Machine learning in $Z_2 \times Z_2$ orbifold classification

or, What do we need machine learning for?

• Classification of $Z_2 \times Z_2$ orbifolds 2003 –

With: Costas Kounnas, John Rizos, Sander Nooij, Ben Assel, Kyriakos Christodoulides, Laura Bernard, Ivan Glazer, Hasan Sonmez, Glyn Harries, Ben Percival

• Related results:

Spinor–Vector duality, Exophobia, stringy Z' models, ...

Machine Learning in the String Landscape, ICTP, Trieste, 12 December 2018

String Phenomenology: An answer in search of a question

<u>The Answer</u> : The Standard Model and its BSM extensions

A question : What is the true string vacuum?

A question : Can we identify signatures of classes of string

compactifications in the experimental particle data?

In this talk:

Classification of fermionic $Z_2 \times Z_2$ orbifold compactifications

Where can novel computational tools help?

DATA \rightarrow STANDARD MODEL EWX \rightarrow PERTUBATIVE

STANDARD MODEL -> UNIFICATION

EVIDENCE: 16 of SO(10), Log running, proton stability, neutrino masses

+ GRAVITY < --> STRINGS

PRIMARY GUIDES:

3 generations SO(10) embedding **REALISTIC STRING MODELS :**

heterotic 10D -> heterotic 4D

<u>6D compactifications</u> $(T^2 x T^2 x T^2)$

FREE FERMIONIC MODELS – $Z_2 X Z_2$ Orbifold -> U(1)_Y \in SO(10) $\frac{6}{2} = 1+1+1$

Realistic free fermionic models

'Phenomenology of the Standard Model and Unification'

- Minimal Superstring Standard Model
- \bullet Top quark mass \sim 175–180GeV
- Generation mass hierarchy
- CKM mixing
- Stringy seesaw mechanism
- Gauge coupling unification
- Proton stability
- Squark degeneracy
- Moduli fixing
- Classification & Exophobia 2003 · · ·
 (with Nooij, Assel, Christodoulides, Kounnas, Rizos & Sonmez)

NPB 335 (1990) 347 (with Nanopoulos & Yuan) PLB 274 (1992) 47 NPB 407 (1993) 57 NPB 416 (1994) 63 (with Halyo) PLB 307 (1993) 311 (with Halyo) NPB 457 (1995) 409 (with Dienes) NPB 428 (1994) 111 NPB 526 (1998) 21 (with Pati) NPB 728 (2005) 83

Other approaches

<u>Geometrical</u> Greene, Kirklin, Miron, Ross (1987) Donagi, Ovrut, Pantev, Waldram (1999) Blumenhagen, Moster, Reinbacher, Weigand (2006) Heckman, Vafa (2008)

<u>Orbifolds</u>

Ibanez, Nilles, Quevedo (1987) Bailin, Love, Thomas (1987) Kobayashi, Raby, Zhang (2004) Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter (2007) Blaszczyk, Groot–Nibbelink, Ruehle, Trapletti, Vaudrevange (2010) <u>Other CFTs</u>

Gepner (1987) Schellekens, Yankielowicz (1989) Gato–Rivera, Schellekens (2009)

Orientifolds

Cvetic, Shiu, Uranga (2001) Ibanez, Marchesano, Rabadan (2001) Kiristis, Schellekens, Tsulaia (2008) Point, String, Membrane

String GUT models in the Free Fermionic Construction:Left-Movers: $\psi_{1,2}^{\mu}$ χ_i y_i $(i = 1, \dots, 6)$ Right-Movers

$$\bar{\phi}_{A=1,\cdots,44} = \begin{cases} \bar{y}_i \ , \ \bar{\omega}_i & i = 1, \cdots, 6 \\ \\ \bar{\eta}_i & U(1)_i & i = 1, 2, 3 \\ \\ \bar{\psi}_{1,\cdots,5} & SO(10) \\ \\ \bar{\phi}_{1,\cdots,8} & SO(16) \end{cases}$$

 $\mathsf{Models} \longleftrightarrow \mathsf{Basis} \text{ vectors } + \mathsf{one-loop \ phases}$

Free Fermionic Models:

