F-theory landscape with SCFT sectors 1804.07296 w/ Z. Zhang, 1811.02837 w/ J. Tian

Yi-Nan Wang

University of Oxford

Machine Learning Landscape, ICTP
Dec. 11th, 2018

String landscape(s)

Superstring theory has many versions

- 4D string compactification models with $\mathcal{N} \leq 1$ SUSY:
- (1) 10D IIA/IIB superstring on CY3 orientifold
- (2) 10D heterotic string on CY3
- (3) M-theory on G_2 manifold
- (4) F-theory on elliptic CY4
- (5) F-theory on Spin(7) manifold; non-SUSY heterotic

- Which is the correct/best ensemble of geometric models? Unknown
- In this talk, focusing on the F-theory geometric ensemble on elliptic CY4

 \bullet F-theory ensemble has the largest finite numbers: $\gg 10^{3,000}$ base geometries, $10^{224,000}$ self-dual flux vacua on a single geometry.

F-theory

- F-theory is a geometric description of strongly coupled IIB superstring theory in presence of 7-branes.
- Compactification on an elliptic Calabi-Yau (d+1)-fold X with complex *d*-fold base $B \to \text{Supergravity theory on } \mathbb{R}^{9-2d,1}$.

• The elliptic fibration X over B is described by a Weierstrass form:

$$y^2 = x^3 + fx + g \tag{1}$$

- $f \in \mathcal{O}(-4K_B)$ and $g \in \mathcal{O}(-6K_B)$ are holomorphic functions of base coordinates on B.
- 7-branes locates at the discriminant locus: $\Delta = 4f^3 + 27g^2 = 0$, where the elliptic fiber is singular.
- Non-Abelian geometric gauge group on the stack of 7-branes

F-theory

ord(f)	ord(g)	$ord(\Delta)$		Gauge group
0	0	2	<i>I</i> ₂	SU(2)
0	0	$n \ge 3$	In	$Sp\lfloor \frac{n}{2} \rfloor$ or $SU(n)$
1	≥ 2	3	111	SU(2)
≥ 2	2	4	IV	SU(2) or SU(3)
≥ 2	≥ 3	6	I ₀ *	G_2 or SO(7) or SO(8)
2	3	6 + <i>n</i>	<i>I</i> _n *	SO(8+2n) or $SO(7+2n)$
≥ 3	4	8	IV*	F_4 or E_6
3	≥ 5	9	<i>III*</i>	E ₇
≥ 4	5	10	<i>II*</i>	E_8
≥ 4	≥ 6	≥ 12	not allowed	

- Example: $y^2 = x^3 + u^4x + u^5$
- E_8 gauge group on the hypersurface D: u = 0
- ullet Localized charged matter fields on codimension-two locus $C\subset D$: open string modes between two stacks of 7-branes.

Strongly coupled matter in F-theory

• Cod-2 (4,6) criteria: when f vanishes to order ≥ 4 and g vanishes to order ≥ 6 on codimension-two loci C: u = v = 0 over B, there exists strongly coupled matter on C. For example:

$$y^2 = x^3 + u^4x + u^5v + (higher order terms)$$
 (2)

- In 6D F-theory, localized 6D "conformal matter" at the point u=v=0. (del Zotto, Heckman, Morrison, Rudelius, Tomasiello, Vafa, ...)
- ullet After decoupling gravity sector and the E_8 gauge group \to A non-trivial 6D (1,0) SCFT with E_8 global symmetry: E-string theory
- In 4D F-theory, *C* is a genus-*g* complex curve. Localized strongly coupled matter: 6D E-string theory compactified on *C*, 4D conformal matter. (Apruzzi, Heckman, Kim, Morrison, Razamat, Tizzano, Vafa, Zafrir)

The classification of 4D F-theory vacua

- Classify the base threefolds B: over each B, there exists a generic fibration X_{gen} over B, s. t. the geometric gauge groups are smallest among all the possible fibrations.
 - Non-Higgsable gauge groups: SU(2), SU(3), G_2 , SO(7), SO(8), F_4 , E_6 , E_7 , E_8 , U(1)(*)
- **②** For each B, classify different fibrations X over B; could have other gauge groups such as SU(5)
- **②** For each B and X, classify other discrete quantities such as the G_4 flux; responsible for breaking GUT gauge group, chiral generations
- ullet For each B, X and G_4 , classify and study the scalar potential and vacua structure

