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• String theories typically produce vast theory spaces. 

• We would like to be able to find the “Standard Model” in them (or at least to 
check if a SM is there). We would like to find slightly AdS vacua. 

• Such tasks are typically NP complete (difficulty increases exponentially with 
the search criteria, but the solution can be verified in polynomial time). 

• Heuristic search techniques are effective in such problems. Here I will 
discuss genetic algorithms - based on evolutionary dynamics. 

• The string theory example I will consider is in the Free-Fermionic formulation 
but the same techniques could be applied to many constructions.  

• Using the pMSSM as a toy, I wish to show how GAs can be used to probe a 
parameter space. (There is no statistical data but there is a picture of the 
structure of the “fitness” landscape.)

Overview



GA work in particle theory …

• Yamaguchi and H. Nakajima (2000) 
• B. C. Allanach, D. Grellscheid and F. Quevedo (2004) 
• Y. Akrami, P. Scott, J. Edsjo, J. Conrad and L. Bergstrom (2009) 
• J. Bl ̊aba ̈ck, U. Danielsson and G. Dibitetto, (2013)  



• Consider biological landscapes: problems that were solved by evolution 

e.g. Haemoglobin molecule. 

  

On the largeness (or otherwise) of =) 10500

C2932H4724N828O840S8Fe4

• 2 legs of 141 amino acids, plus 2 legs of 146. 20 amino acids means …             !! 

• Or possibly we should estimate #choices of C,H,…Fe from 92 elements ..                  !!! 

10747

1018334



• GA’s (based on evolutionary dynamics) work most effectively when  

a) many criteria being applied at the same time  

b) good correlation between “goodness of fit” and “closeness to maximum” (Fitness/
Distance Correlation) 

Disadvantage: by their nature statistical information very hard/impossible to get   

Example of dealing with a string sized landscape

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

Figure 1. The “mogul-field” function.

value of the function. Moreover the three ingredients of selection, crossover and mutation

are crucial3. If done correctly (see below) one can obtain a solution to any desired precision.

It is worth noting some advantages over other techniques. First the function f can have

many maxima, and yet the procedure can still find the global one: the algorithm e↵ectively

samples the whole fitness landscape. Indeed f does not even need to be di↵erentiable, a

fact that strongly suggests the technique could be powerful in the string context, where

getting from vacuum to vacuum often involves topology changing transitions. In addition,

the computational di�culty appears to rise roughly linearly with the length of the genotype

even though the size of the fitness landscape is increasing exponentially. Finally, the process

is very robust. It doesn’t matter for example if we choose to flatten all the chromosomes

of each creature into one long string of data and perform a single crossover for the entire

genotype, or if we perform crossovers on the chromosomes individually.

Many of these properties can be understood (at least intuitively) in terms of schemata

and the schema theorem which was introduced by Holland [2] and which we will describe

shortly. But before we do so, it is worth seeing the procedure at work on a particular

function. Consider finding the maximum of

f(x, y) = 12

✓
cos

3y

2
sin

3x

2
+ x+ y

◆
� x2 � y2. (1.1)

This “mogul-field” function, shown in figure 1, is clearly a hard function for the usual

hill-climbing algorithms to maximize.

As mentioned above, the simplest convention for choosing breeding pairs, and the one

we shall use here, is that they are weighted linearly with f(x, y) (roulette wheel selection):

3Note crossover and mutation can be either/or; they should be present in the population but do not

have to occur simultaneously in the same individuals.

– 4 –

Example: find maximum point to accuracy of 250 decimal places without 
using calculus. 

As such the task of finding a completely viable string vacuum is likely to be what in

computational complexity theory is called an NP-complete problem (where NP refers to

Non-deterministic Polynomial time); that is a problem for which any given solution can be

verified in a time that increases only polynomially with the di�culty, but where finding a

solution by a simple deterministic search algorithm (such as exhaustive scanning) rapidly

becomes computationally infeasible. Indeed a similar point was made in ref.[5], to which

the reader is directed for precise definitions. NP-complete problems are precisely where

heuristic search methods become e↵ective.

The purpose of this paper is to demonstrate the e�cacy of GA’s in finding desirable

string vacuum solutions, by examining a small sub-class of string theories, namely heterotic

strings in the Free Fermionic formulation [6–8]. We will show that they are (many orders

of magnitude) more e�cient than a random search at finding string vacua with particular

desirable properties. This is especially evident when one applies many phenomenological

requirements and the search is multi-modal. For example GA’s do not confer much ad-

vantage if one is just searching for say three generation models. However, in line with

them being e↵ective on NP-complete problems, they come into their own when the search

is statistically very di�cult (when for example only one in 107 models or fewer has the

particular properties of interest).

Given the comments above, one thing we can conclude from the fact that GA’s work so

well is that finding the SM in the string landscape is precisely not like looking for a needle

in a haystack: the landscape has structure and similar models have certain correlations.

We will describe exactly what these correlation are expected to be, but because the number

of possible models is so huge it is not possible for us (even in this fairly restricted set of

models) to check them explicitly. Nevertheless in our view the fact that GA’s work is

evidence that they are there.

1.1 Overview of GA’s: a fake landscape of 10500

Before getting to string theory, it is instructive to create a somewhat artificial optimization

problem that has a similarly large landscape in order to introduce the GA technique and

to make apparent its generic advantages and also its limitations. Suppose that we wish to

find the supremum of some function f(x, y) in the domain x 2 (0, 10), y 2 (0, 10), without

using calculus. One way do this is as follows: consider writing out the possible coordinates

x = a.bcdef...

y = g.hijkl...

where a, b, c... are digits between 0 and 9. In principle one could scan over x and y by

cycling through all possible strings of digits a, b, c... To find the supremum one simply
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=) 10500

(Holland, E.David, Reeves+Rowe, Jones+Forrest)  



• Define a “creature” and write out its coordinates => genotype  

• Terminology: Genotype = data. Phenotype = f(x,y).  