 $Z_2 \times Z_2$ orbifolds with discrete Wilson lines

The NAHE set : $\{ 1, S, b_1, b_2, b_3 \}$ $N = 4 \rightarrow 2$ 111 vacua

 $Z_2 \times Z_2$ orbifold compactification

 $\implies \text{Gauge group} \quad SO(10) \times SO(6)^{1,2,3} \times E_8$ beyond the NAHE set Add $\{\alpha, \beta, \gamma\}$ e.g. FNY model

number of generations is reduced to three

 $SO(10) \longrightarrow SU(3) \times SU(2) \times U(1)_{T_{3_R}} \times U(1)_{B-L}$ $U(1)_Y = \frac{1}{2}(B-L) + T_{3_R} \in SO(10) !$ $SO(6)^{1,2,3} \longrightarrow U(1)^{1,2,3} \times U(1)^{1,2,3}$

In realistic string models

Unifying gauge group \Rightarrow broken by "Wilson lines". \Rightarrow non-GUT physical states. \Rightarrow Meta-stable heavy string relics \rightarrow Dark MaterNPB 477 (1996) 65(with Coriano and Chang)

Provided that $N_L^c \in 16$, $\overline{N}^c \in \overline{16}$ Exist in the spectrum

Discrete symmetry : $U(1)_{T_{3_R}} \times U(1)_{B-L} \rightarrow U(1)_Y$ FNY model (NPB 335 (1990) 347) \rightarrow no $\overline{N}^c \in \overline{16}$

 \Rightarrow Forced to use exotics \iff No discrete symmetry

(Modern School)

Basis vectors:

$$\begin{split} 1 &= \{\psi^{\mu}, \ \chi^{1,\dots,6}, y^{1,\dots,6}, \omega^{1,\dots,6} \mid \bar{y}^{1,\dots,6}, \bar{\omega}^{1,\dots,6}, \bar{\eta}^{1,2,3}, \bar{\psi}^{1,\dots,5}, \bar{\phi}^{1,\dots,8}\} \\ S &= \{\psi^{\mu}, \chi^{1,\dots,6}\}, \\ z_1 &= \{\bar{\phi}^{1,\dots,4}\}, \\ z_2 &= \{\bar{\phi}^{5,\dots,8}\}, \\ e_i &= \{y^i, \omega^i | \bar{y}^i, \bar{\omega}^i\}, \ i = 1, \dots, 6, \\ b_1 &= \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^1, \bar{\psi}^{1,\dots,5}\}, \\ b_2 &= \{\chi^{12}, \chi^{56}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^2, \bar{\psi}^{1,\dots,5}\}, \\ \lambda &= 2 \rightarrow N = 1 \\ \alpha &= \{\bar{\psi}^{4,5}, \bar{\phi}^{1,2}\} \\ \beta &= \{\bar{\psi}^{1,\dots,5} \equiv \frac{1}{2}, \dots\} \\ \end{split}$$

Independent phases $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$: upper block

A priori 66 independent coefficients $\rightarrow 2^{66}$ distinct vacua

The twisted matter spectrum:

$$B^{1}_{\ell_{3}^{1}\ell_{4}^{1}\ell_{5}^{1}\ell_{6}^{1}} = S + b_{1} + \ell_{3}^{1}e_{3} + \ell_{4}^{1}e_{4} + \ell_{5}^{1}e_{5} + \ell_{6}^{1}e_{6}$$

$$B^{2}_{\ell_{1}^{2}\ell_{2}^{2}\ell_{5}^{2}\ell_{6}^{2}} = S + b_{2} + \ell_{1}^{2}e_{1} + \ell_{2}^{2}e_{2} + \ell_{5}^{2}e_{5} + \ell_{6}^{2}e_{6}$$

$$B^{3}_{\ell_{1}^{3}\ell_{2}^{3}\ell_{3}^{3}\ell_{4}^{3}} = S + b_{3} + \ell_{1}^{3}e_{1} + \ell_{2}^{3}e_{2} + \ell_{3}^{3}e_{3} + \ell_{4}^{3}e_{4} \qquad l_{i}^{j} = 0, 1$$

sectors $B_{pqrs}^{i} \longrightarrow 16 \text{ or } \overline{16} \text{ of } SO(10)$ with multiplicity (1, 0, -1) $B_{pqrs}^{i} + x \longrightarrow 10 \quad \text{of } SO(10)$ with multiplicity (1, 0)

