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Motivation

⇒ Six years of working with the Kreuzer-Skarke 4D Reflexive Polytope dataset!

• Database of triangulations→ Calabi-Yau threefolds (1411.1418)

• Finding valid orientifolds and fixed loci for model building (1901.xxxxx)

• Finding Large Volume limits for moduli stabilization (1207.5801, 1706.09070,
1901.xxxxx)

• Using it as a test-bed for data science techniques (1707.00655, 1711.06685,
1811.06490)

⇒What are the goals from a machine learning perspective?

• Ultimately want interpretable results – from “data analytics” to analytical
answers

• So-called “Equation Learner” (EQL) neural network architecture intended to
deliver just that George Martius & Christoph Lampert (1610.02995 cs.CL)
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Let’s Just Calculate!

⇒ Our ultimate goal: true knowledge of the number of Calabi-Yau threefolds
(CY3s) in the Kreuzer-Skarke (KS) database

• We know the number of reflexive polytopes: 473,800,776

• Most polytopes admit multiple fine, regular, star triangulations (FRSTs)

? Through h1,1 ≤ 6, 23,568 polytopes yielded 651,997 triangulations

• Generally, many triangulations are identified as representing different
chambers of the Kähler cone for a single CY3 geometry

? Through h1,1 ≤ 6, 651,997 triangulations yielded 101,673 unique CY3s

⇒ “Brute force” method is not an option

• Finding all FRSTs for a polytope becomes computationally prohibitive with
TOPCOM at h1,1 >∼ 25
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Alternative Approach

⇒ Can machine learning help?

• Possibly, but to train a model requires many (input, output) pairs

• This means knowing the exact number of FRSTs for many polytopes – simply
not possible at this time

⇒ Our approach: focus on counting triangulations of the 3D facets that
constitute 4D polytopes

• Total number of unique 3D facets an order of magnitude smaller (45,990,557)

• Obtaining all fine, regular triangulations (FRTs) of these tends to be easier

⇒We will estimate the number of FRSTs of a 4D reflexive polytope via

NFRST(∆) ≤
∏
i

NFRT(Fi) ,

• NB(1): Triangulations of facets F1 and F2 may not overlap on the intersection
F1

⋂
F2

• NB(2): Even if triangulations of F1 and F2 are regular, aggregate triangulation
may fail to be regular
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Classification of 3D Facets

⇒ Identifying 3D facets of 4D polytopes is fast with a (C++ implementation of)
PALP, but identifying unique facets is more challenging

• Total number of 3D facets is 7,471,984,487 – a major step backward?!?

• Need a common form so as to identify equivalent facets

• Kreuzer and Skarke identified a normal form for 4D polytopes related by
GL(n,Z) transformations – just need to adapt to 3D facets

⇒ Example: consider the following two facets F1 and F2, both of which appear
as dual facets to the same h1,1 = 2 polytope:

F1 = conv({{−1, 0, 0, 0}, {−1, 0, 0, 1}, {−1, 0, 1, 0}, {−1, 1, 0, 0}})
F2 = conv({{−1, 0, 0, 1}, {−1, 0, 1, 0}, {1, 0, 0, 0}, {2,−1,−1,−1}})

• Adding the origin to each facet, we obtain the associated subcones

CF1 = conv({{0, 0, 0, 0}, {−1, 0, 0, 0}, {−1, 0, 0, 1}, {−1, 0, 1, 0}, {−1, 1, 0, 0}})
CF2 = conv({{0, 0, 0, 0}{−1, 0, 0, 1}, {−1, 0, 1, 0}, {1, 0, 0, 0}, {2,−1,−1,−1}})

• Computing the normal form for each subcone, we find that

NF(CF1) = NF(CF2) = {{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}})
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The Standard 3-Simplex Facet

⇒ Dropping the origin, we recognize the standard 3-simplex (S3S)
{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

(Left) Percentage of dual polytopes that contain S3S at each h1,1 value. (Right) Same, truncated at h1,1 ≤ 120.

