
Machine Learning Line Bundle Cohomology

DK, Lorenz Schlechter — arXiv:1809.02547

Daniel Kläwer

Machine Learning Landscape - ICTP Trieste



Outline

 2

Landscape: 
Line Bundle 
Cohomology

Machine Learning 
Landscape

vs.
Machine Learning 

Swampland

Traditional 
Approach

ML 
Approach



Size of the Landscape

 3

• The String Landscape is vast.

• Classic estimate for # of type IIB flux vacua:

• Exist even much larger numbers in the literature: 

• Proof of finiteness does not exist! But it is known that the # 
of elliptically fibered CY threefolds is finite

• Recent work suggests that the # of Calabi-Yau threefolds 
(needed for compactification of type II/het.) could in fact be 
finite, because “almost all” are elliptically fibered

# > 10500

# > 10272,000 Taylor, Wang 2015

Anderson, Gao, Gray, Lee 2017
Huang, Taylor 2018

Grassi 1991; Gross 1993



Landscape vs. Swampland
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• String Landscape: Set of effective field 
theories that can be UV completed to a 
string theory vacuum

• String Swampland: The complement of 
seemingly consistent effective field theories 
which do not arise from string theory

• Swampland Conjectures: 
Conjectured properties of theories that 
are able to discriminate between the 
landscape and swampland

SM

Vafa 2005



A Web of Conjectures…
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Weak Gravity 
Conjecture

Swampland 
Distance 

Conjecture

(Refined)

global 
symmetries

de Sitter

Lattice WGC

Completeness 
Conjecture

???

??

non-SUSY 
AdS

String Phenomenology, July 2018

Mpl |∇V | ≥ cV
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Mpl |∇V | ≥ cV

M2
pl min(∇i ∇jV ) ≤ − c′�V

Spin-2 Conjecture

Emergence?

DK, Lüst, Palti
arXiv:1811.07908

Ooguri, Palti, Shiu, Vafa
arXiv:1810.05506

See also: Andriot, Roupec 2018
+ many others



Problems of the Landscape Type
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• Often study a highly nonlinear map of the type:

input data properties of vacua

ℤI ℤO

• Possible questions: ‣ Classify inequivalent input data

‣ SM problem: find pre-images of given

‣ Find approximate parameter distributions that 
emulate the distribution in string vacua

U(x) ⊂ ℤO

Toric data
Fluxes

Vector Bundles
# branes

SUSY?
Gauge group

# representations
Vacuum energy

… …

…



Problems of the Swampland Type
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• The known swampland conjectures are mostly of the following form:

‣ A bound on a certain quantity in the Landscape

‣ Exclusion of a property

Q(ℤI) < 𝒪(1)

(¬SUSY) ∪ (V < 0) ∪ stable = False

• Possible Questions:

• Very important to give generic predictions from string theory!

‣ Can we violate it parametrically?

‣ Can we bend it? What is the        number? 

‣ How likely is it that the inequality is     saturated?

𝒪(1)

≈



CYs and Toric Varieties
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• Anti-canonical hypersurfaces in toric varieties       many Calabi-Yau manifolds

• Prototype:           

• More general: toric variety described in terms of    homogeneous coordinates 
and    scaling relations

• Example: K3 hypersurface in weighted projective space

ℂPI−1 [x1 : … : xI] ∑
5

i=1
x5

i = 0 in ℂP4

ℙ3
1112

• Line bundles = divisors:

[x1 : x2 : x3 : x4 : x5] ∼ [αx1 : αx2 : αx3 : x4 : α2x5]
[x1 : x2 : x3 : x4 : x5] ∼ [x1 : x2 : x3 : βx4 : βx5]

I
R

ℒ = 𝒪X(D) = 𝒪X(m, n)

D1 = {x1 = 0} ∼ {x2 = 0} ∼ {x3 = 0} D2 = {x4 = 0}

D = mD1 + nD2
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Line Bundle Cohomology - Why?
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• CY compactifications of the heterotic string or F-theory: interested in sheaf 
cohomology groups              , where X is the CY itself or a sub-manifold of it.