Figure 1. The “mogul-field” function.
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Example of dealing with a string sized landscape



• Population initially sprinkled at random 

• Step1: Define fitness function, f(x,y). Selection for breeding will be based on 
fitness (e.g. f = height in this case). 

Figure 1. The “mogul-field” function.
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• Population initially sprinkled at random 

• Step2: Selection. Select pairs for breeding such that the most fit individuals 
can breed several times, while unfit ones might not breed at all: e.g. “roulette 
wheel”. 

Figure 1. The “mogul-field” function.
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that is they are selected with a probability given by a fitness function for the i’th creature

of the form

pi =
af(xi, yi) + bP
i
(af(xi, yi) + b)

, (1.2)

where a and b are constants that need to be adjusted each generation. If the weighting is

chosen with a too large, one finds that fitter creatures swamp the distribution very early,

and there is premature convergence to the wrong solution. Once the population is all

gathered around the wrong peak, the advantage of selection is lost: one has to hope for

an advantageous random mutation, so in a sense the process has temporarily become no

more e�cient than a Monte-Carlo procedure (although once the population has “Monte-

Carlo’d” out of the wrong solution, the process reverts to the preferred GA behaviour).

There are various sophisticated techniques to counteract premature convergence, such as

introducing a fitness penalty for crowding, or fitness sharing. We will not need to explore

these here, but in the event of such stagnation will instead resort to momentarily enhancing

the mutation rate. Why this works will become apparent when we come to discuss the

schema theorem below, but generally it is already clear that selection and mutation are

playing complementary roles; selection drives the system to nearby maxima, while mutation

drives one away.

Conversely once the population is gathered around the correct global peak one can

increase a and dial down mutation in order to distinguish between creatures that all have

similar heights, and gain accuracy. The convention is to choose a and b such that a creature

of average fitness breeds once, while the fittest creature breeds twice on average. If the

latter multiple is ↵, then the fitness function becomes

pi =
1

p

(↵� 1)
�
fi � f̄

�
+
�
fmax � f̄

�

fmax � f̄
,

with the average fitness f̄ and maximum fitness fmax being re-evaluated for every gener-

ation. Note that the probability is invariant under rescaling and shifting of the function

f(x, y) ! �f(x, y) + �. In our analysis we found that a higher value, ↵ ⇡ 3, gave a

slightly better convergence rate. In this particular example (but not actually in the string

theory problems we shall discuss) one final adjustment can make convergence more rapid:

De Jong’s Elitist Selection Scheme involves copying the fittest member of the population

across to the next generation unchanged.

The evolution of a population of 60 individuals is shown in figure 2. The initial

population coalesces around the maxima after only a few generations. The lower maxima

are then disfavoured until the population is all gathered around the solution (which for
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• Step 3: breeding: cut and splice genotypes of breeding pairs somehow (not really 
crucial how) 

g.hij |

a.bcd |ef
kl

Simple example of a string sized landscape



• Step 4: Mutation of a randomly chosen small percentage of digits (alleles). 

a.bcdefghij...a.bcdef 0gh0ij...

• Steps 5 … infinity: rinse and repeat 

Simple example of a string sized landscape



• Summary: three crucial ingredients Selection (favours the optimisation); 
Breeding/crossover (propagates favourable “schema” - Holland); Mutation 
(prevents stagnation: evolution proceeds by punctuated equilibria) 

Simple example of a string sized landscape
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• Summary: three crucial ingredients Selection (favours the optimisation); 
Breeding/crossover (propagates favourable “schema” - Holland); Mutation 
(prevents stagnation: evolution proceeds by punctuated equilibria) 

Simple example of a string sized landscape

Figure 3. Evolved population of 60 individuals in an “almost discontinuous” extremely choppy

landscape.

Holland argued that schemata are important because selection favours the propagation

of shorter strings of data: small subsections of the genome that confer fitness dominate

first and, once they are shared by the majority of the population, crossover does not a↵ect

them. Indeed this can be observed directly in our previous example: the population tends

to spread along the x and y directions from the solution because in this example the

approximately correct x and y values correspond to only the first few entries of the x and

y chromosomes, which tend to persist even though the entire genome may be disturbed by

crossover.

This can be formalised as follows. Suppose that mutation has just produced in the

population a favourable schema, S. Let n(S, t) be the total number in the population

containing it at time t. We can define the average fitness of all members of the population

containing S, as fS(t) =
P

i2S fi/n(S, t), which is higher than the average fitness of the

population as a whole, f̄ . Assuming that selection is proportional to fitness, f(t), then the

expected number of o↵spring containing S is
P

i2S fi/f̄ . Neglecting crossover and mutation

this would be the expectation of n(S, t+ 1); let us rewrite it as

n(S, t+ 1) = n(S, t)
fS(t)

f̄
. (1.3)

With simple probabilistic arguments one can incorporate the e↵ect of a single-point crossover

destroying S, and mutations at a rate pm per digit to find a lower bound

n(S, t+ 1) � n(S, t)
fS(t)

f̄

✓
1�

d(S)

l � 1

◆
(1� pm)o(S) , (1.4)
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• Warning: in this example the convergence to a solution is easy to visualise: in 
strings it is very hard (high dimensionality - later) 

• NB: in general the optimisation function does not have to be continuous or 
differentiable. 

Simple example of a string sized landscape
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• Holland proposed a probabilistic explanation for the efficiency of genetic algorithms: 
suppose we have n(S,t) members of population with schema S  

• With simple probabilistic arguments one can incorporate the effect of a single-point 
crossover destroying S, and mutations at a rate pm  per allele to find a lower bound  

Schemata
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Figure 2. Evolution of a population of 60 individuals in a landscape of 10500.

while nowadays it is not thought to give a complete understanding, it does present useful

ideas that at least partially explain how GA’s work.

