Random Matrix Theory for Big-Data and Machine Learning

Mohamed El Amine Seddik

Supervised by: Mohamed Tamaazousti and Romain Couillet

CEA List & Centralesupélec

ICTP Trieste - 10 December 2018

Outline

Introduction

Behavior of Large Random Gram Matrices

Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

Outline

Introduction

Behavior of Large Random Gram Matrices

Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

In machine learning,

In machine learning,

► We are given data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$

In machine learning,

We are given data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$

We aim at performing

Regression, Classification, Clustering etc.

In machine learning,

We are given data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$

We aim at performing

Regression, Classification, Clustering etc.

► At the heart of these tasks, we compute similarities

In machine learning,

We are given data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$

We aim at performing

Regression, Classification, Clustering etc.

At the heart of these tasks, we compute similarities
 Example: x^T_ix_i

In machine learning,

We are given data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$

We aim at performing

Regression, Classification, Clustering etc.

At the heart of these tasks, we compute similarities
 Example: x^T_ix_i

Quite naturally, the Gram matrix X^TX appears in ML.

In machine learning,

We are given data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$$

We aim at performing

Regression, Classification, Clustering etc.

At the heart of these tasks, we compute similarities

Example: $\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$

Quite naturally, the Gram matrix X^TX appears in ML.

How does it behave?

Outline

Introduction

Behavior of Large Random Gram Matrices

Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

• The behavior of $X^T X$ "depends" on p and n.

- The behavior of $X^T X$ "depends" on p and n.
- ► In ML, we generally face large and numerous data.

- The behavior of $X^T X$ "depends" on p and n.
- ► In ML, we generally face large and numerous data.

- The behavior of $X^T X$ "depends" on p and n.
- ► In ML, we generally face large and numerous data.

Dimension: 150,528

- The behavior of $X^T X$ "depends" on p and n.
- ► In ML, we generally face large and numerous data.

Dimension: **150,528** N° of images: **14,197,122**

- The behavior of $X^T X$ "depends" on p and n.
- ► In ML, we generally face large and numerous data.

Dimension: **150,528** N° of images: **14,197,122**

Which is the Random Matrix Theory Regime

 $p,n
ightarrow\infty,$ with $p/n
ightarrow c\in(0,\infty)$

Outline

Introduction

Behavior of Large Random Gram Matrices Standard Gaussian Model

Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices Context of Kernel Spectral Clustering

Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

The Marčenko–Pastur law [Marčenko,Pastur'67]

• If we assume all $\mathbf{x}_i \sim \mathcal{N}(0, \mathbf{I}_p)$

The Marčenko–Pastur law [Marčenko,Pastur'67]

• If we assume all $\mathbf{x}_i \sim \mathcal{N}(0, \mathbf{I}_p)$

Figure 1: Histogram of the eigenvalues of $\frac{1}{p} \mathbf{X}^{\mathsf{T}} \mathbf{X}$ for n = p = 1000.

The Marčenko–Pastur law [Marčenko, Pastur'67]

Definition (Empirical Spectral Density)

Empirical Spectral Density (e.s.d.) μ_n of Hermitian matrix $\mathbf{A}_n \in \mathbb{R}^{n \times n}$ is $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(\mathbf{A}_n)}$.

The Marčenko–Pastur law [Marčenko,Pastur'67]

Definition (Empirical Spectral Density)

Empirical Spectral Density (e.s.d.) μ_n of Hermitian matrix $\mathbf{A}_n \in \mathbb{R}^{n \times n}$ is $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(\mathbf{A}_n)}$.

Theorem (Marčenko–Pastur law)

 $\mathbf{X} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $n/p \to c \in (0, \infty)$, e.s.d. μ_n of $\frac{1}{p} \mathbf{X}^{\mathsf{T}} \mathbf{X}$ satisfies

$$\mu_n \xrightarrow{a.s.} \mu_c$$

weakly, where μ_c has continuous density f_c with compact support $[\lambda^-, \lambda^+] = [(1 - \sqrt{c})^2, (1 + \sqrt{c})^2]$

$$f_c(x) = rac{1}{2\pi c x} \sqrt{(x-\lambda^-)(\lambda^+-x)}$$

The Marčenko–Pastur law

Figure 2: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

The Marčenko–Pastur law

Figure 2: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

The Marčenko–Pastur law

Figure 2: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Outline

Introduction

Behavior of Large Random Gram Matrices Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

