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The Spam filter that discovered the Higgs Boson, or why
ML is impressive

(even before the Higgs discovery at CERN)



Unification and String Theory

String theory is the only known consistent theory of quantum
gravity.

I Postulates extra-dimensions of space.

I Relies on a fundamental symmetry between matter particles
and force carriers, called supersymmetry (SUSY).



Unification and String Theory

String theory is the only known consistent theory of quantum
gravity.

I Postulates extra-dimensions of space.

I Relies on a fundamental symmetry between matter particles
and force carriers, called supersymmetry (SUSY).

String theory is (also) an organising principle for mathematics.



String Compactification

String theory unifies gravity and QM and reduces to the Standard
Model (SM) in the low energy limit, via an intermediate Grand
Unified Theory (GUT)1.

String Theory −→ GUT −→ SM

This is called string ‘compactification’ where the low energy theory,
SM, is recovered by hiding away or compactifying over the
extra-dimensions of space.

This places severe geometrical constraints on the extra-dimensions
of string theory.

1compactifications without an intermediate GUT also possible



String Phenomenology

The Holy grail: Embed the Standard Model (SM) of particle
physics in its full glory within the framework of string theory.

1. Reproduce the particle content, coupling constants, masses of
particles of the SM.

2. Explain the origin of discrete symmetries of SM that help
explain unobserved couplings, the long lifetime of the proton,
etc.

3. Other challenges: Explain fine tuning, moduli stabilisation,
supersymmetry breaking.

4. No such model till date, but there has been considerable
progress. Only a handful of string-derived Sandard Models
until c. 20102. Since then there are have been tens of
thousands! This is primarily due to innovative mathematical
constructions, and increased computational prowess.

2heterotic CY compactifactions



Discrete Symmetries in particle physics

I Discrete Symmetries are hypothesised in the 4 dimensional
theory (SM) to explain the occurrence or absence of certain
physical phenomena.

I Example 1: The discrete symmetry group

∆(27) := (Z3×Z3) o Z3 ⊂ SU(3)

is often invoked to explain the structure of the mismatch of
quantum states in a flavor-changing weak process in the SM
involving quarks (CKM) or neutrinos (PMNS).

I Example 2: An R-symmetry is often invoked to explain why
the proton is stable and does not decay in a MSSM.

I But the origin of such hypothesised symmetries is not
understood! In superstring theory they are thought to descend
from isometries of the compactification space.



Discrete Symmetries and String theory

I Since most known CYs are simply-connected, most quasi-realistic
string models are built over the quotient of a CY manifold by a
freely acting discrete symmetry group.

I Flux lines around the irreducible paths of the manifold allow
breaking of the GUT gauge group to the Standard Model gauge
group, which may not be possible using a simply-connected CY.

String Theory −→ GUT −→ SM

I In addition, if the CY quotient manifold on which the string model
is built, has any remnant discrete symmetry, such a symmetry might
survive the gauge group breaking above, to appear as symmetries of
the low energy SM, explaining in part, the origin of such discrete
symmetries!



Calabi-Yau manifolds in String theory



Calabi-Yau Compactifiactions of the Heterotic String

I CY compactifications of the Heterotic String is one of the
most promising avenues for string model building.

I The space-time for the effective field theory is the direct
product: M4×X6, where M4 is a maximally symmetric space.

I If X6 is Riemannian, irreducible and we demand N = 1
supersymmetry in the 4-dimensional theory (SM), then
Hol(X6) = SU(3). Do such manifolds exist?

I Calabi conjecture (proved by Yau): An n-dimensional complex
Kähler manifold with vanishing first Chern class admits a
metric with SU(n) holonomy. This leads us to the class of
Calabi-Yau manifolds. Thus X6 is a CY threefold.



Calabi-Yau Geometry: Generalities

A Calabi-Yau manifold of complex dimension n is a compact
Kähler3 manifold (X , J, g) with

I vanishing first Chern class, or,

I holonomy group SU(n), or ,

I a globally defined and nowhere vanishing holomorphic n-form.

where, J is the complex structure, and g is the metric.