A schema is a representation of some crucial set of digits that is supposed to confer

some favourable characteristic, and in this instance might look something like S = 3⇤⇤⇤4⇤6.

This example has 3 entries that we are interested in (hence we say it is order 3) and 4 entries

that we do not care about, which are labelled with a wildcard ⇤. It also has a defining

length d(S) = 7, and we will call its order, o(S).
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avge fitness of members with S 
order o= 3 
defining length d=7

In this example the leading  
digits of x and y are schemata



• Initial growth of n(S,t) is exponential 
• At late times find equilibrium for average fitness determined by pm 
• Selection pushes towards convergence 
• Mutation pushes system away from convergence   

Schemata
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A schema is a representation of some crucial set of digits that is supposed to confer

some favourable characteristic, and in this instance might look something like S = 3⇤⇤⇤4⇤6.

This example has 3 entries that we are interested in (hence we say it is order 3) and 4 entries

that we do not care about, which are labelled with a wildcard ⇤. It also has a defining

length d(S) = 7, and we will call its order, o(S).
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• Fitness — rank selection often works best to overcome flat maxima 

• Selection — Elitist selection (copy fittest individual into new population and kill 
weakest). Also tournament selection, roulette wheel, etc  

• Breeding — two or more point cross-over to avoid edge effects 

• Mutation: check this is optimised (See later) 

• Creep mutation to overcome “Hamming walls” e.g. 0.999… ~ 1.0000… :

Optimisation:

• Like any machine learning technique you can 
run into problems unless you optimise … 



• Find a phenomenologically attractive Pati-Salam model. 

• We will consider the Free-Fermionic formulation. (We know the answer by the 
way - since we want to test our technique!).  

• We’ll use the “fermionic string construction”. These are general 4D models in 
which the world sheet degrees of freedom are fermions. (Kawai, Lewellyn, Tye; 
Antoniadis, Bachas, Kounnas)  

• A single W/S fermion acquires phases u,v going round the 2 cycles of the 
torus:  

Simple optimisation problem
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String Phenomenology Steven Abel

The fundamental region is shown below. The Dehn twist maps all values of τ into the region

−1/2≤ Re(τ) ≤ 1/2. The second transformation maps |τ| < 1 values into the |τ| > 1 region. Any

point outside the fundamental region shown below can therefore be mapped into it. All independent

tori are therefore included by integrating over this region.
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Modular invariance is then the condition that this region is equivalent to any of the other regions

we could have chosen;

Z1(τ) = Z1(−1/τ) = Z1(τ+1) (6.8)

It constrains the possible 10-D theories - (e.g. gauge groups) as we will now show. The calculation

is rather intricate, so at the end of 1.3.1 (where we talk about how we define different models) we

summarize how this happens and then give a set of rules for model building, so that eventually one

can short-circuit most of the interim calculation which is included in Appendix C.

6.2 World sheet boundary conditions, and hamiltonians

6.2.1 What do we mean by ’different models’?

The world-sheet fermions do not need to be single valued for consistency. All that we require

is that the action SLC be single valued and this leaves some freedom in the phases that the fields

can acquire as they are transported around the world-sheet. Any particular model is defined by

the boundary conditions (phases) of the world sheet bosons and fermions as they are transported

around the world sheet.
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Models are defined in terms of a set of basis vectors and a set of phases 
associated with generalised GSO projections (GGSO). 

we will use the following set: (Faraggi, Kounnas, Nooij, Rizos)  
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{v1, v2, . . . , v13}, where

v1 = 1 =
�
 µ, �1,...,6, y1,...,6,!1,...,6

|ȳ1,...,6, !̄1,...,6, ⌘̄1,2,3,  ̄1,...,5, �̄1,...,8
 

v2 = S =
�
 µ,�1,...,6

 

v2+i = ei =
�
yi,!i

|ȳi, !̄i
 
, i = 1, . . . , 6

v9 = b1 =
�
�34,�56, y34, y56|ȳ34, ȳ56, ⌘̄1,  ̄1,...,5

 
(2.11)

v10 = b2 =
�
�12,�56, y12, y56|ȳ12, ȳ56, ⌘̄2,  ̄1,...,5

 

v11 = z1 =
�
�̄1,...,4

 

v12 = z2 =
�
�̄5,...,8

 

v13 = ↵ =
�
 ̄45, ȳ1,2

 
. (2.12)

Here we denote the fermionised world-sheet coordinates as follows:  µ , �I , I = 1, . . . , 6 are

the superparteners of the 10-dimensional left-moving coordinates, yI ,!I/ȳI , !̄I , I = 1, . . . , 6

stand for six internal left/right coordinates, and  ̄A, A = 1, . . . , 5, ⌘̄↵,↵ = 1, 2, 3, �̄k, k =

1, . . . , 8 are the additional right-moving complex fermions. We have adopted the traditional

(ABK) notation where the fields included in a basis vector set are anti-periodic while the

rest are periodic.

The associated generalised GSO coe�cients are not fixed but they are constrained by

modular invariance. Consequently only the c
⇥
vi
vj

⇤
, i > j are independent. Moreover, the

requirements of space-time supersymmetry fix some of these coe�cients while some others

are set by convention. Altogether, only 51 independent GGSO phases are relevant to the

“observable” PS spectrum. These can be parametrised in terms of `i = {0, 1}, i = 1, . . . , 51 ,
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v11 = z1 =
�
�̄1,...,4

 

v12 = z2 =
�
�̄5,...,8

 

v13 = ↵ =
�
 ̄45, ȳ1,2
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2 The problem: viable Free Fermionic Pati–Salam vacua

We now present the stringy problem that we will consider for this study, namely finding

phenomenologically viable Pati-Salam models in the Free Fermionic Formulation of the

heterotic superstring [6–8].