• Let $\mathbf{m} \in \mathbb{R}^p$ such that $\|\mathbf{m}\| = \mathcal{O}(1)$

- Let $\mathbf{m} \in \mathbb{R}^p$ such that $\|\mathbf{m}\| = \mathcal{O}(1)$
- Consider

$$\mathbf{X} = [\underbrace{\mathbf{x}_{1}, \dots, \mathbf{x}_{\frac{n}{2}}}_{\sim \mathcal{N}(+\mathbf{m}, \mathbf{l}_{p})}, \underbrace{\mathbf{x}_{\frac{n}{2}+1}, \dots, \mathbf{x}_{n}}_{\sim \mathcal{N}(-\mathbf{m}, \mathbf{l}_{p})}]$$

- Let $\mathbf{m} \in \mathbb{R}^p$ such that $\|\mathbf{m}\| = \mathcal{O}(1)$
- Consider

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{\frac{n}{2}}}_{\sim \mathcal{N}(+\mathbf{m}, \mathbf{l}_p)}, \underbrace{\mathbf{x}_{\frac{n}{2}+1}, \dots, \mathbf{x}_n}_{\sim \mathcal{N}(-\mathbf{m}, \mathbf{l}_p)}]$$

Which can be written as

$$\mathbf{X} = \mathbf{m} \, \mathbf{y}^{\mathsf{T}} + \mathbf{Z}$$

where $\mathbf{y} \in \{+1, -1\}^n$ is the vector of labels and \mathbf{Z} has $\mathcal{N}(0, 1)$ entries.

- Let $\mathbf{m} \in \mathbb{R}^p$ such that $\|\mathbf{m}\| = \mathcal{O}(1)$
- Consider

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{\frac{n}{2}}}_{\sim \mathcal{N}(+\mathbf{m}, \mathbf{l}_p)}, \underbrace{\mathbf{x}_{\frac{n}{2}+1}, \dots, \mathbf{x}_n}_{\sim \mathcal{N}(-\mathbf{m}, \mathbf{l}_p)}]$$

Which can be written as

$$\mathbf{X} = \mathbf{m} \, \mathbf{y}^{\mathsf{T}} + \mathbf{Z}$$

where $\mathbf{y} \in \{+1, -1\}^n$ is the vector of labels and \mathbf{Z} has $\mathcal{N}(0, 1)$ entries.

We have then

$$\frac{1}{p} \mathbf{X}^{\mathsf{T}} \mathbf{X} = \underbrace{\|\mathbf{m}\|^2 \, \bar{\mathbf{y}} \bar{\mathbf{y}}^{\mathsf{T}}}_{\text{(Low-rank) Information}} + \underbrace{\frac{1}{p} \mathbf{Z}^{\mathsf{T}} \mathbf{Z} + \ast}_{\text{Noise}} \text{ where } \bar{\mathbf{y}} = \mathbf{y} / \sqrt{p}$$

Figure 3: Histogram of the eigenvalues of $\frac{1}{p} \mathbf{X}^{\mathsf{T}} \mathbf{X}$ for n = p = 1000.

Figure 4: Histogram of the eigenvalues of $\frac{1}{p} \mathbf{X}^{\mathsf{T}} \mathbf{X}$ and its dominant eigenvector for n = p = 1000.

Theorem (Eigenvalues [Baik, Silverstein'06]) Let

- ▶ **Z** with i.i.d. zero mean, unit variance, $\mathbb{E}|Z_{ij}|^4 < \infty$
- $\blacktriangleright \mathbf{X} = \mathbf{m}\mathbf{y}^{\mathsf{T}} + \mathbf{Z}$

Theorem (Eigenvalues [Baik, Silverstein'06]) Let

- ▶ **Z** with i.i.d. zero mean, unit variance, $\mathbb{E}|Z_{ij}|^4 < \infty$
- $\blacktriangleright \mathbf{X} = \mathbf{m}\mathbf{y}^{\mathsf{T}} + \mathbf{Z}$

