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Outline: 1. Motivations

Motivations
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String phenomenology

Goal
Find “the” Standard Model from string theory.

Method:

» type Il / heterotic strings, M-theory, F-theory: D = 10,11,12
» vacuum choice (flux compactification):

» (typically) Calabi-Yau (CY) 3- or 4-fold

» fluxes and intersecting branes

— reduction to D = 4
» check consistency (tadpole, susy...)

» read the D = 4 QFT (gauge group, spectrum. . .)
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String phenomenology

Goal
Find “the” Standard Model from string theory.

Method:

» type Il / heterotic strings, M-theory, F-theory: D = 10,11,12
» vacuum choice (flux compactification):

» (typically) Calabi-Yau (CY) 3- or 4-fold

» fluxes and intersecting branes

— reduction to D = 4
» check consistency (tadpole, susy...)

» read the D = 4 QFT (gauge group, spectrum. . .)

No vacuum selection mechanism = string landscape
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Landscape mapping

String phenomenology:
» find consistent string models
» find generic/common features

» reproduce the Standard Model
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Landscape mapping

String phenomenology:
» find consistent string models
» find generic/common features

» reproduce the Standard Model

Typical challenges: properties and equations involving many
integers
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Types of data

Calabi—Yau (CY) manifolds

» CICY (complete intersection in products of projective spaces):

(3-fold), (4-fold)

» Kreuzer—Skarke (reflexive polyhedra):
(d=4)

String and F-theory models involve huge numbers
> 10500
> 10755
> 10272,000

> ..
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Plan

Analysis of CICY 3-fold
» ML methodology

> results and discussions of Hodge numbers

In progress with: Vincent Lahoche, Mohamed El Amine Seddik,
Mohamed Tamaazousti (LisT, CEA).
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Definition

Machine learning (Samuel)

The field of study that gives computers the ability to learn without
being explicitly programmed.

Machine learning (Mitchell)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with
experience E.

35



Deep neural network

Hidden

Input Q

X Output
Architecture:

» 1-many hidden layers
> link: weighted input

» neuron: non-linear "activation
function"

Summary: x("t1) = g(n+D)(p/(n)x (),
Generic method: fixed functions g(", learn weights W™



Deep neural network

XI-(ll) = Xj
1 g
fi(xiy) = X,-(33) =g® (W,-gi)xigz))

1=1,23h=1,...,4,i35=1,2

Summary: x("t1) = g(n+D)(p/(n)x (),

@ / Output

Hidden

Input Q
/

Generic method: fixed functions g(", learn weights W™



Learning method

> define a L
Nerain )
L= Z distance(y,-(tram),y,-(pred))
i=1
> the loss function (iterated gradient descent...)
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Learning method

> define a L
Ntrain
L= Z distance(yi(train),y,-(pred))
i=1
> the loss function (iterated gradient descent...)
» main risk: (= cannot generalize)

— various solutions (regularization, dropout. . .)
— split data set in two (training and test)

15
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ML workflow

“Naive” workflow:
1. get raw data

2. write neural network with
many layers

3. feed raw data to neural
network

4. get nice results
(or give up)

THIS 15 YOUR MACHINE LEARNING SYSTET1?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LDOKING RIGHT.
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ML workflow

Real-world workflow:
1. understand the problem

2. exploratory data analysis

» feature engineering
» feature selection

3. baseline model

» full working pipeline
» lower-bound on accuracy

4. validation strategy
5. machine learning model

6. ensembling

Pragmatic ref.:

coursera.org/learn/competitive-data-science
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https://www.coursera.org/learn/competitive-data-science

Complex neural network

Ny
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Complex neural network
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Particularities:
» fi(I) : engineered features

» identical outputs (stabilisation)
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Outline: 3. Calabi—Yau 3-folds

Calabi—Yau 3-folds
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Calabi-Yau
Complete intersection Calabi-Yau (CICY) 3-fold:

» CY: complex manifold with vanishing first Chern class

» complete intersection: non-degenerate hypersurface in
products of projective spaces

» hypersurface = solution to system of homogeneous
polynomial equations
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Calabi-Yau
Complete intersection Calabi-Yau (CICY) 3-fold:

» CY: complex manifold with vanishing first Chern class

» complete intersection: non-degenerate hypersurface in
products of projective spaces

» hypersurface = solution to system of homogeneous
polynomial equations

» described by m x k

m k
dimCX:Zn,—k:3, n,+1:Zag
r=1 a=1

> a/, power of coordinates on P in ath equation
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Configuration matrix
Examples
> quintic
[Pil5] =

> 2 projective spaces, 3 equations

[]P’§301
3
Py

0 31

| -

Z(Xa)5 =0

a

fabe X2XPXC =0
8ap, YOYPYT =0
hao X2Y® =0
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Configuration matrix
Examples
> quintic
[PE5] = Y (x*)°=0

a

> 2 projective spaces, 3 equations
[ &
3
Py

Classification

fabe X2XPXC =0
] — 8ap, YOYPYT =0
hao X2Y® =0

301
0 31

» invariances (— huge redundancy)
» permutation of lines and columns
> identities between subspaces

> but:

» constraints = bound on matrix size
» 3 “favourable” configuration
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Topology

Why topology?
» no metric known for compact CY (cannot perform KK
reduction explicitly)