3Hermitian manifold with a closed (1,1) form.



Moduli space of Calabi-Yau threefolds

The total parameter space of a CY manifold consists of parameters
related to its structure as a complex manifold and parameters
related to the deformations of its Kähler metric.

1. h1,1(M) = dim H1,1(M) is intimately related to the dimension
of the Kähler structure moduli space of M.

2. h2,1(M) = dim H1,2(M) is intimately related to the dimension
of the Complex structure moduli space of M.

3. Calabi-Yau threefolds come in mirror pairs, (M,W ), such that
H2,1(W ) ∼= H1,1(M) and H1,1(W ) ∼= H2,1(M). Roughly
speaking, the complex structure moduli is exchanged with the
Kähler structure moduli. This is the basic idea behind mirror
symmetry.



Calabi-Yau threefold Geometry: Hodge Numbers

hp,q = dim Hp,q(M) :

1.4 Cohomology 12

space of closed k-forms on M by the vector space of exact k-forms on M . That is, given a
closed k-form ω, its cohomology class [ω] ∈ Hk

dR(M, R) is the space of closed k-forms which

differ from ω by an exact form. We call ω a representative of [ω].

We can see in the definition of de Rham cohomology groups that the complex terminates.

This is because there is no antisymmetric (n + 1)-tensor field on an n-manifold.

Remark 1.14. The R in Hk
dR(M, R) means that the closed k-forms are real, i.e. they are

elements of Ωk(M). However, we can also define the de Rham cohomology groups for com-

plexified k-forms, that is elements of Ωk
C(M), which we denote by Hk

dR(M, C).

Using cohomology groups we can define some important topological invariants. We define

the Betti numbers bk = dimR Hk
dR(M, R). We can also define the Euler characteristic as the

alternating sum of the Betti numbers:

χ =

n∑

k=0

(−1)kbk. (1.17)

Now what is the analog of the de Rham cohomology groups for complex manifolds?

Definition 1.15. Let M be a complex manifold of complex dimension m. As ∂̄2 = 0, we
can form the complex

∂̄ ∂̄ ∂̄ ∂̄ ∂̄
0 → Ωp,0(M) → Ωp,1(M) → . . . → Ωp,m(M) → 0.

(1.18)

We define the Dolbeault cohomology groups Hp,q

∂̄
(M) of M by

Hp,q

∂̄
(M) =

Ker(∂̄ : Ωp,q(M) → Ωp,q+1(M))

Im(∂̄ : Ωp,q−1(M) → Ωp,q(M))
. (1.19)

Remark that the Dolbeault cohomology groups depend on the complex structure of M .

Note also that we could have defined the cohomology groups using ∂ instead of ∂̄, this is
just a matter of convention since they are complex conjugate.

We now define the Hodge numbers to be hp,q = dim Hp,q

∂̄
(M). The Hodge numbers of a

complex manifold are summarized in what is commonly called the Hodge diamond:

hm,m

hm,m−1 ... hm−1,m

hm,0 · · · · · · h0,m

h1,0 ... h1,0

h0,0

(1.20)

3.3 Examples 30

and h2,1, and the Hodge diamond takes the form:

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(3.3)

The Euler characteristic of a Calabi–Yau manifold accordingly simplifies. Recall that
χ =

∑2m
k=0(−1)kbk, so we now have that χ = 2b0 − 2b1 + 2b2 − b3 = 2 − 0 + 2h1,1 − 2 − 2h2,1,

that is
χ = 2(h1,1 − h2,1). (3.4)

Therefore, if the Euler characteristic is easily computed, we only have to compute one of

the two independent Hodge numbers to get all the topological information. In fact, we saw
in section 1.5 that the Euler characteristic is given by the integral over M of the top Chern

class of M , which is c3(M) for a Calabi–Yau threefold:

χ =

∫

M

c3(M). (3.5)

This formula can be used to compute the Euler characteristic of M .