Classification of base geometries

- The subset of toric threefold has been probed and partially classified. (Taylor, YNW 15, 17'; Halverson, Long, Sung 17')
- A toric threefold is given by a set of discrete data:
 - **1** A set of 1D rays σ_1 : $v_i = (x_i, y_i, z_i) \in \mathbb{Z}^3$, (i = 1, ..., n)
 - **2** A set of 2D cones σ_2 : (v_i, v_j)
 - **3** A set of 3D cones σ_3 : (v_i, v_j, v_k)

 $1D \ ray \leftrightarrow complex \ surfaces \ carrying \ gauge \ groups; \ 2D \ cone \leftrightarrow complex \ curve;$

3D cone \leftrightarrow point.

• Topological transitions of toric threefolds: blow up/blow down.

• The web of toric base threefolds

General results

- Requirement on B: generic fibration X_{gen} over B does not have cod-1 (4,6), cod-2 (8,12) or cod-3 (12,18)
- Almost all the bases have non-Higgsable gauge groups, the geometric gauge groups are typically a product of SU(2), G_2 , F_4 and E_8
- \bullet Almost all the bases non-Higgsable strongly coupled matter sectors from cod-2 (4,6) lcous; out of $\sim 10^{3,000}$ bases, only $\sim 10^{250}$ bases do not have them (Taylor, YNW 17')
- It is typically hard to enhance the gauge symmetry by choosing a different fibration X over B. SU(5) construction is unfavored.
- In general, the existence of weakly coupling limit is unlikely (Halverson, Long, Sung 17')

Machine learning non-Higgsable gauge groups

- What about non-toric threefold bases?
- ullet In fact, it's unknown how to compute the non-Higgsable gauge group G from local geometric data near a complex surface D.
- Using machine learning to construct the map (YNW, Z. Zhang 18')
- \bullet Input data: an input vector of local triple intersection numbers between D and its neighbors
- Output data: the non-Higgsable gauge group G, only 10 possible choices
- Supervised machine learning with multiple classes

Triple Intersection numbers

The triple intersection numbers among D_1 , D_2 , D_3 are labeled as

$$D_1 \cdot D_2 \cdot D_3 = 1$$

(3)

|□▶ ◀♬▶ ◀불▶ ◀불▶ | 불 | 쒸QC

Input vector for machine learning

• For divisors $D = \mathbb{F}_n$ (Hirzebruch surface) with 4 neighbors:

An example of training data

• Take the Hirzebruch surfaces inside a particular class of "end point bases" in a Monte Carlo program (Taylor, YNW 17')

Gauge groups	number of samples	Fraction in the whole data set	
Ø	2053638	0.700	
SU(2)	520783	0.178	
G_2	286592	0.098	
F_4	66934	0.023	
E ₈	4374	0.001	
SU(3)	24	8e-06	
SO(8)	8	3e-06	

 \bullet Extremely unbalanced: up/down resampling to modify the number of samples in each category to $\sim 200,000.$

Training methods

Classification method	Class-weighted Accuracy	RunTime (s)	
Decision Tree	0.995	22	
Feedforward Neural Network	0.968	11485	
Logistic Regression	0.776	324	
Random Forest	0.996	53	
Support Vector Machine	0.974	24	

- Neural network: 2 hidden layers (10, 10), epochs=5, unoptimized.
- Decision tree is the best in terms of speed, accuracy and interpretability

Results

- A huge decision tree with 66441 nodes and 33221 leaves, maximal depth 49.
- We can generate a large set of rules in form of inequalities:

_											
d	S(l)	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_{13}	other f_i	G
2	6831	150	≤ -9	1-1	-	-	-	13-1	-	Ē	E_8
7	4698	-	-6	1-1	-	-	≤ 0	1-	-	$f_7 \ge 0$	F_4
8	52528	-	-5	-		-	≤ 3	≤ 5	≤ -1	$f_7 \ge 0, f_{12} \le -1$	F_4
10	4478	123	-5	$-7 \sim -4$	≥ 2	-	≥ 4	≤ 3	≤ -1	a come a grant as	F_4
9	4285	0	-5	-	-	-	≤ 2	≥ 6	≤ -1	$f_7 \ge 0$	F_4
9	5680	-	-4	≥ -12	=	$1 \sim 3$	≥ 5	-	-	=	G_2
10	4249	-	-4	≥ -12	≥ 5	$1 \sim 4$	≤ 4	1-	-	$f_7 \ge 0$	G_2
12	4248	≥ 7	-4	≤ -13	-	3	-		-	$f_7 \ge 0, f_{10} \ge 0$	G_2
8	160214	-	-3	-	-	≥ 6	≥ -5	1 -	-	$f_{12} \le -1$	G_2
9	42972	-	-3	15	-	≤ 2	≥ -5	15	-	$f_{11} = 0, f_{12} \le -2$	G_2
9	42871	-	-3	1-	-	$3 \sim 5$	≥ -5	≥ 7	-	$f_{12} \le -1$	G_2
16	17985	-	-3	-2	≥ 6	$0 \sim 2$	≥ 12	$-4 \sim 2$	-	$f_{12} \ge 0, f_{14} \le -1$	SU(2)
12	11200	-	-3	≤ -3	-	≥ 7	≥ -5	12	-	$f_{12} \ge 0, f_{14} \ge -2$	G_2
14	8483	-	-3	≥ -12	-	≤ 1	$-5 \sim 11$	1-	≤ -2	$f_{12} \ge -1, f_{14} = 0$	G_2
13	3751	≥ 1	-3	≥ -5		$3 \sim 5$	≥ -5	≤ 6	-	$f_7 \ge 0, f_{10} \ge 0, f_{12} \le -1$	G_2
16	3536	-	-3	≤ -13	≤ 6	$-7 \sim 2$	$-5 \sim 3$	≥ 10	-	$f_{11} \ge 0, f_{12} \ge -1$	SU(2)
16	3355	≥ 2	-3	$-12 \sim -7$	≥ -11	2	$-5 \sim 11$	-	≤ -1	$f_7 \ge 0, f_{12} \ge -1$	G_2
20	3230	-	-3	≥ -4	≥ 3	2	$3 \sim 11$	-	≤ -1	$f_7 \ge 0$, $f_{10} \ge 0$, $f_{11} \ge 0$, $f_{12} \ge -1$, $f_{14} \ge 0$	SU(2)
				1000						and the contract of the contra	

ullet For divisors with different $h^{1,1}(D)$, the out-of-sample accuracy is $85\%\sim99\%$

Learning the existence of strongly coupled matter

• We can apply the similar method to learn whether a complete intersection curve $C = D_1 \cap D_2$ contains strongly coupled matter

- ullet Out-of-sample accuracy $\sim 95\%$
- Example of machine derived rule: if $D_1^2D_2 \le -2$, $D_1D_2^2 \le -2$, then (f,g) vanishes to at least order (4,6) on $C = D_1 \cap D_2$; can be checked analytically

Strongly coupled matter and standard model building

- In F-theory geometric ensemble, the existence of SU(5) GUT gauge group and $SU(3)\times SU(2)\times U(1)$ is rare
- The dominating majority of geometries have geometric gauge group:

$$G = SU(2)^a \times G_2^b \times F_4^c \times E_8^d. \tag{4}$$

- The only way to realize standard model is embedding it into a single E_8 on a complex surface S, and then break $E_8 \to H = SU(3) \times SU(2) \times U(1) \times U(1)^4$ by flux.
- However, one cannot get any chiral standard model generations from the bulk fields (Tatar, Watari 06')
- The only localized matter field of E₈ in F-theory is strongly coupled matter!

$$y^2 = x^3 + u^4 x + u^5 v (5)$$

• E-string theory compactified on the curve C: u = v = 0, coupled with E_8 gauge group and gravity

- \bullet E-string theory is a strongly coupled 6D (1,0) SCFT with no Lagrangian description (Chang 18')
- What we know: the fields in E-string theory are rep. of E_8 ;
- \bullet Question: what are the E_8 rep. and the quantum numbers such as the Lorentz rep., R-charge under SU(2)...
- ullet Strategy: study the M-theory dual picture, where the singular elliptic CY3 X

$$y^2 = x^3 + u^4 x + u^5 v (6)$$

is resolved to a smooth one \hat{X} . The E_8 gauge field theory with conformal matter goes to the Coulomb branch in 5D.