• Represents 1,528,150,671 of the 3D facets (20.45%)

• Appears at least once in 87.8% of all 4D polytopes

• Has a unique triangulation, therefore not contributing to combinatorics
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Results of 3D Facet Classification

⇒ Total number of 3D facets is 7.5 billion, but unique total only 46 million (0.6%)

⇒ S3S accounts for 20.45% of all facets. Next most common accounts for 8.6%

(Left) The logarithm of the number of new facets at each h1,1 value. (Right) The logarithm of the number of

reflexive polytopes at each h1,1 value.
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3D Facet Distribution – New Facets

(Left) The number of new facets at each h1,1 value, as a fraction of the number
of polytopes at that h1,1. (Right) The total number of facets found through each
h1,1 value, as a fraction of the total number of polytopes up to that point.

⇒ Saturation to value of 0.1 is just the ratio of total unique facets found (47× 106)
to the number of 4d reflexive polytopes in the KS database (470× 106)
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Triangulated 3D Facets

⇒ Of these 3D facets, we know quite a lot about a large fraction of them

Orange bars: total number of facets

Blue bars: amount for which the number of FRTs

is explicitly computed

h1,1 Facets Triangulated % Triangulated
1 − 11 142,257 142,257 100%

12 92,178 92,162 99.983%
13 132,153 108,494 82.097%
14 180,034 124,700 69.625%
15 236,476 3,907 1.652%

> 15 45,207,459 1,360 0.003%
Total 45,990,557 472,896 1.028%

Table 1: Dual facet FRT numbers obtained,
binned by the first h1,1 value at which they
appear.

• 100 most common facets account for 74%
of all cases

• Able to obtain FRTs for 472,880 3D facets
(1.03% of total)

• 3D facets with known triangulation
numbers represent 88% of facets by
appearance
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Supervised ML Results

⇒ Last year (1707.00655), we were able to predict the number of FRSTs of
3D polytopes using simple supervised ML

• Input data was a simple 4-tuple: numbers of points, interior points, boundary
points, and vertices

• Pulled models “out of the box” from scikit-learn

• Figure of merit was the mean absolute percent error (MAPE) of the prediction
relative to true results in training/test data:

MAPE =
100

n
×

n∑
i=1

∣∣∣∣Ai − Pi

Ai

∣∣∣∣ ,
where n is the number of data points, and Pi and Ai are the predicted and
actual values for the output, which here is ln(NFRT) for the ith facet

⇒ In 2017, we obtained good results with the Classication and Regression Tree
(CART) model. How will it perform on the 4D case?
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Regression Results

⇒ Here we present the results for ExtraTreesRegressor, with 35 estimators,
employing a 60%/40% train/test split on data for 5 ≤ h1,1 ≤ 10

• Training MAPE: 5.723

• Test MAPE: 5.823

⇒ Good, but how well do the results extrapolate to higher h1,1 values?

h1,1 MAPE Actual mean Predicted mean
11 6.566 9.582 9.189
12 9.065 10.882 9.903
13 11.566 11.755 10.067
14 17.403 12.638 10.179

Table 2: Prediction results for ln(NFRT), using the ExtraTreesRegressor
model, for h1,1 values outside of its training region.

• MAPE gets rapidly worse as h1,1 grows

• Persistent, and growing, undercount of FRTs

• Largest prediction was ln(NFRT) = 12.467; largest value seen in training data
was ln(NFRT) = 12.595
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A Generic Neural Network

⇒ Generic feed-forward NN applied to 4-tuples with no improvement on results

⇒ First though was to expand the input variables – “kitchen sink” approach

• The number of points in the interior and on the boundary (x0, x1)

• The number of vertices (x2)

• The number of points in the 1- and 2-skeletons (x3, x4)

• The first h1,1 value at which the facet appears in a dual polytope (x5)

• The number of faces and edges (x6, x7)

• The number of flips of a seed triangulation of the 2-skeleton (x8)

• Several quantities obtained from a single FRT of the facet:

? The total numbers of 1-, 2-, and 3-simplices in the triangulation (x9,x10,x11)
? The numbers of unique 1- and 2-simplices in the triangulation (x12,x13)
? The numbers of 1- and 2-simplices shared between N 2- and 3-simplices,

respectively, for N up to 5 (x14 − x17, x18 − x21)
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A Simple Neural Network Implementation

⇒ Our simple feed-forward NN has two hidden layers, each with 30 nodes

⇒ Activation functions: sigmoid (layer 1), tanh (layer 2), ReLU (output layer)

⇒ Train on equal numbers of data points for each h1,1 value between
6 ≤ h1,1 ≤ 11

• Overall MAPE on test data for 6 ≤ h1,1 ≤ 11 acceptable: 6.304, how about
extrapolation?

h1,1 MAPE Mean value Predicted mean
12 5.904 10.882 10.324
13 6.550 11.755 10.753
14 10.915 12.638 11.094

Table 3: Prediction results for ln(NFRT), using the traditional neural network, for
h1,1 values outside of its training region.