 $\begin{array}{lll} x &= \{\bar{\psi}^{1,\cdots,5}, \bar{\eta}^{1}, \bar{\eta}^{2}, \bar{\eta}^{3}\} & x - \operatorname{map} &\leftrightarrow \operatorname{spinor-vector\,map} \\ \hline & \operatorname{Counting: \ for \ each \ } B^{i}_{pqrs}: \\ \hline & \operatorname{Projectors: \ } P^{(1)}_{p^{1}q^{1}r^{1}s^{1}} = \frac{1}{16} \prod \left(1 - c {e_{i} \choose B^{(1)}_{p^{1}q^{1}r^{1}s^{1}}} \right) \prod \left(1 - c {z_{i} \choose B^{(1)}_{p^{1}q^{1}r^{1}s^{1}}} \right) \\ & S^{(i)}_{\pm} = \sum_{pqrs} \frac{1 \pm X^{(i)}_{p^{i}q^{i}r^{i}s^{i}}}{2} P^{(i)}_{p^{i}q^{i}r^{i}s^{i}}, \ i = 1, 2, 3 \quad \operatorname{similarly \ for \ vectorials} \\ & \operatorname{Algebraic \ formulas \ for \ } S = \sum_{i=1}^{3} S^{(i)}_{+} - S^{(i)}_{-} \quad \operatorname{and \ } V = \sum_{i=1}^{3} V^{(i)} \end{array}$

Introducing the notation

$$c\binom{a_i}{a_j} = e^{i\pi(a_i|a_j)}, \ (a_i|a_j) = 0, 1$$

the projectors can be written as system of equations

$$\Delta^{(I)} U_{16}^{(I)} = Y_{16}^{(I)} \quad , \quad \Delta^{(I)} U_{10}^{(I)} = Y_{10}^{(I)} \ , \ I = 1, 2, 3$$

where the unknowns are the fixed point labels

$$U_{16}^{(I)} = \begin{bmatrix} p_{16}^{I} \\ q_{16}^{I} \\ r_{16}^{I} \\ s_{16}^{I} \end{bmatrix} , \qquad U_{10}^{(I)} = \begin{bmatrix} p_{10}^{I} \\ q_{10}^{I} \\ r_{10}^{I} \\ s_{10}^{I} \end{bmatrix}$$

and

$$\Delta^{(1)} = \begin{bmatrix} (e_1 \mid e_3) & (e_1 \mid e_4) & (e_1 \mid e_5) & (e_1 \mid e_6) \\ (e_2 \mid e_3) & (e_2 \mid e_4) & (e_2 \mid e_5) & (e_2 \mid e_6) \\ (z_1 \mid e_3) & (z_1 \mid e_4) & (z_1 \mid e_5) & (z_1 \mid e_6) \\ (z_2 \mid e_3) & (z_2 \mid e_4) & (z_2 \mid e_5) & (z_2 \mid e_6) \end{bmatrix} ; \Delta^{(2)} \dots$$

$$Y_{16}^{(1)} = \begin{bmatrix} (e_1 \mid b_1) \\ (e_2 \mid b_1) \\ (z_1 \mid b_1) \\ (z_2 \mid b_2) \end{bmatrix}$$

,
$$Y_{16}^{(2)} = \dots$$

$$Y_{10}^{(1)} = \begin{bmatrix} (e_1 \mid b_1 + x) \\ (e_2 \mid b_1 + x) \\ (z_1 \mid b_1 + x) \\ (z_2 \mid b_2 + x) \end{bmatrix}$$

$$, Y_{10}^{(2)} = \dots$$

The number of solutions per plane

$$S^{(I)} = \begin{cases} 2^{4-\operatorname{rank}\left(\Delta^{(I)}\right)} & \operatorname{rank}\left(\Delta^{(I)}\right) = \operatorname{rank}\left[\Delta^{(I)}, Y_{16}^{(I)}\right] \\ 0 & \operatorname{rank}\left(\Delta^{(I)}\right) < \operatorname{rank}\left[\Delta^{(I)}, Y_{16}^{(I)}\right] \end{cases}$$

$$V^{(I)} = \begin{cases} 2^{4-\operatorname{rank}\left(\Delta^{(I)}\right)} \operatorname{rank}\left(\Delta^{(I)}\right) = \operatorname{rank}\left[\Delta^{(I)}, Y_{10}^{(I)}\right] \\ 0 \qquad \operatorname{rank}\left(\Delta^{(I)}\right) < \operatorname{rank}\left[\Delta^{(I)}, Y_{10}^{(I)}\right] \end{cases}$$

Spinor-vector duality:

Duality under exchange of spinors and vectors.