Before we describe the formalism in detail, let us briefly comment further on the

relation of our approach to the landscape programme. It has been known for a long time

that these and similar models lead to a huge number of possible vacua. For example [11]

estimated 101500 vacua in the closely related covariant lattice approach, far in excess even

of the later flux vacua estimate in [1]. The approach advocated in [1] and related papers

(see [12] for a recent review) was to determine correlations between physical characteristics.

Alternatively one can count the multiplicities of string vacua and regard the characteristics

that occur frequently as being more natural.

Completely general computer-based searches were used to consider correlations for

the Free Fermionic vacua in ref.[13]. However, there are limitations to these and similar

approaches, due to the space of models being so large, and due to the time-consuming

computation of the spectrum in every step of the search procedure. Importantly this leads

to inevitable restrictions as to what statistical correlations can and cannot reliably be

established, as discussed in ref.[14].

As we shall see, in performing a GA study one is also e↵ectively studying correla-

tions, but very di↵erent ones from those that were explored in the landscape programme.

In the language of GA’s the di↵erence is that essentially the latter explored phenotype-

phenotype correlations, whereas the frequencies occurring in GA studies are more sensitive

to genotype-phenotype correlations, in a way that will be made precise below.

Now to the formulation, in which consistent models are defined in terms of a set of

basis vectors

{v1, v2, . . . , vn}

and a set of phases

c


vi
vj

�
, i, j = 1, . . . , n

associated with generalised GSO projections (GGSO). The basis vectors and the GGSO

phases are subject to constraints that guarantee modular invariance of the one loop parti-

tion function. The elements of the basis vectors are related to the parallel transportation

properties of the fermionised world-sheet degrees of freedom along the non-contractable

torus loops. This yields models directly in four space-time dimensions with internal coor-

dinates fixed at the fermionic point.
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Simple optimisation problem



Our genotype will be the phases: 
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as follows

cij =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 ↵

1 1 1 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 1 0 `26 `27 `28 `29 `30 `6 0 `14 `20 `41

e2 1 1 `26 0 `31 `32 `33 `34 `7 0 `15 `21 `42

e3 1 1 `27 `31 0 `35 `36 `37 0 `10 `16 `22 `43

e4 1 1 `28 `32 `35 0 `38 `39 0 `11 `17 `23 `44

e5 1 1 `29 `33 `36 `38 0 `40 `8 `12 `18 `24 `45

e6 1 1 `30 `34 `37 `39 `40 0 `9 `13 `19 `25 `46

b1 0 0 `6 `7 0 0 `8 `9 1 0 `2 `4 `47

b2 0 0 0 0 `10 `11 `12 `13 0 1 `3 `5 `48

z1 1 1 `14 `15 `16 `17 `18 `19 `2 `3 1 `1 `49

z2 1 1 `20 `21 `22 `23 `24 `25 `4 `5 `1 1 `50

↵ 1 1 `41 `42 `43 `44 `45 `46 `47 + 1 `48 + 1 `49 + 1 `50 `51

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

mod 2 .

(2.13)

As every cij set corresponds in principle to a di↵erent model, simple counting gives a huge

number of 251 ⇠ 2.3 ⇥ 1015 distinct models in this class. Thus a comprehensive scan of

even this restricted class of models would take 3000 years on a single core CPU.

Nonetheless, the models share some common attributes. First the gauge group G =

SU(4)⇥SU(2)
L
⇥SU(2)

R
⇥U(1)3⇥SO(4)2⇥SO(8). Second the untwisted sector matter

states comprise six (6,1,1) representations and a number of PS singlets. The twisted sector

states that transform nontrivially under the PS gauge symmetry include the “spinorial”

states (4,2,1), (4,1,2),
�
4,2,1

�
,
�
4,1,2

�
and the “vectorial” states (1,2,2), (6,1,1).

The former arise from the sectors bIpqrs (+S) , I = 1, 2, 3 and the latter from x+bIpqrs (+S) ,

I = 1, 2, 3, where b1pqrs = b1 + p e3 + q e4 + r e5 + s e6, b2pqrs = b2 + p e1 + q e2 + r e5 + s e6,

b3pqrs = x+b1+b2+p e1+q e2+r e3+s e4, p, q, r, s 2 {0, 1}, and x = 1+S+
P6

i=1 ei+
P2

k=1 zk.

Additional exotic states transforming as (4,1,1),
�
4,1,1

�
(1,2,1) and (1,1,2) under

the observable PS gauge group may also arise from the twisted sectors bI+↵ (+z1) (+x) (+S),

I = 1, 2, 3. We denote by ne the number of these states. They carry fractional charges and

in particular they include SM singlets and doublets with ±
1
2 electric charge. The appear-

ance of these states is generic in these vacua [20]. However, as shown in [16] the class of

models under consideration includes “exophobic” vacua where all exotic fractionally charge

states receive string scale masses.
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51 independent phases in these models:  251 = 2⇥ 1015

Simple optimisation problem



This search space is (just about) searchable deterministically so we can 
compare the two methods. (Assel, Christodoulides, Faraggi, Kounnas, Rizos)  
The phases determine the characteristics of the models 

Selecting amongst this huge number of vacua requires first the computation of the

spectrum and second the introduction of a set of phenomenological criteria. As illustrated

in [15] we can derive general analytic formulae regarding the main characteristics of models

in this set in terms of the GGSO phases, `i, i = 1, . . . , 51. These formulae involving ranks

of binary matrices depending on `i are too lengthy to include here. However, they can be

easily incorporated in a computer code. The model selection criteria can be either related

to the spectrum or to the couplings of the e↵ective low energy theory. The latter are

harder to implement so we will restrict to the existence of the top quark mass coupling.

As demonstrated recently [21] this requirement can be expressed explicitly in terms of

constraints on the GGSO phases,

`i = 0, i = 2, . . . , 7 , `10 = `11 = `47 = 0 , `48 = 1 , `8 = `12 , `9 = `13 . (2.14)

Let us summarise therefore the possible selection criteria. We may choose to impose:

(a) 3 complete family generations, ng = 3

(b) Existence of PS breaking Higgs, kR � 1

(c) Existence of SM Higgs doublets, nh � 1

(d) Absence of exotic fractional charge states, ne = 0

(e) Existence of top Yukawa coupling as in eq.(2.14).

