## Machine learning for Calabi-Yau manifolds

#### Harold Erbin

ASC, LMU (Germany)

Machine Learning Landscape, ICTP, Trieste
– 12th December 2018

Unterstützt von / Supported by



Alexander von Humboldt Stiftung/Foundation



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

### Outline: 1. Motivations

#### Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

ML analysis

Conclusion

## String phenomenology

#### Goal

Find "the" Standard Model from string theory.

#### Method:

- ▶ type II / heterotic strings, M-theory, F-theory: D = 10, 11, 12
- vacuum choice (flux compactification):
  - (typically) Calabi–Yau (CY) 3- or 4-fold
  - fluxes and intersecting branes
  - $\rightarrow$  reduction to D=4
- check consistency (tadpole, susy...)
- read the D = 4 QFT (gauge group, spectrum...)

## String phenomenology

#### Goal

Find "the" Standard Model from string theory.

#### Method:

- ▶ type II / heterotic strings, M-theory, F-theory: D = 10, 11, 12
- vacuum choice (flux compactification):
  - (typically) Calabi–Yau (CY) 3- or 4-fold
  - fluxes and intersecting branes
  - $\rightarrow$  reduction to D=4
- check consistency (tadpole, susy. . . )
- ▶ read the D = 4 QFT (gauge group, spectrum...)

No vacuum selection mechanism ⇒ string landscape

## Landscape mapping

#### String phenomenology:

- find consistent string models
- find generic/common features
- reproduce the Standard Model

## Landscape mapping

#### String phenomenology:

- find consistent string models
- find generic/common features
- reproduce the Standard Model

Typical challenges: properties and equations involving many integers

## Types of data

### Calabi-Yau (CY) manifolds

- CICY (complete intersection in products of projective spaces): 7890 (3-fold), 921,497 (4-fold)
- ► Kreuzer–Skarke (reflexive polyhedra): 473,800,776 (*d* = 4)

### String and F-theory models involve huge numbers

- ▶ 10<sup>500</sup>
- ► 10<sup>755</sup>
- ► 10<sup>272,000</sup>

## Types of data

### Calabi-Yau (CY) manifolds

- CICY (complete intersection in products of projective spaces): 7890 (3-fold), 921,497 (4-fold)
- ► Kreuzer–Skarke (reflexive polyhedra): 473,800,776 (*d* = 4)

### String and F-theory models involve huge numbers

- $ightharpoonup 10^{500}$
- ► 10<sup>755</sup>
- ► 10<sup>272,000</sup>
- → use machine learning

### Plan

### Analysis of CICY 3-fold

- ML methodology
- results and discussions of Hodge numbers

In progress with: Vincent Lahoche, Mohamed El Amine Seddik, Mohamed Tamaazousti (List, Cea).

## Outline: 2. Machine learning

Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

ML analysis

Conclusion

### Definition

### Machine learning (Samuel)

The field of study that gives computers the ability to learn without being explicitly programmed.

### Machine learning (Mitchell)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

## Deep neural network

#### Architecture:

- ▶ 1-many hidden layers
- ▶ link: weighted input
- neuron: non-linear "activation function"



Summary:  $x^{(n+1)} = g^{(n+1)}(W^{(n)}x^{(n)})$ . Generic method: fixed functions  $g^{(n)}$ , learn weights  $W^{(n)}$ 

## Deep neural network

$$x_{i_{1}}^{(1)} \equiv x_{i_{1}}$$

$$x_{i_{2}}^{(2)} = g^{(2)}(W_{i_{2}i_{1}}^{(1)}x_{i_{1}}^{(1)})$$

$$f_{i_{3}}(x_{i_{1}}) \equiv x_{i_{3}}^{(3)} = g^{(3)}(W_{i_{3}i_{2}}^{(2)}x_{i_{2}}^{(2)})$$

$$i_{1} = 1, 2, 3; i_{2} = 1, \dots, 4; i_{3} = 1, 2$$



Summary:  $x^{(n+1)} = g^{(n+1)}(W^{(n)}x^{(n)})$ . Generic method: fixed functions  $g^{(n)}$ , learn weights  $W^{(n)}$ 

### Learning method

define a loss function L

$$L = \sum_{i=1}^{N_{\text{train}}} \operatorname{distance}(y_i^{(\text{train})}, y_i^{(\text{pred})})$$

▶ minimize the loss function (iterated gradient descent...)