	First Plane		Second plane			Third Plane				
	S	$ar{s}$	v	S	\overline{S}	v	s	\overline{S}	v	# of models
	2	0	0	0	0	0	0	0	0	1325963712
	0	2	0	0	0	0	0	0	0	1340075584
	1	1	0	0	0	0	0	0	0	3718991872
	0	0	2	0	0	0	0	0	0	6385031168

of models with $#(16 + \overline{16}) = #$ of models with #(10)

For every model with $\#(16 + \overline{16})$ & #(10)

There exist another model in which they are interchanged

Reflects discrete exchange of phases

Spinor-vector duality:

Invariance under exchange of $\#(16 + \overline{16}) < - > \#(10)$

Symmetric under exchange of rows and columns

 E_6 : 27 = 16 + 10 + 1 $\overline{27} = \overline{16} + 10 + 1$ Self-dual: $\#(16 + \overline{16}) = \#(10)$ without E_6 symmetry Pati-Salam class: with Assel, Christodoulides, Kounnas, Rizos

RESULTS: of random search of over 10¹¹ vacua

Number of 3-generation models versus total number of exotic multiplets

flipped SU(5) class: with Sonmez, Rizos

RESULTS: of random search of over 10^{12} vacua

Number of exophobic models versus the number of generations

Low scale Z' in free fermionic models:

• $\frac{3}{2}U(1)_{B-L} - 2U(1)_R \in SO(10) @ 1TeV$ MPL A6 (1991) 61 (with Nanopoulos) • But $m_t = m_{\nu_{\tau}} \& 1TeV Z' \Rightarrow m_{\nu_{\tau}} \approx 10MeV$ PLB 245 (1990) 435

 $E_6 \rightarrow SO(10) \times U(1)_A \implies U(1)_A$ is anomalous!

 $\implies U(1)_A \notin \text{ low scale } U(1)_{Z'}$

- 1996-2013, Pati, AEF, Guzzi, Mehta, Athanasopoulos, $U(1) \notin E_6$
- On the other hand(AEF, Viraf Mehta, PRD88 (2013) 025006)

 $\sin^2 \theta_W(M_Z) , \ \alpha_s(M_Z) \implies U(1)_{Z'} \in E_6$

• Z' string derived model, (with Rizos) NPB 895 (2015) 233

light Z' heterotic-string model $c \begin{bmatrix} vi \\ v_j \end{bmatrix} = \exp[i\pi(v_i|v_j)]$:

Observable gauge group: $SO(6) \times SO(4) \times U(1)_{1,2,3}$

 $U(1)_{\zeta} = U(1)_1 + U(1)_2 + U(1)_3$ is anomaly free

sector	field	$SU(4) \times SU(2)_L \times SU(2)_R$	$U(1)_{1}$	$U(1)_{2}$	$U(1)_{3}$	$U(1)_{\zeta}$
$S + b_1$	\bar{F}_{1R}	$(ar{f 4}, {f 1}, {f 2})$	1/2	0	0	1/2
$S + b_1 + e_3 + e_5$	F_{1R}	$({f 4},{f 1},{f 2})$	1/2	0	0	1/2
$S + b_2$	F_{1L}	$({f 4},{f 2},{f 1})$	0	1/2	0	1/2
$S + b_2 + e_1 + e_2 + e_5$	F_{2L}	$({f 4},{f 2},{f 1})$	0	1/2	0	1/2
$S + b_2 + e_1$	\bar{F}_{2R}	$(ar{f 4}, {f 1}, {f 2})$	0	1/2	0	1/2
$S + b_2 + e_2 + e_5$	\bar{F}_{3R}	$(ar{f 4}, {f 1}, {f 2})$	0	1/2	0	1/2
$S + b_3 + e_1 + e_2$	F_{3L}	$({f 4},{f 2},{f 1})$	0	0	1/2	1/2
$S + b_3 + e_2$	\bar{F}_{4R}	$(ar{f 4}, f 1, f 2)$	0	0	1/2	1/2
$S + b_3 + x$	h_1	$({f 1},{f 2},{f 2})$	-1/2	-1/2	0	-1
$S + b_2 + x + e_5$	h_2	$({f 1},{f 2},{f 2})$	-1/2	0	-1/2	-1
$S + b_2 + x + e_1 + e_2$	h_3	$({f 1},{f 2},{f 2})$	-1/2	0	-1/2	-1
$S + b_3 + x + e_1$	D_4	$({f 6},{f 1},{f 1})$	-1/2	-1/2	0	-1
	χ_1^+	$({f 1},{f 1},{f 1})$	1/2	1/2	1	+2
	χ_1^-	$({f 1},{f 1},{f 1})$	1/2	1/2	-1	0
	$\zeta_a, a = 2, 3$	$({f 1},{f 1},{f 1})$	1/2	-1/2	0	0
	$\bar{\zeta}_a, a=2,3$	(1, 1, 1)	-1/2	1/2	0	0
$S + b_2 + x + e_1 + e_5$	D_5	$({f 6},{f 1},{f 1})$	-1/2	0	-1/2	-1
	χ_2^+	$({f 1},{f 1},{f 1})$	1/2	1	1/2	+2
	χ_2^-	$({f 1},{f 1},{f 1})$	1/2	-1	1/2	0
	$\zeta_a, a = 4, 5$	$({f 1},{f 1},{f 1})$	1/2	0	-1/2	0
	$\bar{\zeta}_a, a=4,5$	(1, 1, 1)	-1/2	0	1/2	0
$S + b_2 + x + e_2$	D_6	$({f 6},{f 1},{f 1})$	-1/2	0	-1/2	-1
	χ_3^+	$({f 1},{f 1},{f 1})$	1/2	1	1/2	+2
	χ_3^-	(1, 1, 1)	1/2	-1	1/2	0
	$\zeta_a, a = 6, 7$	$({f 1},{f 1},{f 1})$	1/2	0	-1/2	0
	$\bar{\zeta}_a, a = 6, 7$	(1, 1, 1)	-1/2	0	1/2	0
$S + b_1 + x + e_3$	\bar{D}_6	$({f 6},{f 1},{f 1})$	0	1/2	1/2	+1
	$\bar{\chi}_4^+$	(1, 1, 1)	-1	-1/2	-1/2	-2
	$\bar{\chi}_4^-$	(1, 1, 1)	1	-1/2	-1/2	0
	$\zeta_a, a = 8, 9$	$({f 1},{f 1},{f 1})$	0	1/2	-1/2	0
	$\bar{\zeta}_a, a = 8, 9$	(1, 1, 1)	0	-1/2	1/2	0
$S + b_1 + x + e_5$	D_7	$({f 6},{f 1},{f 1})$	0	-1/2	-1/2	-1
	χ_5^+	(1, 1, 1)	1	1/2	1/2	+2
	χ_5^-	$({f 1},{f 1},{f 1})$	-1	1/2	1/2	0
	$\zeta_a, a = 10, 11$	$({f 1},{f 1},{f 1})$	0	1/2	-1/2	0
	$\zeta_a, a = 10, 11$	(1, 1, 1)	0	-1/2	1/2	0
$S + b_3 + x + e_2 + e_3$	ζ_1	(1, 1, 1)	1/2	-1/2	0	0
	ζ_1	(1, 1, 1)	-1/2	1/2	0	0
$S + b_1 + x + e_3 + e_4 + e_6$	ϕ_1	$({f 1},{f 1},{f 1})$	0	1/2	1/2	+1
	ϕ_1	(1, 1, 1)	0	-1/2	-1/2	-1
$S + b_1 + x + e_4 + e_5 + e_6$	ϕ_2	$({f 1},{f 1},{f 1})$	0	1/2	1/2	+1
	$ar{\phi}_2$	(1, 1, 1)	0	-1/2	-1/2	-1

Table 1: Observable twisted matter spectrum and $SU(4) \times SU(2)_L \times SU(2)_R \times U(1)^3$ quantum numbers.