Then, under the RMT regime, if $\|\mathbf{m}\|^2 > \sqrt{c}$

$$\lambda_{\ell} \left(\frac{1}{\rho} \mathbf{X}^{\mathsf{T}} \mathbf{X} \right) \xrightarrow{\mathbf{a.s.}} 1 + \|\mathbf{m}\|^2 + c \frac{1 + \|\mathbf{m}\|^2}{\|\mathbf{m}\|^2} > (1 + \sqrt{c})^2$$

Theorem (Eigenvectors [Paul'07])

Let

• **Z** with i.i.d. zero mean, unit variance, $\mathbb{E}|Z_{ij}|^4 < \infty$

 $\blacktriangleright \mathbf{X} = \mathbf{m}\mathbf{y}^{\mathsf{T}} + \mathbf{Z}$

Theorem (Eigenvectors [Paul'07])

Let

▶ **Z** with i.i.d. zero mean, unit variance, $\mathbb{E}|Z_{ij}|^4 < \infty$

$$\blacktriangleright \mathbf{X} = \mathbf{m}\mathbf{y}^{\mathsf{T}} + \mathbf{Z}$$

Then, under the RMT regime, for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{p}$ deterministic and $\hat{\mathbf{u}}$ eigenvector corresponding to $\lambda_{\max}\left(\frac{1}{p}\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)$,

$$\mathbf{a}^{\mathsf{T}}\hat{\mathbf{u}}\hat{\mathbf{u}}^{\mathsf{T}}\mathbf{b} - \frac{1-c\|\mathbf{m}\|^{-4}}{1+c\|\mathbf{m}\|^{-2}}\mathbf{a}^{\mathsf{T}}\hat{\mathbf{u}}\hat{\mathbf{u}}^{\mathsf{T}}\mathbf{b} \cdot \mathbf{1}_{\|\mathbf{m}\|^{2} > \sqrt{c}} \xrightarrow{a.s.} 0$$

In particular,

$$|\hat{\mathbf{u}}^{\mathsf{T}}\mathbf{u}|^2 \xrightarrow{a.s.} rac{1-c\|\mathbf{m}\|^{-4}}{1+c\|\mathbf{m}\|^{-2}} \cdot \mathbf{1}_{\|\mathbf{m}\|^2 > \sqrt{c}}.$$
Spiked Models

Figure 5: Simulated versus limiting $|\hat{\mathbf{u}}^{\mathsf{T}}\mathbf{u}|^2$, p/n = 1/3, varying $\|\mathbf{m}\|^2$.

Outline

Introduction

Behavior of Large Random Gram Matrices Standard Gaussian Model

Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

Outline

Introduction

Behavior of Large Random Gram Matrices Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices Context of Kernel Spectral Clustering

Under Gaussian Mixture Mode Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

Problem Statement

- Given data $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$
- ▶ Objective: "cluster" in *k* similarity classes.

Problem Statement

- Given data $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$
- ▶ Objective: "cluster" in *k* similarity classes.
- Based on a kernel matrix

$$\mathbf{K} = \left\{ f\left(\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right) \right\}_{i,j=1}^n$$

Problem Statement

- Given data $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$
- ▶ Objective: "cluster" in *k* similarity classes.
- Based on a kernel matrix

$$\mathbf{K} = \left\{ f\left(\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right) \right\}_{i,j=1}^n$$

Intuition (from small dimensions)

$$\mathbf{K} = \left(\begin{array}{c|c} \gg 1 & \ll 1 & \ll 1 \\ \hline \ll 1 & \gg 1 & \ll 1 \\ \hline \ll 1 & \ll 1 & \gg 1 \end{array} \right) \left(\begin{array}{c} \mathcal{C}_1 \\ \mathcal{C}_2 \\ \mathcal{C}_3 \end{array} \right)$$

Problem Statement

- Given data $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$
- ▶ Objective: "cluster" in *k* similarity classes.
- Based on a kernel matrix

$$\mathbf{K} = \left\{ f\left(\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right) \right\}_{i,j=1}^n$$

Intuition (from small dimensions)

$$\mathbf{K} = \left(\begin{array}{c|c} \gg 1 & \ll 1 & \ll 1 \\ \hline \ll 1 & \gg 1 & \ll 1 \\ \hline \ll 1 & \ll 1 & \gg 1 \end{array} \right) \begin{array}{c} \mathcal{C}_1 \\ \mathcal{C}_2 \\ \mathcal{C}_3 \end{array}$$

▶ K mainly low rank with class information in eigenvectors.