- ullet M2-brane wrapping 2-cycles C on $\hat{X} o$ Particle in 5D M-theory picture with mass $m \propto \operatorname{Area}(C)$
- ullet Shrink the size of fiber direction to zero ightarrow 6D F-theory picture
- If Area(C) shrinks, this M2-brane wrapping mode corresponds to massless particle in 6D

- ullet Pick a global Weierstrass model X: generic fibration over the Hirzebruch surface \mathbb{F}_{11}
- ullet E_8 gauge group on the (-11)-curve: u=0 in \mathbb{F}_{11}

$$y^2 = x^3 + u^4 x + u^5 v (7)$$

- Resolution of this singular Weierstrass model was studied (Lawrie, Schäfer-Nameki 13')
- Another equivalent way: construct a 4D toric ambient space T in form of a $\mathbb{P}^{2,3,1}$ bundle over \mathbb{F}_{11} ; The singular CY3 X is an anticanonical hypersurface of T
- ullet Resolution of the $X o \hat{X} \leftrightarrow$ blowing up $T o T_{res}$
- T_{res} is a reflexive polytope, one can compute Hodge numbers of \hat{X} : $h^{1,1}=12,\ h^{2,1}=462;$ triple intersection number of \hat{X}

The blow up	The 4D toric ray corresponding to exceptional divisor
$(x, y, u; \zeta_1)$	(0,-1,-1,-2)
$(x, y, \zeta_1; \zeta_2)$	(0,-1,0,-1)
$(y,\zeta_1;\delta_1)$	(0,-1,-1,-1)
$(y,\zeta_2;\delta_2)$	(0, -1, 0, 0)
$(\zeta_2,\delta_1;\epsilon_1)$	(0, -2, -1, -2)
$(\zeta_1, \delta_1; \epsilon_2)$	(0, -2, -2, -3)
$(\zeta_2,\delta_2;\epsilon_3)$	(0, -2, 0, -1)
$(\delta_1,\delta_2;\epsilon_4)$	(0, -2, -1, -1)
$(\delta_2,\epsilon_1;\epsilon_5)$	(0, -3, -1, -2)
$(\epsilon_1,\epsilon_4;\epsilon_6)$	(0, -4, -2, -3)
$(\delta_2, \epsilon_4; \epsilon_7)$	(0, -3, -1, -1)
$(\delta_2, \epsilon_5; \epsilon_8)$	(0, -4, -1, -2)
$(\epsilon_4, \epsilon_5; \epsilon_9)$	(0, -5, -2, -3)
$(\epsilon_5,\epsilon_7;\epsilon_{10})$	(0, -6, -2, -3)

• The exceptional divisor $\delta_2 = 0$ is a non-flat fiber $S_{nf}!$

• Non-flat fiber S_{nf} has the topology of generalized del Pezzo surface gdP_2

- C_1 , C_2 , C_3 are intersection curve between S_{nf} and exceptional divisors E_8 , E_6 , E_7 ; generates the Mori cone of S_{nf}
- ullet M2 brane wrapping any curve class $C\subset S_{nf} o$ massless particle in 6D F-theory picture
- ullet E_8 representation \leftrightarrow intersection number between C and exceptional divisors
- Representation under little group SO(4) $(N, 1/2) \oplus 2(N, 0) \leftrightarrow$ dimension N of the moduli space of C (Witten 96')

- Some lowest representations of E_8 :
 - **9** 248 rep. : a 6D hypermultiplet and the vector multiplet of E_8 gauge field (Klemm, Mayr, Vafa 96')
 - 3875 rep. : a non-adjoint 6D vector multiplet
 - 147250 rep.: a 6D Rarita-Schwinger multiplet
 - **9** 6696000 rep. : $(3/2, 1/2) \oplus 2(3/2, 0)$
- We generate an infinite massless higher spin tower!
- Interpretation in SCFT is not clear yet

4D reduction

ullet 4D spectrum after compactified on a complex curve Σ with genus g=0 and the presence of gauge flux

$$SO(1,5)\times SU(2)_R \to SO(1,3)\times U(1)_J\times U(1)_R = SU(2)_L\times SU(2)_R\times U(1)_J\times U(1)_R.$$
(8)

• To preserve 4D N=1 SUSY, the 6D theory needs to be topologically twisted, $U(1)_J \times U(1)_R$ is broken to the diagonal subgroup $U(1)_{J_{top}}$,

$$J_{top} = J - \frac{1}{2}R. \tag{9}$$

ullet The gauge flux characterized by line bundle $L_\Sigma \in \mathcal{O}(\Sigma)$

(1) 6D hypermultiplet

$$(4',1) \rightarrow (2,1,-\frac{1}{2},0) + (1,2,\frac{1}{2},0),$$
 (10)

$$(1,2) \rightarrow (1,1,0,1) + (1,1,0,-1)$$
 (11)

