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String phenomenology

Goal
Find “the” Standard Model from string theory.

Method:
I type II / heterotic strings, M-theory, F-theory: D = 10, 11, 12
I vacuum choice (flux compactification):

I (typically) Calabi–Yau (CY) 3- or 4-fold
I fluxes and intersecting branes

→ reduction to D = 4
I check consistency (tadpole, susy. . . )
I read the D = 4 QFT (gauge group, spectrum. . . )

No vacuum selection mechanism ⇒ string landscape
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Landscape mapping

String phenomenology:
I find consistent string models
I find generic/common features
I reproduce the Standard Model

Typical challenges: properties and equations involving many
integers
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Types of data

Calabi–Yau (CY) manifolds
I CICY (complete intersection in products of projective spaces):

7890 (3-fold), 921,497 (4-fold)
I Kreuzer–Skarke (reflexive polyhedra):

473,800,776 (d = 4)

String and F-theory models involve huge numbers
I 10500

I 10755

I 10272,000

I . . .

→ use machine learning
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Plan

Analysis of CICY 3-fold
I ML methodology
I results and discussions of Hodge numbers

In progress with: Vincent Lahoche, Mohamed El Amine Seddik,
Mohamed Tamaazousti (List, Cea).
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Definition

Machine learning (Samuel)
The field of study that gives computers the ability to learn without
being explicitly programmed.

Machine learning (Mitchell)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its
performance at tasks in T , as measured by P, improves with
experience E .
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Deep neural network

Architecture:
I 1–many hidden layers
I link: weighted input
I neuron: non-linear "activation

function"

Summary: x (n+1) = g (n+1)(W (n)x (n)).
Generic method: fixed functions g (n), learn weights W (n)
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Deep neural network

x (1)
i1 ≡ xi1

x (2)
i2 = g (2)(W (1)

i2i1 x (1)
i1
)

fi3(xi1) ≡ x (3)
i3 = g (3)(W (2)

i3i2 x (2)
i2
)

i1 = 1, 2, 3; i2 = 1, . . . , 4; i3 = 1, 2

Summary: x (n+1) = g (n+1)(W (n)x (n)).
Generic method: fixed functions g (n), learn weights W (n)
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Learning method
I define a loss function L

L =
Ntrain∑
i=1

distance
(
y (train)

i , y (pred)
i

)
I minimize the loss function (iterated gradient descent. . . )

I main risk: overfitting (= cannot generalize)
→ various solutions (regularization, dropout. . . )
→ split data set in two (training and test)
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ML workflow

“Naive” workflow:
1. get raw data
2. write neural network with

many layers
3. feed raw data to neural

network
4. get nice results

(or give up)
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ML workflow

Real-world workflow:
1. understand the problem
2. exploratory data analysis

I feature engineering
I feature selection

3. baseline model
I full working pipeline
I lower-bound on accuracy

4. validation strategy
5. machine learning model
6. ensembling

Pragmatic ref.:
coursera.org/learn/competitive-data-science
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Complex neural network

Particularities:
I fi(I) : engineered features
I identical outputs (stabilisation)
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Calabi-Yau
Complete intersection Calabi–Yau (CICY) 3-fold:

I CY: complex manifold with vanishing first Chern class
I complete intersection: non-degenerate hypersurface in

products of projective spaces
I hypersurface = solution to system of homogeneous

polynomial equations

I described by configuration matrix m × k

X =

 Pn1 a1
1 · · · a1

k... ... . . . ...
Pnm am

1 · · · am
k


dimC X =

m∑
r=1

nr − k = 3, nr + 1 =
k∑

α=1
ar
α

I ar
α power of coordinates on Pnr in αth equation
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Configuration matrix
Examples

I quintic [
P4

x 5
]

=⇒
∑

a
(X a)5 = 0

I 2 projective spaces, 3 equations

[
P3

x 3 0 1
P3

y 0 3 1

]
=⇒


fabc X aXbX c = 0
gαβγY αY βY γ = 0
haα X aY α = 0

Classification
I invariances (→ huge redundancy)

I permutation of lines and columns
I identities between subspaces

I but:
I constraints ⇒ bound on matrix size
I ∃ “favourable” configuration
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Topology

Why topology?
I no metric known for compact CY (cannot perform KK

reduction explicitly)
I topological numbers → 4d properties (number of fields,

representations, gauge symmetry. . . )