We saw earlier that h1,1 classifies infinitesimal deformations of the Kähler structure. For
a Calabi–Yau threefold, similarly, h2,1 classifies infinitesimal deformations of the complex

structure. We refer the reader to chapter 6 of [16] for a detailed discussion of this interpre-
tation and of the moduli space of Calabi–Yau manifolds.

Remark 3.1. One of the fascinating property of Calabi–Yau threefolds is that they come

in mirror pairs, (M, W ), such that H2,1(W ) ∼= H1,1(M) and H1,1(W ) ∼= H2,1(M). Roughly
speaking, the complex structure moduli is exchanged with the Kähler structure moduli. This

is the basic idea behind mirror symmetry. See [16, 10] for more information on this subject.

3.3 Examples

We will now study in some details two particular examples of Calabi–Yau threefolds: the

quintic in CP4, and the Tian-Yau manifold. Both examples have been very important in
the history of string theory, and they will help us find our way in the asbtract jungle of

Calabi–Yau threefolds.

There are various ways one can follow to see if a Kähler manifold is Calabi–Yau. The more

‘hands-on’ way is probably to find a globally defined and nowhere vanishing holomorphic



Many possible Calabi-Yau geometries: The Hodge Plot
which give the appearance of a fractal. This is the plot shown in Figure 1. Each point of the plot

corresponds to one or several reflexive polytopes from the Kreuzer-Skarke list, as illustrated in

Figure 2, in which the colour code indicates the occupation number of each site.
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Figure 2: The Hodge plot for the list or reflexive 4-polytopes. Di↵erent colours correspond to di↵erent
occupation numbers: the points in the top region of the plot correspond to one or very few reflexive polytopes,
while the blue region in the vicinity of the tip contains points with occupation numbers of order of one million.

The structure of this plot has been mysterious for more than two decades. The distribution

of points in the top region of the plot is symmetric with respect to the axes � = ⌥480. Inspired

by the fact that the exact symmetry around the axis � = 0 corresponds to mirror symmetry, we

name this partial symmetry ‘half-mirror symmetry’. Another striking feature of the plot is that

in the top middle region, the points are arranged into a grid-like structure.

In Chapter 2, we find that the generic features of the plot, as well as the structures mentioned

above are explained as an overlapping of several webs formed by repeating a fundamental structure

along many translation vectors. These webs correspond to Calabi-Yau manifolds fibered over CP1

for which the fiber is a K3 manifold. Di↵erent types of K3 fibers give rise to distinct webs. Along

7

x-axis: Euler Characteristic, y-axis: ‘Height’ (h1,1 + h2,1)

473,800,776 data points



Many possible Calabi-Yau geometries: Tip of the Hodge Plot
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Calabi-Yau Threefolds With Small Hodge Numbers: Candelas,
Constantin, CM, Fort. der. Physik (2018), 1602.06303



Constructing Calabi-Yau Manifolds

1. Submanifolds of Cm are not very interesting: a connected
compact analytic submanifold of Cm is a point!

2. CPm is compact; all its closed complex submanifolds are also
compact.

3. Theorem due to Chow states that all such submanifolds of
CPm can be realized as the zero locus of a finite number of
homogeneous polynomial equations, e.g., the Fermat quintic
defined as a hypersurface in CP4 below:

Fermat Quintic: {x ∈ CP4 |
4∑

a=0

x5a = 0}



Complete Intersection Calabi-Yau Manifolds

Taking cue from the Fermat quintic, one can construct Complete
Intersection Calabi-Yau Manifolds ⊂ CPn1× . . .×CPnm .

X =

CP n1

...

CP nm




q11 . . . q1K

...
. . .

...

qm1 . . . qmK


 ,

∑

a

qra = nr + 1,∀r ∈ {1, . . . ,m}

X denotes the family of CY-threefolds defined by the vanishing locus of
K polynomials. qra is the multi-degree of the ath polynomial in the r th

projective space CPnr .

