δ`(z)
− zIp

)−1

where δ`(z) is the unique solution of the fixed point equation

δ`(z) =
1

n
(C`Qδ(z)).

Then the e.s.d. νn = 1
n

∑n
i=1 δλi a.s. converges to a probability

measure ν defined on a compact support S and having density

f (x) = lim
ε→0, p→∞

1

p
ImTrQδ(x + iε)
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Random Matrix Equivalent

I We still have:

max
1≤i 6=j≤n

{∣∣∣∣1p‖xi − xj‖2 − τ
∣∣∣∣} a.s.−−→ 0

where τ = 2
p trC.

I Taylor Expanding K entry-wise leads to

K ∝ JAJᵀ︸ ︷︷ ︸
Information

+ f ′(τ)ZᵀZ + ∗︸ ︷︷ ︸
Noise

+ ∆(Gaussian,Concentrated)︸ ︷︷ ︸
Non-informative 4th order moments

where A ∝ f ′(τ)MᵀM + f ′′(τ)[ttᵀ + T], and

J = [j1, . . . , jk ], M = [m̄1, . . . , m̄k ]

t =

{
trC̄`√

p

}k

`=1

, T =

{
trC̄aC̄b

p

}k

a,b=1
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Application to GAN-generated Images

min
G

max
D

Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

We generate data as

Generated images = G(Gaussian)
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Application to GAN-generated Images

Figure 7: Images generated by a GAN model [Brock et al.’18].
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CNN Representations

We consider data as (commonly used in Computer Vision)

xi = R ◦ G︸ ︷︷ ︸
Lipschitz

(Gaussian)



38/43

Application to GAN-generated Images
G

e
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Figure 8: Spectral clustering on GAN-generated images.
f (t) = exp(−t), k = 3, n = 3000 and p = 1024.
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Application to GAN-generated Images
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Figure 9: Spectral clustering on GAN-generated images.
f (t) = exp(−t), k = 3, n = 3000 and p = 1024.
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Application to GAN-generated Images
G
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Figure 10: Spectral clustering on GAN-generated images.
f (t) = exp(−t), k = 3, n = 3000 and p = 1024.
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Application to Real Images

(d) (e) (f)

R
e
a
l 
Im

a
g

e
s

Figure 11: Spectral clustering on real images. f (t) = exp(−t), k = 3,
n = 3000 and p = 1024.
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Summary & Perspectives

I RMT allows for the theoretical understanding of ML methods
for concentrated vectors.

I Real data behave similar to concentrated vectors.

⇒ RMT is relevant for ML!

I Generalize to other ML tasks (Classification, Regression etc.).

I Use the concentration framework to understand the dynamics
of neural networks and GANs.
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Thanks for your attention!
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