» topological numbers — 4d properties (number of fields,
representations, gauge symmetry. . . )
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Topology

Why topology?
» no metric known for compact CY (cannot perform KK
reduction explicitly)

» topological numbers — 4d properties (number of fields,
representations, gauge symmetry. . . )

Topological properties
» Hodge numbers h, q (number of harmonic (p, q)-forms)
here: h171, h271

v

Euler number x = 2(h11 — h21)

Chern classes

v

v

triple intersection numbers

v

line bundle cohomologies
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Topology

Why topology?
» no metric known for compact CY (cannot perform KK
reduction explicitly)

» topological numbers — 4d properties (number of fields,
representations, gauge symmetry. . . )

Topological properties
> (number of harmonic (p, g)-forms)
here: h171, h271

v

Euler number x = 2(h11 — h21)

Chern classes

v

v

triple intersection numbers

v

line bundle cohomologies
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Datasets

CICY have been classified
» 7890 configurations (but 3 redundancies)
» number of product spaces: 22
» hy11€10,19], ho1 € [0,101]
» 266 combinations (h1 1, hp 1)
» al, €[0,5]

Original [Candelas-Dale-Lutken-Schimmrigk '88][Green-Hubsch-Lutken '89]
» maximal size: 12 x 15

» number of favourable matrices: 4874

Favourable [1708.07907, Anderson-Gao-Gray-Lee]
> maximal size: 15 x 18

» number of favourable matrices: 7820
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http://arxiv.org/abs/1708.07907
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Goal and methodology
Philosophy

Start with the original dataset, derive everything else from
configuration matrix and machine learning only.

Current goal

Input: configuration matrix — Output: Hodge numbers

1. CICY: well studied, all topological quantities known
— use as a sandbox

2. ho1: more difficult than hy 1
— prepare for studying CICY 4-folds

3. both original and favourable datasets

Continue the analysis from:
[1706.02714, He] [1806.03121, Bull-He-Jejjala-Mishra]
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http://arxiv.org/abs/1706.02714
http://arxiv.org/abs/1806.03121

Outline: 4. Data analysis

Data analysis
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Feature engineering

Process of creating new features derived from the raw input data. )

Some examples:

>

>

>

number of projective spaces (rows), m = num_cp
number of equations (columns), k

number of CP!

number of CP?

number of CP"” with n #1

Frobenius norm of the matrix

list of the projective space dimensions and statistics thereof
(min, max, mean, median)

K-nearest neighbour (KNN) clustering (with K =2,...,5)
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Feature selection

Select the most important features to draw attention of the ML
algorithm to salient features in order to ease the learning.

Discovery methods:
» correlation matrix
» random forests
» scatter plots
» trial and error

> etc.
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Correlation matrix
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Random forest

Large number of decision trees trained on different subsets and
averaged on the outputs. The most relevant features appear at the
top of the trees.

— classify feature importance
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Scatter plots: hy 3
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Scatter plots: hy;
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QOutline: 5. ML analysis

ML analysis
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Strategy

Questions:
» data diminution: remove outliers? (0.74%)

» data augmentation: use data invariance to generate more
inputs?

» classification or regression?

» normalise inputs/outputs? (shift by mean, divide by variance)

Classification vs regression:
» classification: assume knowledge of boundaries

> regression: outputs of different size
— normalize data = use continuous variable

Regression: better for generalization
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Algorithms

Possibilities (starting from original dataset):

» neural network with trivial architecture
(matrix — hodges)

> neural network with non-trivial architecture
(matrix + engineered features — hodges and tuned topology)
> boosting:
1. linear regression: hgf‘q =aXnum_cp+ b
2. neural network for h, q — h'[l:‘q

» other ensemble methods
(average different ML models, train on different subsets. . .)

» convert dataset

1. find favourable representation
2. apply any method
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Results (1)

Implementation and training
» sets: training (20%), test (80%)

> training time: few minutes

Accuracy:
> linear regression:
> orig.: h171 ~ 61%, h271 ~ 85%
» fav.: hi1 ~ 99.5%, hp1 = 4.5%
(note: regression on several scalars — hp 1 ~ 12.5%)

» basic neural network (regression)
» orig.: hi11 ~ 68% (split: 30%), ~ 78% (split: 80%)
» fav.: b1~ 93%, ho1 ~ 16%
> boosting
> orig.: hi1 ~72%, haq ~ 15%
» fav.: h11 ~99.5%, hy1 =~ 16%
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Results (2)

h11 Lines
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Results (3)

CICY3 Hodge number distribution (test set)

1 true 109 1 pred
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» Hodge numbers not exactly reproduced

» but distribution quite well learned
(ex.: within £5% error, ho 1 is accurate more than 70%)
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Discussion

In progress: test different architectures (multi-inputs,
multi-tasks. . .)

Possible extensions:

» neural network performs very badly on ho 1
— challenge for ML community

» find a mapping original — favourable (GAN, cyclic GAN...)

» representation learning: find better / invariant representation
(PCA, autoencoder. . .)
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QOutline: 6. Conclusion

Conclusion
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Conclusion

» machine learning = extremely promising tool
» can help to learn how computer scientists / engineers work
» possible wide range of applications

» need to define clearly the (short- and long-term) objectives
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