A more stringent test would be to insist on minimality by imposing kR = nh = 1.

3 GAs in the fermionic string landscape

3.1 Introductory remarks

Let us now see how a GA performs in the search for viable models. First we make some

general remarks. When it comes to string phenomenology any fitness landscape is composed

not of continuous functions but of physical properties such as supersymmetry, number of

generations, Yukawa couplings and so forth. Nevertheless the question of whether the

fitness landscape defined in terms of such observables has structure remains crucial, and

one of the purposes of testing GA’s is therefore to address this issue.

To be more specific, suppose that one constructs a GA to converge on models with

three generations. To do this would require a fitness function perhaps of the form f(ng) =

e�(ng�3)2 ; that is models are weighted with a Gaussian around the desired value. Clearly

the population will coalesce around ng = 2, 3 or 4 rather than ng = 10 but as emphasised

in the Introduction, for just one parameter, this way of selecting vacua is not obviously
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• a)+b)+c)             =  1 : 10,000 
• a)+b)+c)+d)       =  1 : 2,500,000 
• a)+b)+c)+d)+e) =  1 : 10,000,000,000 
• deterministically we would expect to have to construct 10 billion models 

to find an example of the latter

Simple optimisation problem



Figure 4. Call count the for three di↵erent classes of solutions with increasing search di�culty.

(i.e. the mean number of models one has to construct before finding a solution.) Bottom/purple:

solutions with three generations and Higgses for the Standard Model and Pati-Salam sectors. Mid-

dle/blue: solutions with three generations, Higgses for the Standard Model and Pati-Salam sectors,

and in addition no exotics. Top/yellow: solutions with three generations, Higgses for the Standard

Model and Pati-Salam sectors, no exotics and a top-Yukawa. The search di�culties are respectively

one in 104, one in 2.5⇥ 106, one in 1010.

mutation probability per bit is optimally 0.0075-0.01. This is a clear sign that the GA is

working as expected. The e�ciency drops dramatically when the mutation is turned o↵

completely (when the population is unable to discover new favourable schemata and/or

stagnates) and also when the mutation is dialled up and the search becomes e↵ectively

randomised. It is close to but slightly below the rate 1/l ⇡ 0.02 which is often claimed to

be the optimal rate [3].

Although there are only three points of reference it is worth noting that the minimal

call count appears to be increasing roughly as the log of the statistical di�culty and slower

than a power law; empirically we find call-count ⇡ 7 ⇥ 103 log(di↵/4 ⇥ 103). It would be

of interest to make this relationship more precise.

There is one further probe of the structure we can make. Instead of completely scram-

bling the genotypes after a solution is discovered, one can instead perform the same muta-

tion of 25⇥µb0grd that one does when the population stagnates. If this yields new solutions

(i.e. the population should not simply revisit the same solution) at a faster rate, then this

indicates that the solutions are “clustered” together (in terms of Hamming distance) rather

than spread uniformly. This would certainly be expected if the system is modular with dif-

ferent non-overlapping schema governing di↵erent phenomenological traits. More generally

it would imply that the solutions occupy a hypersurface in the search space.
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• Optimum mutation rate => genetic algorithm is working as expected 
• GA’s do not confer much advantage when the search is “easy” 
• They work best when there are many criteria and the search is difficult =>  

                                    Fitness Distance Correlation (Jones+Forrest; 
Collard, Gaspar, 
Clergue, Escazu )

Simple optimisation problem



pMSSM: GAs as a tool for probing structure:

Interesting feature of GA’s is the fitness distance correlation, and how it affects the 
behaviour of the population as it evolves. (Checked with MultiNest — Bayesian 
Inference — GA 10-100 x faster for CMSSM)   
For this study use pMSSM, 23 parameters: 

(Berger, Gainer, Hewett, Rizzo; Abdussalam, 
Allanach, Quevedo, Feroz, Hobson; Cahill-
Rowley, Hewett, Ismail, Rizzo)

6

Observable Value
h
↵EM(MZ)

MS

i�1

127.950± 0.017

↵S(MZ)
MS 0.1185± 0.0006

mb(GeV) 4.78± 0.06

mt(GeV) 173.1± 0.6

TABLE II. Standard model nuisance parameters, central values and uncertainties [26].

Parameter Range

SM
h
↵EM(MZ)

MS

i�1

[127.882, 128.018]

↵S(MZ)
MS [0.1161, 0.1209]

mb(GeV) [4.54, 5.02]

mt(GeV) [170.1, 175.5]

pMSSM (GUT scale)

M1,M2,M3(GeV) [50,10000]

mHu
,mHd

(GeV) [50,10000]

m
Q̃1,2

m
Q̃3

(GeV) [50,10000]

m
Ũ1,2

m
Ũ3

(GeV) [50,10000]

m
D̃1,2

m
D̃3

(GeV) [50,10000]

m
L̃1,2

m
L̃3

(GeV) [50,10000]

m
Ẽ1,2

m
Ẽ3

(GeV) [50,10000]

At, Ab, A⌧ (TeV) [-10,10]

tan� [2,62]

TABLE III. SM nuisance parameters and pMSSM input parameters defined at the GUT scale.