Outline

Introduction

Behavior of Large Random Gram Matrices Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\sim \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\sim \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\sim \mathcal{N}(\mathbf{m}_k, \mathbf{C}_k)}]$$

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\sim \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\sim \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\sim \mathcal{N}(\mathbf{m}_k, \mathbf{C}_k)}]$$

And let

$$\mathbf{m} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{m}_{\ell}, \ \bar{\mathbf{m}}_{\ell} = \mathbf{m}_{\ell} - \mathbf{m}, \ \mathbf{C} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{C}_{\ell}, \ \bar{\mathbf{C}}_{\ell} = \mathbf{C}_{\ell} - \mathbf{C}$$

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\sim \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\sim \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\sim \mathcal{N}(\mathbf{m}_k, \mathbf{C}_k)}]$$

And let

$$\mathbf{m} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{m}_{\ell}, \ \bar{\mathbf{m}}_{\ell} = \mathbf{m}_{\ell} - \mathbf{m}, \ \mathbf{C} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{C}_{\ell}, \ \bar{\mathbf{C}}_{\ell} = \mathbf{C}_{\ell} - \mathbf{C}$$

Assumption (Growth rate) As $n \to \infty$,

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\sim \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\sim \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\sim \mathcal{N}(\mathbf{m}_k, \mathbf{C}_k)}]$$

And let

$$\mathbf{m} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{m}_{\ell}, \ \bar{\mathbf{m}}_{\ell} = \mathbf{m}_{\ell} - \mathbf{m}, \ \mathbf{C} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{C}_{\ell}, \ \bar{\mathbf{C}}_{\ell} = \mathbf{C}_{\ell} - \mathbf{C}$$

Assumption (Growth rate)

As $n \to \infty$,

1. Data: $\frac{p}{n} \rightarrow c_0 \in (0,\infty)$, $\frac{n_\ell}{n} \rightarrow c_\ell \in (0,1)$

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\sim \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\sim \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\sim \mathcal{N}(\mathbf{m}_k, \mathbf{C}_k)}]$$

And let

$$\mathbf{m} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{m}_{\ell}, \ \bar{\mathbf{m}}_{\ell} = \mathbf{m}_{\ell} - \mathbf{m}, \ \mathbf{C} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{C}_{\ell}, \ \bar{\mathbf{C}}_{\ell} = \mathbf{C}_{\ell} - \mathbf{C}$$

Assumption (Growth rate)

As $n o \infty$,

- **1. Data:** $\frac{p}{n} \rightarrow c_0 \in (0,\infty)$, $\frac{n_\ell}{n} \rightarrow c_\ell \in (0,1)$
- **2.** Mean: $\|\bar{\mathbf{m}}_{\ell}\| = \mathcal{O}(1)$

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\sim \mathcal{N}(\mathbf{m}_1, \mathbf{C}_1)}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\sim \mathcal{N}(\mathbf{m}_2, \mathbf{C}_2)}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_{n_k}}_{\sim \mathcal{N}(\mathbf{m}_k, \mathbf{C}_k)}]$$

And let

$$\mathbf{m} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{m}_{\ell}, \ \bar{\mathbf{m}}_{\ell} = \mathbf{m}_{\ell} - \mathbf{m}, \ \mathbf{C} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{C}_{\ell}, \ \bar{\mathbf{C}}_{\ell} = \mathbf{C}_{\ell} - \mathbf{C}$$

Assumption (Growth rate)

As $n o \infty$,

- 1. Data: $\frac{p}{n} \rightarrow c_0 \in (0,\infty)$, $\frac{n_\ell}{n} \rightarrow c_\ell \in (0,1)$
- **2.** Mean: $\|\bar{\mathbf{m}}_{\ell}\| = \mathcal{O}(1)$
- 3. Covariance: $\|\bar{\mathbf{C}}_{\ell}\| = \mathcal{O}(1)$, $\operatorname{tr}\bar{\mathbf{C}}_{\ell} = \mathcal{O}(\sqrt{\rho})$, $\operatorname{tr}\bar{\mathbf{C}}_{a}\bar{\mathbf{C}}_{b} = \mathcal{O}(\rho)$

Small Dimension vs High Dimension!