• Dimensions               count massless modes in the 4d theory

• Heterotic String/F-theory: e.g. chiral fermions 

• For us, they simply define a non-linear map of the type discussed before

Hi(X, ℒ)

hi (X, 𝒪X(m1, …, mI)) : ℤI → ℤdim(X), i = 1,…, dim(X)

Line bundle integers Cohomology dimensions

hi(X, ℒ)
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The Traditional Approach
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• Several algorithms are known for the computation of line bundle cohomology

• In various cases, exact formulae for toric varieties are known

• Not so much for hypersurfaces

• Analytic results for CICYs in products of projective spaces

• Bott formula:

• We use the cohomCalg algorithm

• Computes for us cohomology of line bundles on the toric ambient space

Lukas, Constantin 2018

Blumenhagen, Jurke, Rahn, Roschy 2010

X

h0 (ℂPn, 𝒪ℂPn(k)) = (k + n
n ) Polynomial of degree n!



From Ambient Space to Hypersurface
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• Line bundles on the ambient space           pull back to the hypersurface

• Relation is given by the Koszul sequence:

𝒪X(D) 𝒪H(D)

0 → 𝒪X(D − H) → 𝒪X(D) → 𝒪H(D) → 0

• Induces long exact sequence of cohomology groups

⋯ → Hi(𝒪X(D − H)) → Hi(𝒪X(D)) → Hi(𝒪H(D)) → Hi+1(𝒪X(D − H)) → ⋯

m res

m res δ

• Strategy: 1. Cut long sequence into short ones if we hit a zero

2. Use the fact that the alternating sum of dimensions is zero

3. Try to solve this linear system for the                 in terms of 
the                and

4. If this procedure does not give a unique result, need to 
introduce further cuts and need info about maps!  

hi(𝒪H(D))
hi(𝒪X(D)) hi(𝒪X(D − H))



The Data
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dP1Toric variety:



The Data

 16

ℙ3
1112K3 hypersurface in



NN Approaches for Learning Cohomolgy
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1. Classification

2. Regression

⋯

⋯

h0(X, ℒ) = 1
h0(X, ℒ) = 2
h0(X, ℒ) = 3

h0(X, ℒ) > h0
max

m1
m2

mI

⋯

⋯

h0(X, ℒ)
h1(X, ℒ)
h2(X, ℒ)

m1
m2

mI
hd(X, ℒ)

NN

NN

• Output is probability 
for class membership

• Bad: Have to bin/cut 
off + output scales 
with     mi

Cannot extrapolate 
to larger     than 
training set

mi

• Output should reproduce         
directly the

• Round to nearest integer
• Extrapolation limited by 

used float point precision
• Can make use of 

correlations between

hi

hi

Ruehle 2017

Bull, He, Jejjala, Mishra 2018



Regression by Neural Networks
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3 fully connected leaky ReLU layers 
with 100 neurons

81^2=6561 data points
60% used for training

Normalized data
Batch size: 300

Training time: 2min on Desktop CPU

ℙ3
1112K3 hypersurface in

50% accuracy≈
but: easy to learn 
the zeros…



Regression by Neural Networks
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Problems: • Regression works for simple examples (almost 100% accuracy for a 
dP1 toric ambient space), but fails for more complicated ones 
(hypersurfaces).

• Later: partly due to high frequency oscillation in data

• Extrapolation fails also due to finite float precision

Can we do better? General lesson: Yes, if we understand our data…

mmax



Hirzebruch-Riemann-Roch
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• The HRR theorem allows us to easily compute an analytic expression for the 
holomorphic Euler characteristic of a line bundle

• The Euler characteristic is just the alternating sum of ranks

χ(X, ℒ) =
dimℂ(X)

∑
i=0

(−1)ihi(X, ℒ)

χ(X, ℒ) = ∫X
ch(ℒ)td(X)