Example: X = CP4[5] : X = {x ∈ CP4 | p(x) = 0}, where p is the
most general degree 5 polynomial in the 5 homogeneous co-ordinates of
CP4.



The list of Complete Intersection Calabi-Yau Threefolds

X =

CP n1

...

CP nm


q1
1 . . . q1

K

...
. . .

...

qm
1 . . . qm

K


h1,1,h2,1

χ

,
∑
a

qr
a = nr + 1, ∀r ∈ {1, . . . ,m}

K = N1+Na+3, N1 ≤ 9, Na ≤ 6 N1 = # CP1 factors, Na = # other factors

I 7890 CY threefold families in the CICY list.

I At least 2590 are known to be distinct as classical manifolds.

I Only 266 distinct pairs (h1,1, h2,1) of Hodge numbers.

I 0 ≤ h1,1 ≤ 19, 0 ≤ h2,1 ≤ 101.

I χ ∈ [−200, 0] and is computable from the config matrix.

I For comparison, there are 921,497 CICY fourfold configuration matrices,
most of which correspond to elliptically fibered Calabi-Yaus. For these,

4h1,1−2h1,2+4h1,3−h2,2+44 = 0.



Complete Intersection Calabi-Yau Manifolds: Examples4

CP1

CP1

CP1

CP1

CP7


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1


5,37

−64

P4

P4

[
2 2 1 0 0
0 0 1 2 2

]12, 28
−32

4Note the bipartite graph representation.



Favourability of CICYs

A CICY is favourable if its entire second cohomology descends
from that of the ambient space. Favourable CICYs are especially
amenable to the construction of stable holomorphic vector and
monad bundles, leading to quasi-realistic heterotic string models.

∼ 62% of all CICYs are favorable creating a balanced dataset.

All but 48 CICY configuration matrices can be ‘made’ favourable.
The remaining can be seen to be favourably embedded in a
product of del Pezzo surfaces.

P4

P4

[
2 2 1 0 0
0 0 1 2 2

]12, 28

−32

⊂ dP4 × dP4

Can favorability of CICYs be learnt by ML tools?



Machine Learning Tools: Neural Network

Input vector

Neuron

Schematic representation of feedforward neural network. The top figure
denotes the perceptron (a single neuron), the bottom, the multiple neurons and
multiple layers of the neural network.



Complete Intersection Calabi-Yau Manifolds: (in visual
form)

A typical and an average Complete Intersection CY manifold, borrowed
from Deep-Learning the Landscape, 1706.02714, Yang-Hui He.



Machine Learning Tools: Support Vector Machines

I The simplest SVM is a binary classifier for linearly separable data.

I The classification is performed by finding an optimal hyperplane that can
separate clusters of points from the two classes in the feature space.

I This can be extended to tackle non-linearly separable data (using the so
called kernel trick) and data that have multiple classes.

I An SVM regressor chooses the flattest line which fits the data within an
allowed residue ε.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Linear Kernel, linearly separable data
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1.0

Gaussian Kernel, non-linearly separable data

SVM separation boundary (calculated using our cvxopt implementation with a
randomly generated data set.)



Neural Net and SVM Architecture

Generate inital population
Evaluate score for each 

entry in population

Create new population by

selection, breeding and 

mutation

I A genetic algorithm fixes optimal hyperparameters for the Neural Network
such as number of hidden layers, number of neurons in each, activation
functions, and dropout5.

I We use the quadratic programming Python package Cvxopt to solve the
SVM optimization problem. We employ a Gaussian kernel. The
hyperparameters (standard deviation, cost variable6, and residue7) are
selected by hand.

I Keras Python package with TensorFlow backend to implement the Neural
Network. Performed on a Lenovo Y50 laptop, i7-4700HQ, 2.4 GHz quad
core with 16 GB RAM.