• Electroweak precision observables (EWPOs): i.e. Z pole observables and MW . The
theoretical prediction for the W boson pole massMW were calculated with SOFTSUSY 4.1.0 [27],
and the e↵ective electroweak mixing angle for leptons sin2 ✓lepte↵ with FeynHiggs 2.13.0 [28–31].
The SM contributions to the total decay width of the Z boson �Z and the Z invisible width
�inv
Z were computed with ZFITTER 6.42 [32, 33] and those of the MSSM with micrOMEGAs

4.3.2 [34]. LEWPO, Eq. (1), contains a Gaussian probability distribution function for each of
these quantities, with central values and experimental and theoretical uncertainties added in
quadrature (see Table IV):

lnLEWPO = lnLMW
+ lnLsin2 ✓lept

eff
+ lnL�Z

+ lnL�inv
Z

. (1)

• Flavour observables from B physics: These include BR(B ! Xs�), BR(B0
s ! µ+µ�)

and BR(Bu!⌧⌫)
BR(Bu!⌧⌫)SM

(Eq. 2). Theoretical predictions were calculated with micrOMEGAs. As in the
previous case, LB includes Gaussian likelihoods for every B observable, with mean values and
uncertainties given in Table IV:

lnLB = lnLBR(B!Xs�) + lnLBR(B0
s
!µ+µ�) + lnL BR(Bu!⌧⌫)

BR(Bu!⌧⌫)SM

. (2)

• Constraints from the Higgs sector: LHiggs accounts for the likelihood of the model predic-
tions for the Higgs masses, branching ratios, production cross sections and total decay widths of
the Higgs sector computed with FeynHiggs 2.13.0. These predictions were tested against exclu-
sion bounds from Higgs searches at the LEP, Tevatron and LHC experiments using HiggsBounds
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• Flavour observables from B physics: These include BR(B ! Xs�), BR(B0
s ! µ+µ�)

and BR(Bu!⌧⌫)
BR(Bu!⌧⌫)SM

(Eq. 2). Theoretical predictions were calculated with micrOMEGAs. As in the
previous case, LB includes Gaussian likelihoods for every B observable, with mean values and
uncertainties given in Table IV:

lnLB = lnLBR(B!Xs�) + lnLBR(B0
s
!µ+µ�) + lnL BR(Bu!⌧⌫)

BR(Bu!⌧⌫)SM

. (2)

• Constraints from the Higgs sector: LHiggs accounts for the likelihood of the model predic-
tions for the Higgs masses, branching ratios, production cross sections and total decay widths of
the Higgs sector computed with FeynHiggs 2.13.0. These predictions were tested against exclu-
sion bounds from Higgs searches at the LEP, Tevatron and LHC experiments using HiggsBounds



pMSSM: GAs as a tool for probing structure:
Fitness function is simply 1/likelihood derived from all experimental constraints: it singles 
out (g-2) of the muon as the offending observable.  

USED: PIKAIA2.0 (Metcalf+Charbonneau), SoftSUSY, FeynHiggs, ZFITTER, MicrOMEGAS, 
HiggSignals, PYTHIA, SModelS, NLL-Fast, Fastlim. 
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observations. dN/dEi (dN̄/dEi) stands for the measured (predicted) flux in the ith energy bin. The
measured flux corresponds to the GCE spectrum from Ref. [69], derived using the Sample Model (see
Section 2.2 of Ref. [69] for a complete description of this model). The vector ✓ refers to the pMSSM
parameters that determine the predicted photon flux.

IV. RESULTS

A. Muon Anomalous Magnetic Moment

In Fig.1, we represent the evolution of the minimum �2 (associated with the maximum fitness) as a
function of the generation number for each of the ten runs. As already mentioned, the maximum fitness
is a monotonically increasing function (due to the elitism), which results in a monotonically decreasing
�2. The evolution proceeds rapidly during the first iterations and stabilises after approximately 100
generations, with no apparent di↵erences among the various runs.

FIG. 1. �2

min vs. number of generations for the ten runs.

The goodness of the best-fit point for each run is shown in Table V, where we also include the
contribution from each observable. The total �2 is of order �2 ⇡ 16 for the ten runs. The greatest
contribution always comes from the muon anomalous magnetic moment (�2

�aSUSY
µ

⇡ 12), while the

predictions for the other observables are in good agreement with the experimental results. For example,
the combination of Higgs observables leads to �2

HiggsSignals ⇡ 1.2. The fit to the invisible Z-width,

which leads to �2
�Z

is consistent with the SM prediction. There is an evident tension between the muon
anomalous magnetic moment and the rest of the observables. A good fit to the latter is only possible
at the expense of a very small supersymmetric contribution to aµ. Table VI shows the corresponding
values of the observables for these best fit points, where we can observe that the resulting �aSUSY

µ is

always two orders of magnitude smaller than the observed �aSUSY
µ = 26.8+6.3

�4.3 ⇥ 10�10. The tension
between the observed value of the Higgs mass and the muon anomalous magnetic moment is well
documented in the literature (see e.g. Ref. [70]).

The top plot of Fig. 2 shows the resulting SUSY spectrum for the particular case of run 3. The
colour code is a visual aid to illustrate the evolution of the GA towards a final result. Blue corresponds
to early generations, green to late ones, and the final generation, 300, is shown in yellow. The same
colour map will be used throughout all the plots in this paper. Note that it is entirely expected
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

�
2

⌦
�̃
0
1
h2 0.0067 0.0044 0.0174 0.0002 0.0045 0.0035 0.0096 0.0021 0.0000 0.0020

�
2

HiggsSignals 1.2950 1.2983 1.1452 1.2899 1.2902 1.2914 1.1579 1.2811 1.2804 1.2995

�
2

m
h0

0.1125 0.2174 0.0005 0.0921 0.0879 0.0782 0.3911 0.0656 0.1475 0.1331

�
2

MW
0.1190 0.0350 0.0008 0.1006 0.2500 0.0223 0.0004 0.1642 0.1205 0.2239

�
2

sin2 ✓
lept
eff

0.1538 0.1463 0.1569 0.1575 0.1552 0.1665 0.1639 0.1601 0.1567 0.1470

�
2

�Z
0.0332 0.0121 0.0001 0.0602 0.0388 0.1175 0.0102 0.0451 0.0362 0.0561

�
2

�
inv
Z

2.3054 2.3027 2.2842 2.3056 2.3045 2.3089 2.2998 2.3028 2.3003 2.3024

�
2

BR(B!Xs�)
0.0664 0.0741 0.0596 0.0911 0.0689 0.1050 0.1664 0.0929 0.0717 0.0761

�
2

BR(B0
s
!µ+µ�)