• It is a polynomial of degree              in the line bundle integers

• If the alternating sum of cohomologies is that simple, it is reasonable to expect 
that locally they are also individually polynomial, with pairwise discontinuities or 
kinks at loci of codimension    1

dimℂ(X)

≥



A Closer Look at the Data…
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ℙ3
1112K3 hypersurface in



The Classification Problem
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• Visually: Data is locally described by polynomial

• Aim: identify the phase boundaries in the space of line bundle integers

• Look for locations where the map

hi (X, 𝒪X(m1, …, mI)) : ℤI → ℤdim(X), i = 1,…, dim(X)

is not differentiable

• Get a cone structure in input space            not quite actually… (see later)

• Use unsupervised learning for this!

• Once done, just fit a polynomial within each phase!



The Algorithm
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• The polynomials are of degree at most

• The (d+1)st derivatives of the map are only non-vanishing at phase boundary

• Run a classification on data set

• This separates the data into a large interior class and boundary classes

• After getting rid of the boundary classes, classify the data set

• This leads to a classification of interior phases with different polynomials

d = dimℂ(X)

{ ⃗m ,
∂d+1hi

∂d+1m1
,

∂d+1hi

∂dm1∂m2
, . . . . . ,

∂d+1hi

∂d+1mR }

{ ⃗m ,
∂dhi

∂dm1
,

∂dhi

∂dm1∂m2
, . . . . . ,

∂dhi

∂dmR }



Implementation
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• We used Mathematica 11.3

• Can use the Classify[] function with Method: NeuralNetwork

• It turned out that classical clustering algorithms like KMeans are more efficient

• The ClusterClassify[] function is used with options

• Use LinearModelFit[] to fit a polynomial of deg=dimension

Method: KMeans
PerformanceGoal: Quality



Example 1:

 25

Works nicely, but so does 
the regression with a NN

dP1



Example 2: K3 hypersurface in 
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ℙ3
1112

Simple regression NN not 
well suited to reproduce 
the alternating phases! 

They are a generic feature.

Remarkably, we find 
more than the 

visible three phases. 
In particular there 
is a      modulation ℤ2



Example 3:  CY3 hypersurface in
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ℙ4
11222

Again, the     modulation. For more 
complicated examples, we expect 
also

ℤ2

ℤN

    modulation in constant 
phase needed for other hi
ℤ2



Cross-check: HRR
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• We fit polynomials with rational coefficients. This guarantees that we can 
extrapolate to arbitrarily large inputs if the fit is correct.

• If the alternating sum of these coefficients agrees with Hirzebruch-Riemann-
Roch, it is a strong indication that the result is correct

• Check for K3 hypersurface in ℙ3
1112

• Agrees perfectly with HRR: χ (X, 𝒪X(m, n)) = m2 + mn − n2 + 2



Possible Generalizations
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• Our algorithm applies to line bundles on toric hypersurfaces

• One is also interested more generally in vector bundles

• Can be constructed via the monad bundle construction from line bundles

0 →
rA

⨁
i=1

𝒪X(mi) ↪
rB

⨁
i=1

𝒪X(ni) ↠ U → 0

• Again, the bundle is determined by the set of integers

• Would be interesting to figure out if our algorithm works here

• Another possibility is to check higher codimension complete intersections

• Results from the literature indicate similar piecewise polynomial behaviour

(mi, ni)

Lukas, Constantin 2018



Conclusions
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• Crucial to further our understanding of possible swampland constraints. ML?

• Landscape: computing line bundle cohomology of toric hypersurfaces.

• NNs fail in many respects and do not solve interesting question

• Understanding the data        reduction to clustering + simple polynomial fit

• Analytic expressions! Can we understand them in terms of topological data?
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Schneider, Murali, Taylor, Levine 2018

Source: https://www.sciencedaily.com/releases/
2018/10/181025142010.htm

String Theorists = Fruit Flies?

25,000 artificial neurons
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Guillaume Valette (ULB) 
Stav Zalel (ICL)

April 1st-3rd 2018

Registration is open!



Thank You