5Dropout provides a way to counter overfitting, by randomly dropping
neurons along with their connections from the neural network during training.

6To counter overfitting in SVMs and allow better generalisation to unseen
data, one can allow a few training points to be misclassified.

7for SVM regressors



Experiment 1: Machine Learning Favourability

Accuracy WLB WUB
SVM Class 0.933 ± 0.013 0.867 0.893
NN Class 0.905 ± 0.017 0.886 0.911

Errors were obtained by averaging over 100 random cross validation splits.

High accuracy and speed. Can other CICY properties be learnt with such accuracies?



Computing Hodge Numbers

CICY threefolds:

1. Complete Intersection Calabi-Yau Manifolds, Candelas, Dale,
Lütken, Schimmrigk, Nuclear Physics B 298.3 (1988): 493-525

CICY Quotients:

2. New Calabi-Yau Manifolds with Small Hodge Numbers, Candelas,
Davies, arXiv:0809.4681

3. Completing the Web of Z3 - Quotients of Complete Intersection
Calabi-Yau Manifolds, Candelas, Constantin, arXiv:1010.1878

4. Hodge Numbers for CICYs with Symmetries of Order Divisible by 4,
Candelas, Constantin, CM, arXiv:1511.01103

5. Calabi-Yau Threefolds With Small Hodge Numbers, Candelas,
Constantin, CM, arXiv:1602.06303

6. Hodge Numbers for All CICY Quotients - Constantin and Lukas
arXiv:1607.01830



Computing Hodge Numbers
Computing the Hodge numbers is non-trivial and they have been
painstakingly computed using computers whenever possible and
often by understanding the algebraic-geometry of the manifold in
all its detail (often more gratifying).

Hodge Numbers for CICYs with Symmetries of Order Divisible by 4, Candelas,
Constantin, CM, arXiv:1511.01103



Experiment 2: Machine Learning Hodge number h1,1

I χ = 2(h1,1 − h2,1) is computable directly from the CICY matrix.

I Choice between learning 0 ≤ h1,1 ≤ 19 and 0 ≤ h2,1 ≤ 101.
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Experiment 2: Machine Learning Hodge number h1,1

Accuracy RMS R2 WLB WUB
SVM Reg 0.70 ± 0.02 0.53± 0.06 0.78 ± 0.08 0.642 0.697
NN Reg 0.78 ± 0.02 0.46 ± 0.05 0.72 ± 0.06 0.742 0.791
NN Class 0.88 ± 0.02 - - 0.847 0.886

Errors were obtained by averaging over 100 different random cross
validation splits using a cluster. The Neural Net classifier yields high
accuracy.



Experiment 2: Machine Learning Hodge number h1,1Machine Learning h1,1

Figure 2: The frequencies of h1,1 as 19 channels (validation sets of size 20% and 80% respectively

of the total data), for the neural network classifier (top row) and regressor (middle row) and the

SVM regressor (bottom row).
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NN classifier

NN regressor

SVM regressor

20% 80%

Bull, He, VJ, Mishra (2018)



Experiment 2: Machine Learning h1,1

I The methodology so far does not address the fundamental technical
problem we encounter when studying Calabi-Yau compactification: the
difficulty of a calculation increases with the Hodge numbers and the
dimension. At the same time, any systematic survey of the string
landscape is infeasible.

I All explicit Standard Model constructions are on manifolds with Hodge
numbers of O(1). Triangulating polytopes to populate the toric
Calabi-Yau database stopped at h1,1 = 6.

I We would therefore like to develop techniques such that the training and
validation sets are different in character.

I We aim to train with the easy cases and use the machine to predict
solutions to harder problems for which the calculations are more intricate
or where the answers could be unknown.

I We organize the CICY dataset into a low h1,1 training set and a high h1,1

validation set and provide proof of concept that such an extrapolation is
possible.