Small Dimension vs High Dimension!

Outline

Introduction

Behavior of Large Random Gram Matrices Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{p} \text{tr} \mathbf{C}$.

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{\rho} \text{tr} \mathbf{C}$. • Taylor Expanding **K** entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{JAJ^{\mathsf{T}}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z^{\mathsf{T}}Z} + *}_{Noise}$$

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where τ = ²/_p trC.
Taylor Expanding K entry-wise leads to

where $\mathbf{A} \propto f'(\tau)\mathbf{M}^{\mathsf{T}}\mathbf{M} + f''(\tau)[\mathbf{t}\mathbf{t}^{\mathsf{T}} + \mathbf{T}]$,

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{p} \text{tr} \mathbf{C}$. • Taylor Expanding **K** entry-wise leads to

 $\mathbf{K} \propto \underbrace{\mathbf{J}\mathbf{A}\mathbf{J}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + *}_{Noise}$ where $\mathbf{A} \propto f'(\tau)\mathbf{M}^{\mathsf{T}}\mathbf{M} + f''(\tau)[\mathbf{t}\mathbf{t}^{\mathsf{T}} + \mathbf{T}]$, and $\mathbf{J} = [\mathbf{i}_{1}, \dots, \mathbf{i}_{k}],$

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{p} \text{tr} \mathbf{C}$. • Taylor Expanding **K** entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{J}\mathbf{A}\mathbf{J}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + *}_{Noise}$$

where $\mathbf{A} \propto f'(\tau)\mathbf{M}^{\mathsf{T}}\mathbf{M} + f''(\tau)[\mathbf{t}\mathbf{t}^{\mathsf{T}} + \mathbf{T}]$, and
 $\mathbf{J} = [\mathbf{j}_1, \dots, \mathbf{j}_k], \ \mathbf{M} = [\mathbf{\bar{m}}_1, \dots, \mathbf{\bar{m}}_k]$

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{p} \text{tr} \mathbf{C}$. • Taylor Expanding **K** entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{JAJ}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \ast}_{Noise}$$

where $\mathbf{A} \propto f'(\tau)\mathbf{M}^{\mathsf{T}}\mathbf{M} + f''(\tau)[\mathbf{t}\mathbf{t}^{\mathsf{T}} + \mathbf{T}]$,and

 $J = [j_1, \ldots, j_k], \ M = [\bar{m}_1, \ldots, \bar{m}_k]$

$$\mathbf{t} = \left\{ \frac{\mathrm{tr} \bar{\mathbf{C}}_{\ell}}{\sqrt{p}} \right\}_{\ell=1}^{k},$$

Key Observation: The between and within class vectors are "equidistant" in high-dimension.

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{p} \text{tr} \mathbf{C}$. • Taylor Expanding **K** entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{JAJ}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \ast}_{Noise}$$

where $\mathbf{A} \propto f'(\tau)\mathbf{M}^{\mathsf{T}}\mathbf{M} + f''(\tau)[\mathbf{t}\mathbf{t}^{\mathsf{T}} + \mathbf{T}]$,and

 $J = [j_1, \ldots, j_k], \ M = [\bar{m}_1, \ldots, \bar{m}_k]$

$$\mathbf{t} = \left\{ \frac{\mathrm{tr} \bar{\mathbf{C}}_{\ell}}{\sqrt{p}} \right\}_{\ell=1}^{k}, \ \mathbf{T} = \left\{ \frac{\mathrm{tr} \bar{\mathbf{C}}_{a} \bar{\mathbf{C}}_{b}}{p} \right\}_{a,b=1}^{k}$$

Theory (with Gaussian assum.) versus MNIST

Figure 6: Leading four eigenvectors of K for MNIST data (red) and theoretical findings (blue).

Theory (with Gaussian assum.) versus MNIST

Figure 6: Leading four eigenvectors of K for MNIST data (red) and theoretical findings (blue).

