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Size of the Landscape

The String Landscape is vast.
Classic estimate for # of type IIB flux vacua: # > 10°"
Exist even much larger numbers in the literature: # > 1027299 Taylor,Wang 2015

Proof of finiteness does not exist! But it is known that the #

of elliptically fibered CY threefolds is finite Grassi 1991; Gross 1993

Recent work suggests that the # of Calabi-Yau threefolds

(needed for compactification of type ll/het.) could in fact be A"derl:m’ G?’?rago"f: 2017
. 6 . . uang, laylor

finite, because “almost all” are elliptically fibered =

I”



Landscape vs. S wampland

Vafa 2005

« String Landscape: Set of effective field
theories that can be UV completed to a
string theory vacuum

* String Swampland: The complement of
seemingly consistent effective field theories
which do not arise from string theory

e Swampland Conjectures:
Conjectured properties of theories that
are able to discriminate between the
landscape and swampland
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A Web of Conjectures...
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Problems of the Landscape Type

* Often study a highly nonlinear map of the type:

input data properties of vacua
I L 0
Z VA4
o ) s a
Toric data SUSY?
Fluxes Gauge group
Vector Bundles # representations
# branes Vacuum energy
— ‘ _J — : _J
* Possible questions: » Classify inequivalent input data

» SM problem: find pre-images of given U(x) ¢ Z¢

» Find approximate parameter distributions that
emulate the distribution in string vacua



Problems of the Swampland Type

* The known swampland conjectures are mostly of the following form:
» A bound on a certain quantity in the Landscape Q(Z') < 6(1)

» Exclusion of a property (—SUSY) U (V < 0) U stable = False

* Possible Questions:  » Can we violate it parametrically?
» Can we bend it? What is the ©(1) number?

» How likely is it that the inequality is ~ saturated?

* Very important to give generic predictions from string theory!



CYs and Toric Varieties

Anti-canonical hypersurfaces in toric varieties =9 many Calabi-Yau manifolds

5
Prototype: CP!=! [x;:...:x] Z x>=0 in CP*

=1
More general: toric variety described in terms of / homogeneous coordinates
and R scaling relations

3

Example: K3 hypersurface in weighted projective space P7,,,

[0, 2 1 X5 0 Xy 0 Xs] ~ [ax; @ axy taxy 1 Xy L orPXs)
[X] DXy i Xz i Xy Xs] ~ [x) X D xg Oxy D]
Line bundles = divisors: <L = O0yx(D) = Oy(m, n) D =mD; +nD,

D, = {x; =0} ~ {x, =0} ~ {x, =0} D, = {x, = 0}



CYs and Toric Varieties

Anti-canonical hypersurfaces in toric varieties =9 many Calabi-Yau manifolds

5
Prototype: CP!=! [x;:...:x] Z x>=0 in CP*

=1
More general: toric variety described in terms of / homogeneous coordinates
and R scaling relations

3

Example: K3 hypersurface in weighted projective space P7,,,

[0, 2 1 X5 0 Xy 0 Xs] ~ [ax; @ axy taxy Xyt o’ Xs)
[X] DXy i Xz i Xy Xs] ~ [x) i X DXy Oxy D]
Line bundles = divisors: <L = 04x(D) =(Ox(m, n) D =mD; +nD,
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Line Bundle Cohomology - Why!?

CY compactifications of the heterotic string or F-theory: interested in sheaf
cohomology groups H'(X, &), where X is the CY itself or a sub-manifold of it.

Dimensions #'(X, %) count massless modes in the 4d theory
Heterotic String/F-theory: e.g. chiral fermions

For us, they simply define a non-linear map of the type discussed before

h (X, Ox(my, ...,mp)) : Z' - 79X, j=1,...,dim(X)

.

Line bundle integers Cohomology dimensions
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cohomology groups H'(X, &), where X is the CY itself or a sub-manifold of it.
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~

Line bundle integers Cohomology dimensions
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The Traditional Approach

Several algorithms are known for the computation of line bundle cohomology
In various cases, exact formulae for toric varieties are known
Not so much for hypersurfaces

Analytic results for CICYs in products of projective spaces Lukas, Constantin 2018

Bott formula: A4° (CP”, @CPn(k)) = <k _rlz_ n) Polynomial of degree n!