The chiral spectrum is self-dual under spinor-vector duality

maintains the E_6 embedding $\Rightarrow U(1)_{\zeta}$ is anomaly free

Exophobic, three generations + heavy and light higgs + $\lambda_t \sim 1$

$$U(1)_{Z'} = \frac{1}{5} U(1)_C - \frac{1}{5} U(1)_L - U_{\zeta}$$

 $Z' \Rightarrow$ Additional matter at the Z' breaking scale

Exotic SO(10) singlets with non–standard $U(1)_{\zeta}$ charges

 \Rightarrow Natural Wilsonian dark-matter candidates

SLM random classification 1z: with Sonmez, Rizos

Total Models		1E+11
Total Realistic Models		12/05/0109
States		Total
States	-8	37
	-6	1047
	-5	756
	-4	34765
	-3	163225
	-2	3036744
	-1	76330452
	0	4505764853
	1	51148185
	2	1357446
	3	28878
	4	5046
	6	22
3 Generation Models	370.00	Total
Total Models		1E+11
		1276526169
Constraint		3
Number of 3 Generations		28878
SLM Heavy Higgs Breaking		0
SM Light Higgs Breaking SLM Heavy Higgs Breaking & SM Light Higgs		0
Breaking		0
Triplet Higgs		0
Minimal SLM Heavy Higgs Breaking		0
Minimal SMLight Higgs Breaking Minimal SLM Heavy Higgs & SMLight Higgs		0
Breaking		0
Minimal Higgs Triplet		0

SLM random classification 2z: with Sonmez, Rizos

Total Models		1E+11
Total Realictic Models		12/6526169
Chat Realistic Models		3
States	0	Iotal
	-8	37
	-6	1047
	-5	756
	-4	34765
	-3	163225
	-2	3036744
	-1	76330452
	0	4505764853
	1	51148185
	2	1357446
	3	28878
	4	5046
	6	22
3 Generation Models		Total
Total Models		1E+11
		1276526169
Constraint		3
Number of 3 Generations		28878
SLM Heavy Higgs Breaking		0
SM Light Higgs Breaking SIM Heavy Higgs Breaking & SM Light Higgs		0
Breaking		0
Triplet Higgs		õ
Minimal SIM Heavy Higgs Breaking		0
Minimal SMI ight Higgs Prosking		0
Minimal SIM Heavy Higgs & SMLight Higgs		U
Breaking		0
Minimal Higgs Triplet		0

RESULTS: of random search of over 10¹¹ vacua

- Adaptation of the methodology:
- Two stage process;
- \bullet Random fertile SO(10) models; $\hfill \hfill \hfi$
- Complete SLM classification of fertile cores.

 10^7 Three generation SLMs with standard light and heavy Higgs spectrum

Fertile 3 generations Standard-like Model classification

10^9 sar

	n(Q)	n(L)	$n(d^c); n(\nu^c)$	$n(u^c);n(e^c)$	$n(\overline{Q})$	$n(\overline{L})$	$n(\overline{d^c}); \mathbf{n}(\overline{\nu^{\mathbf{c}}})$	$n(\overline{u^c}); n(\overline{e^c})$	$n(H_u); n(H_d)$	$n(d^{c'})$; $n(\overline{d^{c'}})$	Multiplicity
1	3	3	3	3	0	0	0	0	1	1	27264
2	3	3	3	3	0	0	0	0	3	3	16896
3	3	3	3	3	0	0	0	0	2	0	7296
4	3	3	3	3	0	0	0	0	2	2	2304
5	3	3	3	3	0	0	0	0	5	1	1536
6	4	3	3	4	1	0	0	1	2	2	768
7	3	4	3	4	0	1	0	1	2	2	768
8	3	3	3	3	0	0	0	0	1	5	640
9	4	4	3	3	1	1	0	0	5	3	512
10	3	3	4	4	0	0	1	1	3	1	384
11	3	3	4	4	0	0	1	1	1	3	384
12	3	3	3	3	0	0	0	0	3	1	256
13	4	4	3	3	1	1	0	0	3	5	256
14	3	3	4	4	0	0	1	1	7	1	192
15	4	4	3	3	1	1	0	0	3	1	192
16	3	3	3	5	0	0	0	2	3	1	192
17	3	3	3	5	0	0	0	2	1	3	192
18	3	3	3	3	0	0	0	0	1	3	128
19	3	4	3	4	0	1	0	1	4	4	128
20	3	4	4	3	0	1	1	0	4	4	128
21	4	3	4	3	1	0	1	0	4	4	128
22	4	3	3	4	1	0	0	1	4	4	128
23	3	3	4	4	0	0	1	1	5	3	64
24	3	3	4	4	0	0	1	1	3	5	64
25	3	3	4	4	0	0	1	1	1	7	64

Conclusions

- DATA \longrightarrow UNIFICATION
- STRINGS \longrightarrow GAUGE & GRAVITY UNIFICATION
- Free fermionic models $\iff Z_2 \times Z_2$ orbifolds \longrightarrow A Fertile Crescent
- From exemplary models \longrightarrow Large classes \longrightarrow too large classes
- Question: Can ML tools be used to identify fertility conditions ?
- Glyn Harries, Ben Percival, (John Rizos)