Outline

Introduction

Behavior of Large Random Gram Matrices

Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

Outline

Introduction

Behavior of Large Random Gram Matrices

Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data?

Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

• Real data are **unlikely close** to Gaussian.

- Real data are **unlikely close** to Gaussian.
- However, using GANs, it is possible to

Real data
$$\approx \underbrace{\mathcal{F}_1 \circ \mathcal{F}_2 \cdots \circ \mathcal{F}_N}_{(Gaussian)}$$

Lipschitz operations

- Real data are **unlikely close** to Gaussian.
- However, using GANs, it is possible to

Real data
$$\approx \underbrace{\mathcal{F}_1 \circ \mathcal{F}_2 \cdots \circ \mathcal{F}_N}_{Lipschitz \text{ operations}}$$
 (Gaussian)

On the other hand, a concentrated vector z is defined as For any *Lipschitz* observation *F* : ℝ^p → ℝ,

 $\mathbb{P}\left\{ \left| \mathcal{F}(\mathsf{z}) - \mathbb{E}\mathcal{F}(\mathsf{z})
ight| > t
ight\} \leq C e^{-c \, t^q}$

- Real data are **unlikely close** to Gaussian.
- However, using GANs, it is possible to

Real data
$$\approx \underbrace{\mathcal{F}_1 \circ \mathcal{F}_2 \cdots \circ \mathcal{F}_N}_{Lipschitz \text{ operations}}$$
 (Gaussian)

On the other hand, a concentrated vector z is defined as For any *Lipschitz* observation *F* : ℝ^p → ℝ,

$$\mathbb{P}\left\{|\mathcal{F}(\mathsf{z}) - \mathbb{E}\mathcal{F}(\mathsf{z})| > t\right\} \leq C e^{-c \, t^q} \xrightarrow{\text{denote}} \boxed{\mathsf{z} \in \mathcal{O}(e^{-.^q})}$$

- Real data are **unlikely close** to Gaussian.
- However, using GANs, it is possible to

Real data
$$\approx \underbrace{\mathcal{F}_1 \circ \mathcal{F}_2 \cdots \circ \mathcal{F}_N}_{Lipschitz \text{ operations}}$$
 (Gaussian)

On the other hand, a concentrated vector z is defined as For any *Lipschitz* observation *F* : ℝ^p → ℝ,

$$\mathbb{P}\left\{|\mathcal{F}(\mathsf{z}) - \mathbb{E}\mathcal{F}(\mathsf{z})| > t\right\} \leq C e^{-c \, t^q} \xrightarrow{\text{denote}} \boxed{\mathsf{z} \in \mathcal{O}(e^{-.^q})}$$

Example: G(Gaussian) with G : ℝ^p → ℝ^d Lipschitz.
 [Ledoux'05]

- Real data are **unlikely close** to Gaussian.
- However, using GANs, it is possible to

Real data
$$\approx \underbrace{\mathcal{F}_1 \circ \mathcal{F}_2 \cdots \circ \mathcal{F}_N}_{Lipschitz \text{ operations}}$$
 (Gaussian)

On the other hand, a concentrated vector z is defined as For any *Lipschitz* observation *F* : ℝ^p → ℝ,

$$\mathbb{P}\left\{|\mathcal{F}(\mathsf{z}) - \mathbb{E}\mathcal{F}(\mathsf{z})| > t\right\} \leq C e^{-c \, t^q} \xrightarrow{\text{denote}} \boxed{\mathsf{z} \in \mathcal{O}(e^{-.^q})}$$

Example: G(Gaussian) with G : ℝ^p → ℝ^d Lipschitz.
 [Ledoux'05]

 \Rightarrow Consider data as **concentrated** vectors.