0.1647 0.1818 0.1498 0.1707 0.1617 0.1623 0.1733 0.1888 0.1715 0.1593

�
2

BR(Bu!⌧⌫)
BR(Bu!⌧⌫)SM

0.0140 0.0143 0.0142 0.0143 0.0141 0.0140 0.0142 0.0154 0.0143 0.0140

�
2

LEP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�
2

LHC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

�
2

�aSUSY
µ

12.2691 12.0273 11.9275 12.2113 12.2873 12.2926 11.8926 11.9721 12.1162 12.1683

�
2

tot 16.5398 16.3138 15.7562 16.4935 16.6631 16.5621 16.2793 16.2904 16.4152 16.5816

TABLE V. Contributions to the �
2 of the best fit points. In blue, we show the leading contribution, which

comes from the fit to the muon anomalous magnetic moment, �aSUSY

µ .

Observable Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

m
h0 (GeV) 124.42 124.15 125.13 124.48 124.49 124.53 123.83 124.57 124.32 124.36

MW (GeV) 80.379 80.382 80.386 80.379 80.376 80.382 80.385 80.378 80.379 80.377

sin
2 ✓lept

e↵
0.23146 0.23146 0.23146 0.23146 0.23146 0.23145 0.23145 0.23146 0.23146 0.23146

�Z(GeV) 2.4947 2.4949 2.4952 2.4946 2.4947 2.4943 2.4950 2.4947 2.4947 2.4946

�
inv

Z
(GeV) 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017

BR(B ! Xs�)⇥ 10
4

3.35 3.34 3.35 3.33 3.34 3.32 3.30 3.33 3.34 3.34

BR(B0
s ! µ+µ�

)⇥ 10
9

3.21 3.22 3.19 3.21 3.20 3.21 3.22 3.23 3.21 3.20

BR(Bu!⌧⌫)

BR(Bu!⌧⌫)SM
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

⌦
�̃
0
1
h2

0.1178 0.1180 0.1204 0.1190 0.1180 0.1195 0.1200 0.1194 0.1188 0.1193

�aSUSY
µ ⇥ 10

10
0.0827 0.3472 0.4572 0.1457 0.0063 0.0057 0.4958 0.4081 0.2497 0.1927

TABLE VI. Observable values for the best fit points. In blue, we display the results for �a
SUSY

µ , which show
a large discrepancy with the observed value.

that there will still be unfit individuals in the population exhibiting a large �2. For this reason, a
useful approach is to collate the best fit points from all the di↵erent runs. The bottom plot of Fig. 2
includes the information from all the ten runs, together with the corresponding best fit points. For
convenience, these are also listed in Table VIII. As the population evolves, one can observe clustering
around certain solutions. Whereas the best fit points seem to favour specific ranges of masses in
the lightest neutralino and chargino, they appear more spread in the squark and slepton sector. A
pattern emerges where m�̃0

1
⇡ m�̃±

1
⇡ 2 TeV, the squark masses are generally above 6 TeV (except

for the lightest stop, for which mt̃1 ⇡ 2� 3 TeV), and slepton masses show a wide range of variation
2� 10 TeV. For completeness, the pMSSM input parameters (19 soft supersymmetry-breaking terms
and four nuisance parameters) for the best fit points of each run are listed in Table VII.
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fitness). In detail, (for each model) first the input parameters were evolved from the GUT scale down
to the electro-weak (EW) scale to compute the SUSY spectrum, branching ratios and decay widths
using SOFTSUSY. Then, the Higgs sector was evaluated with FeynHiggs. Next, the DM relic abundance
and the aforementioned observables were calculated as previously outlined. These data constitute the
phenotype of each individual. Finally, the predictions were combined into a likelihood as in Eq. (5)
to compute a total chi-squared and hence the fitness.

On a practical level, the value of the fitness function of each individual in a given population,
which as mentioned in the Introduction is by far the most computationally intensive step of a GA,
is of course independent for each individual, providing inherent parallelism and an opportunity to
improve the performance of the heuristic search. To take advantage of this, we used the public parallel
version of PIKAIA 1.2 [64], which implements the Message Passing Interface (MPI) for a more e�cient
exploration of parameter space. Every package for the calculation of physical observables was modified
accordingly and properly interfaced to PIKAIA to avoid data loss and disruption.

The number of individuals in a population, Npop, was fixed to be 100. We explored a wide range
of possibilities for the number of generations Ngen, and determined that for Ngen > 300, there was no
significant improvement in the minimum �2. In other words, Ngen = 300 generations, and hence only
Npop⇥Ngen = 3⇥104 evaluations of the fitness function, were su�cient to achieve a good convergence
of the total �2. (The number of times a model has to be evaluated is one of the best indicators of
the overall e�ciency gain: as mentioned earlier a useful point of comparison is the most rudimentary
approach, namely a flat scan with just 2 points in each of the 23 dimensions, which would require 107

evaluations.)
The complete set of selected GA parameters is shown in Table I. Overall we performed 10 runs of

this pMSSM-GA implementation, varying only the initial seed of the random number generator. The
results did not change significantly between runs, or for longer runs.