Experiment 2: Machine Learning h1,1

SVM predictions of h1,1 for CICY threefolds.
Bull, Hui-He, Jejjala, CM, upcoming .
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Experiment 2: Machine Learning h1,1

Neural network regressor predictions of h1,1 for CICY threefolds.
Bull, Hui-He, Jejjala, CM, upcoming .
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Experiment 2: Machine Learning h1,1

Accuracy of predictions of h1,1 for CICY threefolds.
Bull, Hui-He, Jejjala, CM, upcoming .
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I Brown bars: size of training set; Green: size of validation set.

I The rms decreases with increasing x, as expected, but starts increasing
after a certain point, since the problem becomes very unbalanced.



Experiment 2: Machine Learning h1,1
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I This analysis shows that the algorithms are capable of predicting trends in
the distribution of Hodge numbers from the limited data.

I Both algorithms seem to predict a lot of values below the x in query,
which is natural.

I The SVM performs much better than the Neural Net. Achieves an RMS
error of 1 when only seeing data with h1,1 ≤ 7.



Experiment 3: Machine Learning CY symmetries

Fantastically symmetric Calabi-Yaus and where to find them.



Experiment 3: Machine Learning CY symmetries

The datasets:

I Candelas, Davies, Braun (2011): Only 2.5% of all CICYs
admit group action by a freely acting group (Gf ). A highly
imbalanced dataset.

I Lukas, CM (2017): Of these manifolds, 25% have residual
(non-freely acting) discrete symmetries (GY), acting trivially
on the complex structure moduli space, of which 30% are
R-symmetries (useful for ruling out proton decay channels). A
more balanced dataset but much smaller in size.

GY ∈
{
Z2, Z3, Z4, Z2

2, Z3
2, D8, Z4

2, Z2×D8, (Z3×Z3)oZ2

}
.



Experiment 3: Machine Learning CY symmetries

Exciting new observations:

I Candelas, CM (2017): At special points in the complex
structure moduli space, there are enhanced symmetries, while
still preserving the generality of a large number of complex
structure moduli.

I Candelas, Lukas, CM (upcoming): We report large discrete
symmetry groups in CY threefolds. We find a group of order
1944 containing ∆(27), (possibly ∆(27)oZ3oSL2,3) in a CY
on which there is a 3 generation SM. This is also quite
possibly largest discrete symmetry group on a smooth
Calabi-Yau threefold ever found (to our knowledge!)

I Distinct possibility of such symmetries appearing in the 4d
theory to explain structure of mixing matrices.



Experiment 3: Machine Learning CY symmetries

CICY X ,�! A = Pn1 ⇥ · · · ⇥ Pnm

Gf ,�! N?
G(Gf) ,�! NG(Gf) ,�! G = AutL(A)

,�!

CG(Gf)

,�!

C?
G(Gf)

NG(Gf)/CG(Gf) ⇢ Aut(Gf)

Gf � NG(Gf), N?
G(Gf); GY = N?

G(Gf)/Gf

Figure 1: This diagram summarises the embeddings and relationships between the various spaces and abstract
groups in this paper. The linear automorphism group of the ambient space A (2.1), denoted by AutL(A), is
the infinite group G (2.2). The centraliser CG(Gf) and the normaliser NG(Gf) (2.4) are not discrete in general
and may depend on continuous parameters. The quotient NG(Gf)/CG(Gf) is known to be isomorphic to a
subgroup of the automorphism group of Gf, and is thus finite. The freely acting symmetry Gf (defined in §1),
its automorphism group Aut(Gf), the restricted centraliser C?

G(Gf), the restricted normaliser N?
G(Gf) (defined

in §2), and the residual symmetry GY = N?
G(Gf)/Gf are discrete groups and are written in bold.

Finally, the symmetry group GY of the CICY quotient Y is then found by dividing out Gf, that is

GY = N?
G(Gf)/Gf . (2.10)

A summary diagram of the various groups and spaces is given in Figure 1.