### Learning method

define a loss function L

$$L = \sum_{i=1}^{N_{\text{train}}} \operatorname{distance}(y_i^{(\text{train})}, y_i^{(\text{pred})})$$

- minimize the loss function (iterated gradient descent...)
- main risk: overfitting (= cannot generalize)
  - $\rightarrow$  various solutions (regularization, dropout...)
  - $\rightarrow$  split data set in two (training and test)



### ML workflow

#### "Naive" workflow:

- 1. get raw data
- write neural network with many layers
- 3. feed raw data to neural network
- 4. get nice results (or give up)



### ML workflow

#### Real-world workflow:

- 1. understand the problem
- 2. exploratory data analysis
  - feature engineering
  - feature selection
- baseline model
  - full working pipeline
  - lower-bound on accuracy
- 4. validation strategy
- 5. machine learning model
- 6. ensembling

Pragmatic ref.: coursera.org/learn/competitive-data-science

## Complex neural network



## Complex neural network



#### Particularities:

- $f_i(I)$ : engineered features
- ▶ identical outputs (stabilisation)

### Outline: 3. Calabi-Yau 3-folds

Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

ML analysis

Conclusion

### Calabi-Yau

Complete intersection Calabi-Yau (CICY) 3-fold:

- CY: complex manifold with vanishing first Chern class
- complete intersection: non-degenerate hypersurface in products of projective spaces
- hypersurface = solution to system of homogeneous polynomial equations

#### Calabi-Yau

Complete intersection Calabi-Yau (CICY) 3-fold:

- CY: complex manifold with vanishing first Chern class
- complete intersection: non-degenerate hypersurface in products of projective spaces
- hypersurface = solution to system of homogeneous polynomial equations
- described by configuration matrix  $m \times k$

$$X = \begin{bmatrix} \mathbb{P}^{n_1} & a_1^1 & \cdots & a_k^1 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}^{n_m} & a_1^m & \cdots & a_k^m \end{bmatrix}$$
$$\dim_{\mathbb{C}} X = \sum_{r=1}^m n_r - k = 3, \qquad n_r + 1 = \sum_{\alpha=1}^k a_\alpha^r$$

 $ightharpoonup a_{\alpha}^{r}$  power of coordinates on  $\mathbb{P}^{n_{r}}$  in  $\alpha$ th equation

## Configuration matrix

#### Examples

quintic

$$\left[\begin{array}{c|c} \mathbb{P}_x^4 & 5 \end{array}\right] \quad \Longrightarrow \quad \sum_a (X^a)^5 = 0$$

▶ 2 projective spaces, 3 equations

$$\begin{bmatrix} \mathbb{P}_{x}^{3} & 3 & 0 & 1 \\ \mathbb{P}_{y}^{3} & 0 & 3 & 1 \end{bmatrix} \implies \begin{cases} f_{abc} X^{a} X^{b} X^{c} = 0 \\ g_{\alpha\beta\gamma} Y^{\alpha} Y^{\beta} Y^{\gamma} = 0 \\ h_{a\alpha} X^{a} Y^{\alpha} = 0 \end{cases}$$

## Configuration matrix

#### Examples

quintic

$$\left[\begin{array}{c|c} \mathbb{P}_x^4 & 5\end{array}\right] \quad \Longrightarrow \quad \sum_a (X^a)^5 = 0$$

▶ 2 projective spaces, 3 equations

$$\begin{bmatrix} \mathbb{P}_{x}^{3} & 3 & 0 & 1 \\ \mathbb{P}_{y}^{3} & 0 & 3 & 1 \end{bmatrix} \implies \begin{cases} f_{abc} X^{a} X^{b} X^{c} = 0 \\ g_{\alpha\beta\gamma} Y^{\alpha} Y^{\beta} Y^{\gamma} = 0 \\ h_{a\alpha} X^{a} Y^{\alpha} = 0 \end{cases}$$

#### Classification

- ▶ invariances (→ huge redundancy)
  - permutation of lines and columns
  - identities between subspaces
- but:
  - ▶ constraints ⇒ bound on matrix size
  - ▶ ∃ "favourable" configuration

## **Topology**

### Why topology?

- no metric known for compact CY (cannot perform KK reduction explicitly)
- ightharpoonup topological numbers ightarrow 4d properties (number of fields, representations, gauge symmetry. . . )

## **Topology**

### Why topology?

- no metric known for compact CY (cannot perform KK reduction explicitly)
- ▶ topological numbers  $\rightarrow$  4d properties (number of fields, representations, gauge symmetry. . . )

#### Topological properties

- ▶ Hodge numbers  $h_{p,q}$  (number of harmonic (p,q)-forms) here:  $h_{1,1}$ ,  $h_{2,1}$
- Euler number  $\chi = 2(h_{11} h_{21})$
- Chern classes
- triple intersection numbers
- line bundle cohomologies

## **Topology**

### Why topology?

- no metric known for compact CY (cannot perform KK reduction explicitly)
- ▶ topological numbers  $\rightarrow$  4d properties (number of fields, representations, gauge symmetry. . . )

#### Topological properties

- ► Hodge numbers  $h_{p,q}$  (number of harmonic (p,q)-forms) here:  $h_{1,1}$ ,  $h_{2,1}$
- Euler number  $\chi = 2(h_{11} h_{21})$
- Chern classes
- triple intersection numbers
- line bundle cohomologies

#### Datasets

#### CICY have been classified

- ▶ 7890 configurations (but ∃ redundancies)
- number of product spaces: 22
- $h_{1,1} \in [0,19], h_{2,1} \in [0,101]$
- ▶ 266 combinations  $(h_{1,1}, h_{2,1})$
- ▶  $a_{\alpha}^{r} \in [0, 5]$

### Original [Candelas-Dale-Lutken-Schimmrigk '88][Green-Hubsch-Lutken '89]

- ► maximal size: 12 × 15
- number of favourable matrices: 4874

### Favourable [1708.07907, Anderson-Gao-Gray-Lee]

- ► maximal size: 15 × 18
- number of favourable matrices: 7820

## Data





## Goal and methodology

### Philosophy

Start with the original dataset, derive everything else from configuration matrix and machine learning only.