A. Muon Anomalous Magnetic Moment

The measured muon anomalous magnetic moment [65] shows a 3.5� deviation from the SM value,
which could potentially be explained by supersymmetric contributions. The value of �aSUSY

µ for the
MSSM was computed with micrOMEGAs, and the latest experimental average used from Ref. [26] (see
Table IV) in a Gaussian probability distribution function, L�aSUSY

µ
. Thus, the joint likelihood function

reads,

lnLJoint = lnLEWPO + lnLB + lnLHiggs + lnLLEP + lnLLHC + lnL⌦DMh2 + lnL�aSUSY
µ

. (5)

B. The Galactic Center Excess

For the later treatment of the Galactic Center Excess (GCE), we incorporated it into the joint
likelihood as

lnLJoint = lnLEW + lnLB + lnLHiggs + lnLLEP + lnLLHC + lnL⌦DMh2 + lnLGCE . (6)

Note that here we do not now take into account the likelihood from �aSUSY
µ .

To evaluate �2
GCE, the procedure outlined in Ref. [66] was followed. That is we convoluted the

di↵erential photon spectrum of a given point of the parameter space with the energy resolution of the
LAT instrument. We used the P8REP-SOURCE-V6 total (front and back) resolution of the reconstructed
incoming photon energy as a function of the energy for normally incident photons. Then �2

GCE was
calculated as follows [67]:

�2
GCE =

X

ij

✓
dN̄

dEi
(✓)� dN

dEi

◆
⌃�1

ij

✓
dN̄

dEj
(✓)� dN

dEj

◆
, (7)

where ⌃ij is the covariance matrix containing the statistical errors and the di↵use model and resid-
ual systematics obtained in Ref. [68] using the reprocessed Fermi-LAT Pass 8 data from 6.5 yr of



pMSSM: GAs as a tool for probing structure:
Information about the structure can be inferred from the “flow” (assuming fitness 
distance correlation). e.g. the W mass is easy to fit and not constraining, DM is 
hard and constraining, g-2 is impossible.   
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FIG. 9. Electroweak observables: Left: �
2 vs. MW . Right: �

2 vs. sin2
✓
lept

e↵
. Left: �

2 vs. �Z . Right: �
2 vs.

�inv

Z . The solid black line corresponds to the mean value of each observable, and the shaded areas to the 1�
(grey) and 2� (light grey) regions around that value according to Table IV.

FIG. 10. Left: �2 vs. �aSUSY

µ . The solid black line corresponds to the �a
SUSY

µ mean value, see Table IV. The
1� and 2� regions (light grey) around the mean value are shaded in grey and light grey, respectively. Right:
�
2 vs. �2

�aSUSY
µ

.
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FIG. 3. Left: �
2 vs. ⌦

�̃
0
1
h
2. The solid black line corresponds to the ⌦DMh

2 mean value, see Table IV.
As a reference, we show the 1� and 2� regions around the mean value in grey and light grey, respectively.
Right: �

2 vs. �
2

⌦
�̃
0
1
h2 . The colour map denotes the evolution from number from generation 0 up to 300, the

initial guesses (Ngen = 0) are depicted in black and the final generation (Ngen = 300) in yellow. The red star
corresponds to the best fit.

FIG. 4. �2

⌦
�̃
0
1
h2 vs. the Higgsino (left) and wino (right) component of the lightest neutralino.

A wino-like neutralino is not particularly easy to find through direct detection techniques (as the
elastic scattering cross section with nuclei is generally dominated by Higgs exchange diagrams which
are enhanced by the Higgsino component). In Fig. 5, we show the predicted contribution to the
spin-independent (SI) and spin-dependent (SD) scattering cross section for all the di↵erent runs and
in Table IX we include the values obtained for the best fit points. Note that these plots only include
points with ⌦�̃0

1
h2  ⌦DMh2 + 1�: solutions with ⌦�̃0

1
h2 < ⌦DMh2 have been weighted by ⇠ =

min[1,⌦�̃0
1
h2/⌦DMh2] as indicated in each panel. It is interesting to observe that all the best fit

points are nicely grouped around the same solution, with �SI
�̃0
1p

⇡ 10�11 pb and m�̃0
1
⇡ 2 TeV. This

is just below the projected sensitivity of LZ and potentially within the reach of the planned Darwin
experiment. Notice, however, that it is extremely close to the region where the background due to
coherent neutrino scattering becomes important. The spin-dependent contribution is negligible for
these points. Regarding indirect detection, the predicted thermal averaged annihilation cross section
at zero velocity is also shown in this table. It is of the order of h�vi0 ⇡ 10�26 cm3s�1, just within the
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FIG. 9. Electroweak observables: Left: �
2 vs. MW . Right: �

2 vs. sin2
✓
lept

e↵
. Left: �

2 vs. �Z . Right: �
2 vs.

�inv

Z . The solid black line corresponds to the mean value of each observable, and the shaded areas to the 1�
(grey) and 2� (light grey) regions around that value according to Table IV.

FIG. 10. Left: �2 vs. �aSUSY

µ . The solid black line corresponds to the �a
SUSY

µ mean value, see Table IV. The
1� and 2� regions (light grey) around the mean value are shaded in grey and light grey, respectively. Right:
�
2 vs. �2

�aSUSY
µ

.



pMSSM: GAs as a tool for probing structure:

You can get “predictions” from the final generations. e.g. in this case the spectrum: 
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FIG. 2. (Top) SUSY spectrum for all the generations in run 3. Yellow represents the results for the last
generation and the red line corresponds to the best fit point. (Bottom) The same, but including the results
for the ten runs.



pMSSM: GAs as a tool for probing structure:

Note the “large dimensionality problem”: in 19 dimensions, slices give a 
misleading representation of the structure 

In 19D this ball occupies only 10^(-7) of the volume of the cube!  



pMSSM: GAs as a tool for probing structure:
Slices give a good idea of the flow, but non-linear (Sammon) mapping gives a 
better image of the clustering:  



Conclusions

• GA’s are a promising method of searching for favourable string vacua 
• Search difficulty appears to increase logarithmically with difficulty => 10^500 is doable!! 
• Fitness distance correlation important (The problem cannot be a needle in a haystack) 
• pMSSM studies suggest interesting approach to study string landscape structure  
• But need to decide what you want to ask 