We would also like to decide which g 2 N?
G(Gf) correspond to regular symmetries and which correspond

to R-symmetries and for this purpose we should introduce the holomorphic (3, 0) form ⌦ on X and its

counterpart b⌦ on the ambient space A. The latter can be defined implicitly by the relations

b⌦ ^ dp1 ^ . . . ^ dpK = µ ,

where µ = µ1 ^ · · · ^ µm and µj =
1

nj !
✏�0�1...�nj

x�0
j dx�1

j ^ · · · ^ dx
�nj

j .
(2.11)

The (3, 0) form on X is then given by the restriction ⌦ = b⌦|X . From a standard argument, see,

for example Ref. [25], symmetries which leave ⌦ invariant are regular symmetries and those which

transform ⌦ into a non-trivial multiple of itself are R-symmetries. Since all our symmetries descend

from the ambient space it is, in fact, su�cient to check this transformation property for b⌦. In other

words, we would like to compute the numbers F (g) in

g? b⌦ = F (g)b⌦ . (2.12)

A quick inspection of Eqs. (2.11) shows that they are given by the simple formula

F (g) =
det(g) det(⇢(g))

det(⇡(g))
, (2.13)

where ⇢(g) is the permutation of polynomials which appears in Eq. (2.9) and ⇡(g) 2 S is the permu-
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Experiment 3: Machine Learning CY symmetries

Given a CICY configuration, can we predict if the CICY admits any
freely acting group?

A binary classification problem, but very unbalanced!



Experiment 3: Machine Learning CY symmetries

We need different benchmarks for unbalanced data such as F-values, AUC.
Confusion matrix:

Actual
True False

Predicted True True Positive (tp) False Positive (fp)
Classification False False Negative (fn) True Negative (tn)

TPR (recall) :=
tp

tp + fn
, FPR :=

fp

fp + tn
,

Accuracy :=
tp + tn

tp + tn + fp + fn
, Precision :=

tp

tp + fp
.

I F := 2
1

Recall
+ 1

Precision

, 0 ≤ F ≤ 1.

I AUC, or, Area Under ROC (Receiver Operating Characteristic). ROC
plots TPR against FPR; 0.5 ≤ AUC ≤ 1.



Experiment 3: Machine Learning CY symmetries
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Good ROC curve, AUC=0.988640871922493
No better than random guess, AUC=0.5

Typical ROC curves. The points above the diagonal represent classification
results which are better than random.



Experiment 3: Machine Learning CY symmetries

SMOTE SVM AUC SVM max F NN AUC NN max F

0 0.77 ± 0.03 0.26 ± 0.03 0.60 ± 0.05 0.10 ± 0.03
100 0.75 ± 0.03 0.24 ± 0.02 0.59 ± 0.04 0.10 ± 0.05
200 0.74 ± 0.03 0.24 ± 0.03 0.71 ± 0.05 0.22 ± 0.03
300 0.73 ± 0.04 0.23 ± 0.03 0.80 ± 0.03 0.25 ± 0.03
400 0.73 ± 0.03 0.23 ± 0.03 0.80 ± 0.03 0.26 ± 0.03
500 0.72 ± 0.04 0.23 ± 0.03 0.81 ± 0.03 0.26 ± 0.03

Metrics for predicting freely acting symmetries. Errors were obtained by
averaging over 100 random cross validation splits using a cluster.

I SMOTE helps NN slightly, but not SVM.

I Very challenging to predict whether a CICY admits a freely acting
symmetry!



Possbile Directions

I The same analysis could be applied to the KS dataset and
more naturally to CICY fourfolds. Compare with existing
results.

I This would require creation of further datasets, e.g. discrete
symmetry dataset for CICY fourfolds.

I Explore further ML techniques to extrapolate (even better) to
complex geometries by training only with simpler geometries.

I Keep pushing the boundaries of our stringy understanding of
nature with the newly acquired ally that is Machine Learning!



Grazie!
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ROC and F -curves generated for both SVM and neural network for several SMOTE values