After twisting, the fermionic field components are

$$(2,1)_{-1/2} + (1,2)_{1/2}$$
 (12)

Net chiral generations: $h^0(K_{\Sigma}^{1/2} \otimes L_{\Sigma}, \Sigma) - h^0(K_{\Sigma}^{1/2} \otimes L_{\Sigma}^*, \Sigma) = \chi(K_{\Sigma}^{1/2} \otimes L_{\Sigma}, \Sigma)$ (Beasley, Heckman, Vafa 08')

4D reduction

- (2) 6D vector multiplet
- Bosonic part:

$$(6,1) \rightarrow (2,2,0,0) + (1,1,1,0) + (1,1,-1,0).$$
 (13)

• Fermionic part: two 6D Weyl spinors χ^1, χ^2 in the (4, 2) representation of $SO(5,1) \times SU(2)_R$, satisfying the symplectic Majorana conditions After twisting, the fermionic components under $SU(2)_L \times SU(2)_R \times U(1)_{J_{top}}$ are

$$(2,1)_0 + (1,2)_{-1} + (2,1)_1 + (1,2)_0$$
 (14)

• Net chiral generations from the 6D vector multiplet:

$$\frac{1}{2}(h^{0}(L_{\Sigma},\Sigma)-h^{0}(L_{\Sigma}^{*},\Sigma)-h^{0}(K_{\Sigma}\otimes L_{\Sigma},\Sigma)+h^{0}(K_{\Sigma}\otimes L_{\Sigma}^{*},\Sigma)). \tag{15}$$

• Not an Euler characteristic! Topological invariant for line bundle L_{Σ} on g=0curve Σ

4D model building setup

- ullet Consider a local model with a stack of E_8 7-branes on a complex surface S
- ullet Strongly coupled matter on a curve $\Sigma=\mathbb{P}^1\subset S$, which is 6D E-string theory reduced on \mathbb{P}^1
- $E_8 \rightarrow G_{sm} \times U(1)^4 = SU(3) \times SU(2) \times U(1) \times U(1)^4$ by gauge flux
- ullet Bulk fields on S o non-chiral charged matter fields, Higgs sector
- \bullet Localized strongly coupled matter on $\Sigma \to \mbox{Chiral}$ fermionic matter

Localized strongly coupled matter sector

- What fields to include in the infinite higher spin tower?
- Not actually infinite d.o.f.; in usual QCD, there exists infinite higher spin composite particles
- Criterion of "fundamental particles": lowest spin, chiral anomaly free
- (1) Fields from 6D hypermultiplet in rep. 248: cannot give rise to chiral SM generation
- (2) Fields from 6D vector multiplet in rep. 3875: branching rule under $E_8 \to SU(5)_1 \times SU(5)_2$

$$\begin{aligned} 3875 &\to (15, \overline{5}) + (\overline{40}, 5) + (\overline{45}, \overline{10}) + (75, 1) + (24, 24) + (24, 1) \\ &+ (45, 10) + (5, 15) + (5, 40) + (5, 10) + (40, \overline{5}) + (10, \overline{45}) \\ &+ (10, \overline{5}) + (\overline{15}, 5) + (\overline{10}, 45) + (\overline{10}, 5) + (\overline{5}, \overline{40}) + (\overline{5}, \overline{15}) \\ &+ (\overline{5}, \overline{10}) + (1, 75) + (1, 24) + (1, 1). \end{aligned}$$

- Requirement: 3 chiral generations of 5, $\overline{10}$, no exotics in representation 15, 40. 45.
- One can find a number of gauge bundle choices! Chiral anomaly free.

Conclusions

- \bullet On the majority of the geometries in F-theory geometric landscape, it seems that the only way to embed standard model is use an E_8 GUT and strongly coupled matter fields.
- Under our assumptions, we can find flux vacua with 3 chiral SM generations. Reinforcement learning to systematically find these vacua?
- Need to study the dynamics of E-string theory and its compactification to 4D in more detail. Difficult because it's a non-Lagrangian UV theory.
- \bullet Haven't solved more detailed problems such as triplet-doublet splitting, break of SUSY, cosmology, \dots
- From string theory perspective, provided a new way of studying strongly coupled SCFT from M/F-duality. Study the different Coulomb branches/flops of the E-string theory?
- Thanks!