Outline

Introduction

Behavior of Large Random Gram Matrices

Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

Concentrated Mixture Model

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\in \mathcal{O}(e^{-.q_1})}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\in \mathcal{O}(e^{-.q_2})}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\in \mathcal{O}(e^{-.q_k})}]$$
Concentrated Mixture Model

Consider data distributed in k classes as

$$\mathbf{X} = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\in \mathcal{O}(e^{-.q_1})}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\in \mathcal{O}(e^{-.q_2})}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\in \mathcal{O}(e^{-.q_k})}]$$

Recall

$$\mathbf{m} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{m}_{\ell}, \ \bar{\mathbf{m}}_{\ell} = \mathbf{m}_{\ell} - \mathbf{m}, \ \mathbf{C} = \sum_{\ell=1}^{k} \frac{n_{\ell}}{n} \mathbf{C}_{\ell}, \ \bar{\mathbf{C}}_{\ell} = \mathbf{C}_{\ell} - \mathbf{C}$$

Assumption (Growth rate)

As $n \to \infty$,

- **1. Data:** $\frac{p}{n} \to c_0 \in (0,\infty)$, $\frac{n_\ell}{n} \to c_\ell \in (0,1)$
- **2. Mean:** $\|\bar{\mathbf{m}}_{\ell}\| = \mathcal{O}(1)$, $\mathbb{E}\|\mathbf{x}_i\| = \mathcal{O}(\sqrt{p})$
- **3.** Covariance: $\|\bar{\mathbf{C}}_{\ell}\| = \mathcal{O}(1)$, $\operatorname{tr}\bar{\mathbf{C}}_{\ell} = \mathcal{O}(\sqrt{\rho})$, $\operatorname{tr}\bar{\mathbf{C}}_{a}\bar{\mathbf{C}}_{b} = \mathcal{O}(\rho)$

MP Law Still Valid for Concentrated Vectors!

Theorem (Spectrum of $\frac{1}{p}Z^{T}Z$ [Louart'18])

Let $z \in \mathbb{C}^+$ and define the resolvent matrix

$$\mathbf{Q}_{\delta}(z) \equiv \left(\sum_{\ell=1}^{k} c_{\ell} rac{\mathbf{C}_{\ell}}{1+\delta_{\ell}(z)} - z \mathbf{I}_{p}
ight)^{-1}$$

MP Law Still Valid for Concentrated Vectors!

Theorem (Spectrum of $\frac{1}{p}Z^{T}Z$ [Louart'18])

Let $z \in \mathbb{C}^+$ and define the resolvent matrix

$$\mathbf{Q}_{\delta}(z) \equiv \left(\sum_{\ell=1}^{k} c_{\ell} \frac{\mathbf{C}_{\ell}}{1 + \delta_{\ell}(z)} - z \mathbf{I}_{p}\right)^{-1}$$

where $\delta_{\ell}(z)$ is the unique solution of the fixed point equation

$$\delta_\ell(z) = \frac{1}{n} (\mathbf{C}_\ell \mathbf{Q}_\delta(z)).$$

MP Law Still Valid for Concentrated Vectors!

Theorem (Spectrum of $\frac{1}{p}Z^{T}Z$ [Louart'18])

Let $z \in \mathbb{C}^+$ and define the resolvent matrix

$$\mathbf{Q}_{\delta}(z) \equiv \left(\sum_{\ell=1}^{k} c_{\ell} \frac{\mathbf{C}_{\ell}}{1 + \delta_{\ell}(z)} - z \mathbf{I}_{p}\right)^{-1}$$

where $\delta_{\ell}(z)$ is the unique solution of the fixed point equation

$$\delta_{\ell}(z) = \frac{1}{n} (\mathbf{C}_{\ell} \mathbf{Q}_{\delta}(z)).$$

Then the e.s.d. $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$ a.s. converges to a probability measure ν defined on a compact support S and having density

$$f(x) = \lim_{\epsilon \to 0, \ p \to \infty} \frac{1}{p} \mathcal{I}m \ Tr \mathbf{Q}_{\delta}(x + i\epsilon)$$

We still have:

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where
$$\tau = \frac{2}{p} \text{tr} \mathbf{C}$$
.

We still have:

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{\rho} \text{tr} \mathbf{C}$.

► Taylor Expanding K entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{JAJ}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \ast}_{Noise}$$

We still have:

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right| \right\} \xrightarrow{a.s.} 0$$

where $\tau = \frac{2}{\rho} \text{tr} \mathbf{C}$.