We use the COhomca|g algorithm Blumenhagen, Jurke, Rahn, Roschy 2010

Computes for us cohomology of line bundles on the toric ambient space X

13



From Ambient Space to Hypersurface

Line bundles on the ambient space O(D) pull back to the hypersurface 6,(D)

Relation is given by the Koszul sequence:

0= OyD—-H)S O0yD)= 0y(D) = 0

Induces long exact sequence of cohomology groups

res

- = H(Oy(D - H)) & H(6y(D)) = H(Oy(D)) > H*(Gx(D - H)) — -

Strategy:

.
2.
3.

Cut long sequence into short ones if we hit a zero
Use the fact that the alternating sum of dimensions is zero

Try to solve this linear system for the 1'(0(D)) in terms of
the h'(Oy(D)) and h'(Ox(D — H))

If this procedure does not give a unique result, need to
introduce further cuts and need info about maps!
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The Data

. dP,

ic variety

Tori

20

600

400

20
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K3 hypersurface in P

3
1112

The Data
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NN Approaches for Learning Cohomolgy

1. Classification Bull, He, jejjala, Mishra 2018

NN

\
my [ | ——
_——

2. Regression

/ 1]\

Ruehle 2017

\
. NN
/

WX, £ =1
WX, %) =2
WX, %) =3

WX, ) > h’

ax

WX, &)

(X, &)

(X, &)

/ 1]\

h4(X, &)

* Output is probability
for class membership
* Bad: Have to bin/cut
off + output scales
with m,
— Cannot extrapolate

to larger m; than
training set

¢ Output should reproduce
directly the A’

* Round to nearest integer

* Extrapolation limited by
used float point precision

e Can make use of
correlations between /'
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Regression by Neural Networks

m

3 fully connected leaky RelLU layers
with 100 neurons
8172=6561 data points
60% used for training
Normalized data

Batch size: 300
Training time: 2min on Desktop CPU

3

K3 hypersurface in P7,,,

~ 50% accuracy

but: easy to learn
the zeros...

0.5
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Regression by Neural Networks

Problems: ¢ Regression works for simple examples (almost 100% accuracy for a
dP| toric ambient space), but fails for more complicated ones
(hypersurfaces).

* Later: partly due to high frequency oscillation in data

* Extrapolation fails also due to finite float precision

Can we do better? General lesson: Yes, if we understand our data...

19



Hirzebruch-Riemann-Roch

The HRR theorem allows us to easily compute an analytic expression for the
holomorphic Euler characteristic of a line bundle

v(X, %) =J ch(D)td(X)

X
The Euler characteristic is just the alternating sum of ranks
dime(X) .
X L)= ) (DX, 2)
i=0

It is a polynomial of degree dim:(X) in the line bundle integers

If the alternating sum of cohomologies is that simple, it is reasonable to expect
that locally they are also individually polynomial, with pairwise discontinuities or
kinks at loci of codimension >|

20



A Closer Look at the Data...

K3 hypersurface in P5 |, 40 9o .

21



The Classification Problem

Visually: Data is locally described by polynomial v
Aim: identify the phase boundaries in the space of line bundle integers

Look for locations where the map
h' (X, Ox(my, ...,mp)) : Z' - 74", j=1,...,dim(X)

is not differentiable
Get a cone structure in input space —» not quite actually... (see later)
Use unsupervised learning for this!

Once done, just fit a polynomial within each phase!