### Current goal

Input: configuration matrix → Output: Hodge numbers

- CICY: well studied, all topological quantities known

   → use as a sandbox
- 2.  $h_{2,1}$ : more difficult than  $h_{1,1}$ 
  - $\rightarrow$  prepare for studying CICY 4-folds
- 3. both original and favourable datasets

#### Continue the analysis from:

[1706.02714, He] [1806.03121, Bull-He-Jejjala-Mishra]

## Outline: 4. Data analysis

Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

ML analysis

Conclusion

## Feature engineering

Process of creating new features derived from the raw input data.

#### Some examples:

- number of projective spaces (rows), m = num\_cp
- number of equations (columns), k
- ▶ number of  $\mathbb{C}P^1$
- ▶ number of  $\mathbb{C}P^2$
- ▶ number of  $\mathbb{C}P^n$  with  $n \neq 1$
- Frobenius norm of the matrix
- list of the projective space dimensions and statistics thereof (min, max, mean, median)
- ▶ K-nearest neighbour (KNN) clustering (with K = 2, ..., 5)

#### Feature selection

Select the most important features to draw attention of the ML algorithm to salient features in order to ease the learning.

#### Discovery methods:

- correlation matrix
- random forests
- scatter plots
- trial and error
- etc.

### Correlation matrix



#### Random forest

Large number of decision trees trained on different subsets and averaged on the outputs. The most relevant features appear at the top of the trees.

⇒ classify feature importance





## Scatter plots: $h_{1,1}$



# Scatter plots: $h_{2,1}$



## Outline: 5. ML analysis

Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

ML analysis

Conclusion

### Strategy

#### Questions:

- data diminution: remove outliers? (0.74%)
- data augmentation: use data invariance to generate more inputs?
- classification or regression?
- normalise inputs/outputs? (shift by mean, divide by variance)

#### Classification vs regression:

- classification: assume knowledge of boundaries
- regression: outputs of different size
  - $\rightarrow$  normalize data  $\approx$  use continuous variable

Regression: better for generalization

## Algorithms

### Possibilities (starting from original dataset):

- neural network with trivial architecture (matrix  $\rightarrow$  hodges)
- neural network with non-trivial architecture (matrix + engineered features  $\rightarrow$  hodges and tuned topology)
- boosting:
  - 1. linear regression:  $h_{p,q}^{lin} = a \times num_cp + b$
  - 2. neural network for  $h_{p,q} h_{p,q}^{\text{lin}}$
- other ensemble methods
   (average different ML models, train on different subsets...)
- convert dataset
  - 1. find favourable representation
  - 2. apply any method

## Results (1)

### Implementation and training

- sets: training (20%), test (80%)
- training time: few minutes

### Accuracy:

- linear regression:
  - orig.:  $h_{1.1} \approx 61\%$ ,  $h_{2.1} \approx 8.5\%$
  - fav.:  $h_{1,1} \approx 99.5\%$ ,  $h_{2,1} \approx 4.5\%$

(note: regression on several scalars  $\rightarrow h_{2,1} \approx 12.5\%$ )

- basic neural network (regression)
  - orig.:  $h_{1,1} \approx 68\%$  (split: 30%),  $\approx 78\%$  (split: 80%)
  - fav.:  $h_{1,1} \approx 93\%$ ,  $h_{2,1} \approx 16\%$
- boosting
  - orig.:  $h_{1,1} \approx 72\%$ ,  $h_{2,1} \approx 15\%$
  - fav.:  $h_{1,1} \approx 99.5\%$ ,  $h_{2,1} \approx 16\%$

# Results (2)



# Results (3)





- ► Hodge numbers not exactly reproduced
- but distribution quite well learned (ex.: within  $\pm 5\%$  error,  $h_{2,1}$  is accurate more than 70%)

### Discussion

```
In progress: test different architectures (multi-inputs, multi-tasks...)
```

#### Possible extensions:

- ▶ neural network performs very badly on  $h_{2,1}$  → challenge for ML community
- ▶ find a mapping original → favourable (GAN, cyclic GAN...)
- representation learning: find better / invariant representation (PCA, autoencoder...)

### Outline: 6. Conclusion

Motivations

Machine learning

Calabi-Yau 3-folds

Data analysis

ML analysis

Conclusion

### Conclusion

- machine learning = extremely promising tool
- can help to learn how computer scientists / engineers work
- possible wide range of applications
- need to define clearly the (short- and long-term) objectives