► Taylor Expanding K entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{JAJ}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \ast}_{Noise} + \underbrace{\Delta(\mathsf{Gaussian}, \mathsf{Concentrated})}_{\mathsf{Non-informative 4th order moments}}$$

We still have:

$$\max_{1\leq i\neq j\leq n}\left\{\left|\frac{1}{p}\|\mathbf{x}_{i}-\mathbf{x}_{j}\|^{2}-\tau\right|\right\}\xrightarrow{a.s.}0$$

where $\tau = \frac{2}{p} \text{tr} \mathbf{C}$. > Taylor Expanding **K** entry-wise leads to

$$\mathbf{K} \propto \underbrace{\mathbf{J}\mathbf{A}\mathbf{J}^{\mathsf{T}}}_{Information} + \underbrace{f'(\tau)\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + *}_{Noise} + \underbrace{\Delta(\text{Gaussian, Concentrated})}_{Non-informative 4th order moments}$$

where $\mathbf{A} \propto f'(\tau)\mathbf{M}^{\mathsf{T}}\mathbf{M} + f''(\tau)[\mathbf{t}\mathbf{t}^{\mathsf{T}} + \mathbf{T}]$, and
 $\mathbf{J} = [\mathbf{j}_{1}, \dots, \mathbf{j}_{k}], \ \mathbf{M} = [\mathbf{\bar{m}}_{1}, \dots, \mathbf{\bar{m}}_{k}]$
 $\mathbf{t} = \left\{\frac{\mathrm{tr}\mathbf{\bar{C}}_{\ell}}{\sqrt{\rho}}\right\}_{\ell=1}^{k}, \ \mathbf{T} = \left\{\frac{\mathrm{tr}\mathbf{\bar{C}}_{a}\mathbf{\bar{C}}_{b}}{\rho}\right\}_{a,b=1}^{k}$

Outline

Introduction

Behavior of Large Random Gram Matrices

Standard Gaussian Model Gaussian Mixtures (Spiked Model)

Behavior of Large Random Kernel Matrices

Context of Kernel Spectral Clustering Under Gaussian Mixture Model Random Matrix Equivalent

Universality aspects

Why does it work on real data? Large Kernel Matrices of Concentrated Data Application to GAN-generated Images

 $\min_{\mathcal{G}} \max_{\mathcal{D}} \mathbb{E}_{x \sim p(x)}[\log \mathcal{D}(x)] + \mathbb{E}_{z \sim p(z)}[\log(1 - \mathcal{D}(\mathcal{G}(z)))]$

We generate data as

Generated images = $\mathcal{G}(Gaussian)$

Figure 7: Images generated by a GAN model [Brock et al.'18].

CNN Representations

We consider data as (commonly used in Computer Vision)

$$\mathbf{x}_i = \underbrace{\mathcal{R} \circ \mathcal{G}}_{\text{Lipschitz}} (\text{Gaussian})$$

Figure 8: Spectral clustering on GAN-generated images. $f(t) = \exp(-t)$, k = 3, n = 3000 and p = 1024.

Figure 9: Spectral clustering on GAN-generated images. $f(t) = \exp(-t)$, k = 3, n = 3000 and p = 1024.

Figure 10: Spectral clustering on GAN-generated images. $f(t) = \exp(-t)$, k = 3, n = 3000 and p = 1024.

Application to Real Images

Figure 11: Spectral clustering on real images. $f(t) = \exp(-t)$, k = 3, n = 3000 and p = 1024.

 RMT allows for the theoretical understanding of ML methods for *concentrated vectors*.

- RMT allows for the theoretical understanding of ML methods for *concentrated vectors*.
- Real data behave similar to concentrated vectors.

- RMT allows for the theoretical understanding of ML methods for *concentrated vectors*.
- Real data behave similar to concentrated vectors.

 \Rightarrow RMT is relevant for ML!

- RMT allows for the theoretical understanding of ML methods for *concentrated vectors*.
- Real data behave similar to concentrated vectors.

 \Rightarrow RMT is relevant for ML!

Generalize to other ML tasks (Classification, Regression etc.).

- RMT allows for the theoretical understanding of ML methods for *concentrated vectors*.
- Real data behave similar to concentrated vectors.

 \Rightarrow RMT is relevant for ML!

- Generalize to other ML tasks (Classification, Regression etc.).
- Use the concentration framework to understand the dynamics of neural networks and GANs.

Thanks for your attention!