22



The Algorithm

The polynomials are of degree at most d = dim(X)

The (d+1)st derivatives of the map are only non-vanishing at phase boundary

Run a classification on data set
ad+1hi ad+1hi ad+lhi
m , e ,
ad+1m1 ddmlamz 8d+1mR

This separates the data into a large interior class and boundary classes

After getting rid of the boundary classes, classify the data set
. adhi adhi adhi
m , : e :
“m;  09m,0m, 0“mp

This leads to a classification of interior phases with different polynomials

23



Implementation

We used Mathematica | 1.3
Can use the Classify[] function with Method: NeuralNetwork

It turned out that classical clustering algorithms like KMeans are more efficient

Method: KMeans

The ClusterClassify[] function i ' '
e ClusterClassify[] function is used with options PerformanceGoal: Quality

Use LinearModelFit[] to fit a polynomial of deg=dimension

24



Example |: dP,

Works nicely, but so does
the regression with a NN

800

600

400

200

e o & 0000
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3

Example 2: K3 hypersurface in Py, ,,

m
40

20

Remarkably, we find
more than the
visible three phases.
In particular there
is a Z, modulation

1 4000
3000
2000

1000

Simple regression NN not
well suited to reproduce
the alternating phases!
They are a generic feature.



Example 3: CY3 hypersurface in [|3>‘1‘1222

6000
Again, the Z, modulation. For more

complicated examples, we expect
2000 also ZN

4000

Z ,modulation in constant
phase needed for other '




Cross-check: HRR

* We fit polynomials with rational coefficients. This guarantees that we can

extrapolate to arbitrarily large inputs if the fit is correct.

* If the alternating sum of these coefficients agrees with Hirzebruch-Riemann-
Roch, it is a strong indication that the result is correct

* Check for K3 hypersurface in P

3
1112

Phase | hY ht h?

I 0 0 —n? +nm +m? + 2

11 —n? +nm+m? + 2 0 0

[r | m 47 3n2 — 3nm — 3n 4+ 37 4 3m 4.3 | op2 _opp — 3p 4 Mo 4 3m oy
IV 2n2—2nm+3n+m72—37m+1 3n2—3nm+3n+3722—3;n+% 5TZ+£

V| 202 —2nm 430425 — 3% 41 [ 302 —3nm +3n+ 25— 3m g | 5ml o

7 3n2 — 3nm —3n + 37 4 3™ 1 | 2p2 — 2pm — 3n 4 T 4 3 4
VII |0 3n® — 3nm — 3n + 3m 2n’® —2nm — 3n +m? + 3m + 2
VIII | 2n* —2nm+3n+m? —3m+2 | 3n° —3nm + 3n — 3m 0

* Agrees perfectly with HRR

. )((X,@X(m,n)) =m2+mn_n2+2

28



Possible Generalizations

* Our algorithm applies to line bundles on toric hypersurfaces
* One is also interested more generally in vector bundles

e Can be constructed via the monad bundle construction from line bundles
A 'p
0 - @) Oxm) = @ Ox(n) » U -0
i=1 i=1

* Again, the bundle is determined by the set of integers (m;, n,)

Would be interesting to figure out if our algorithm works here

Another possibility is to check higher codimension complete intersections

* Results from the literature indicate similar piecewise polynomial behaviour
Lukas, Constantin 2018
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Conclusions

Crucial to further our understanding of possible swampland constraints. ML?
Landscape: computing line bundle cohomology of toric hypersurfaces.

NNs fail in many respects and do not solve interesting question
Understanding the data —» reduction to clustering + simple polynomial fit

Analytic expressions! Can we understand them in terms of topological data?
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String Theorists = Fruit Flies?

25,000 artificial neurons

@:ience News from research organizati@ ‘

Artificial fly brain can tell who's who
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55 Strmg*s, Cosmology and Gravity
i Student Conference 2019

Aiming at PhD students and beginning postdocs

Organisers
Lars Aalsma (UvA)
Lilian Chabrol (IPhT)
- Marine De Clerck (VUB)
David Ho (ICL)
Daniel Kliwer (MPP)
Grégoire Mathys (UvA)
. David Osten (MPP)
/ Antonio Retundo (UvA)
Matthias Traube (MPP)
Guillaume Valette (ULB)
Stav Zalel (ICL)

1stto 3rd of April 2019

Max Planck Institute for Physics, Munich

Ap-Byztt Registration deadline for talks:
Max-Planck-Institut fiir Physik Visitour
3 SVI:;er-HeiI:tasr]erglnst:tluIt') o 1 St OfFCbruary 20 1 9 .
website

April Ist-3rd 2018

Registration is open!
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