Topological properties
I Hodge numbers hp,q (number of harmonic (p, q)-forms)

here: h1,1, h2,1
I Euler number χ = 2(h11 − h21)
I Chern classes
I triple intersection numbers
I line bundle cohomologies
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Datasets

CICY have been classified
I 7890 configurations (but ∃ redundancies)
I number of product spaces: 22
I h1,1 ∈ [0, 19], h2,1 ∈ [0, 101]
I 266 combinations (h1,1, h2,1)
I ar

α ∈ [0, 5]

Original [Candelas-Dale-Lutken-Schimmrigk ’88][Green-Hubsch-Lutken ’89]
I maximal size: 12× 15
I number of favourable matrices: 4874

Favourable [1708.07907, Anderson-Gao-Gray-Lee]
I maximal size: 15× 18
I number of favourable matrices: 7820
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Data
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Goal and methodology
Philosophy
Start with the original dataset, derive everything else from
configuration matrix and machine learning only.

Current goal
Input: configuration matrix −→ Output: Hodge numbers

1. CICY: well studied, all topological quantities known
→ use as a sandbox

2. h2,1: more difficult than h1,1
→ prepare for studying CICY 4-folds

3. both original and favourable datasets

Continue the analysis from:
[1706.02714, He] [1806.03121, Bull-He-Jejjala-Mishra]
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Feature engineering

Process of creating new features derived from the raw input data.

Some examples:
I number of projective spaces (rows), m = num_cp
I number of equations (columns), k
I number of CP1

I number of CP2

I number of CPn with n 6= 1
I Frobenius norm of the matrix
I list of the projective space dimensions and statistics thereof

(min, max, mean, median)
I K -nearest neighbour (KNN) clustering (with K = 2, . . . , 5)
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Feature selection

Select the most important features to draw attention of the ML
algorithm to salient features in order to ease the learning.

Discovery methods:
I correlation matrix
I random forests
I scatter plots
I trial and error
I etc.
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Correlation matrix
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Random forest

Large number of decision trees trained on different subsets and
averaged on the outputs. The most relevant features appear at the
top of the trees.
=⇒ classify feature importance
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Scatter plots: h1,1

Original
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Scatter plots: h2,1

Original
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Strategy

Questions:
I data diminution: remove outliers? (0.74%)
I data augmentation: use data invariance to generate more

inputs?
I classification or regression?
I normalise inputs/outputs? (shift by mean, divide by variance)

Classification vs regression:
I classification: assume knowledge of boundaries
I regression: outputs of different size

→ normalize data ≈ use continuous variable
Regression: better for generalization
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Algorithms

Possibilities (starting from original dataset):
I neural network with trivial architecture

(matrix → hodges)
I neural network with non-trivial architecture

(matrix + engineered features → hodges and tuned topology)
I boosting:

1. linear regression: hlin
p,q = a × num_cp + b

2. neural network for hp,q − hlin
p,q

I other ensemble methods
(average different ML models, train on different subsets. . . )

I convert dataset
1. find favourable representation
2. apply any method
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Results (1)
Implementation and training

I sets: training (20%), test (80%)
I training time: few minutes

Accuracy:
I linear regression:

I orig.: h1,1 ≈ 61%, h2,1 ≈ 8.5%
I fav.: h1,1 ≈ 99.5%, h2,1 ≈ 4.5%

(note: regression on several scalars → h2,1 ≈ 12.5%)
I basic neural network (regression)

I orig.: h1,1 ≈ 68% (split: 30%), ≈ 78% (split: 80%)
I fav.: h1,1 ≈ 93%, h2,1 ≈ 16%

I boosting
I orig.: h1,1 ≈ 72%, h2,1 ≈ 15%
I fav.: h1,1 ≈ 99.5%, h2,1 ≈ 16%
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Results (2)
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Results (3)
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Discussion

In progress: test different architectures (multi-inputs,
multi-tasks. . . )

Possible extensions:
I neural network performs very badly on h2,1

→ challenge for ML community

I find a mapping original → favourable (GAN, cyclic GAN. . . )

I representation learning: find better / invariant representation
(PCA, autoencoder. . . )
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Conclusion

I machine learning = extremely promising tool

I can help to learn how computer scientists / engineers work

I possible wide range of applications

I need to define clearly the (short- and long-term) objectives
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