⇒ Same problems!

• MAPE continues to get worse rapidly as h1,1 grows

• Continues to universally under-predict the number of FRTs
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Simple Neutral Network Results

h1,1 MAPE Mean value Predicted mean
12 5.904 10.882 10.324
13 6.550 11.755 10.753
14 10.915 12.638 11.094

Table 4: Prediction results for ln(NFRT), using the traditional neural network, for
h1,1 values outside of its training region.

Histograms of the percent error of the feed-forward neural network’s predictions
in the extrapolation region.
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The EQL Architecture

⇒ The equation learner (EQL) NN architecture is designed to permit greater
ability to extrapolate beyond the training region

• The standard activation function in each layer is replaced partially, or even
completely, with non-linear functions that do not necessarily try to mimic
human neurons

• Non-linear layers change the shape of the output vector from the linear node

⇒ A simple example might be to multiply the outputs of two nodes together, then
feed forward to the next layer

• Unary nodes: apply a standard activation function (e.g. tanh)

• Binary nodes: pairwise multiply n nodes, yielding n/2 outputs

⇒ Name derives the desire of the authors to have an intelligible NN output

• “...our goal is not to learn any data representation, but to learn a function
which compactly represents the input-output relation and generalizes between
different regions of the data space, like a physical formula.” (c.f. Hashimoto talk)

George Martius & Christoph Lampert (1610.02995 cs.CL)
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Examples of EQL in Action
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The EQL Architecture

A representation of a simple EQL layer with nm = 4 and no = 3 sandwiched between two fully-connected layers.

The first two elements of the intermediate representation are each acted on by activation functions fi, while the

remaining two elements are multiplied together.

⇒ Our EQL NN will have an input layer of 22 nodes, a single hidden layer of
45 nodes (30 binary and 15 unary), and an output layer of 30 nodes (with
ReLU activiation)

• We use Adam optimizer with default parameters (β1 = 0.9, β2 = 0.99)

• We utilize L1 regularization with λ = 0.001, dropout rate p = 0.1



17
EQL Results I

Extrapolation MAPE
h
1,1
min h1,1

max Test MAPE h1,1 = 12 h1,1 = 13 h1,1 = 14

6 10 7.297 6.647 6.699 6.598
7 10 6.001 7.512 7.626 7.469
8 10 7.184 5.048 5.172 5.834
6 11 5.643 4.393 4.490 4.416
7 11 6.967 7.512 7.626 7.469
8 11 5.551 4.444 4.463 4.934

Table 5: Results of training our model on various h1,1 ranges. The model with
h1,1min = 6, h1,1max = 11 performs well on the test set and the best on extrapolation to
higher h1,1 values.

h1,1 Mean value Predicted mean
12 10.733 10.722
13 11.755 11.591
14 12.638 12.492

Table 6: The true mean values and the mean predicted by our model in the
extrapolation region

• MAPE on test data is not growing appreciably for higher h1,1 values

• Problem of consistent, large under-counting is (mostly) solved
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EQL Results II

Histograms of the percent error of our chosen model’s predictions in the
extrapolation region. Top is the naive NN. Bottom is the EQL NN.
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Meet the 4D Reflexive Polytope ∆◦

491

The polytope whose FRST count dominates the database is the polytope dual to
the single h1,1 = 491 polytope, which we will call ∆◦

491.

∆◦
491 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {21, 28, 36, 42}, {−63,−56,−48,−42}}

This polytope has 680 integral points and five facets, of which only four are
unique. The four facets Fi are given by the convex hulls

F1 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {21, 28, 36, 42}})
F2 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {3, 4, 6, 0}, {3, 4, 6, 84}}) (1)

F3 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {7, 8, 14, 0}, {7, 8, 14, 84}})
F4 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {7, 15, 21, 0}, {7, 15, 21, 84}}) .

The facet F1 first appears as a dual facet at h1,1 = 23, and appears twice in ∆◦
491.

The facets F2, F3 and F4 each appear once in ∆◦
491 and nowhere else in the

database.



20
FRST Prediction for ∆◦

491

The EQL model predicts the following results for ln(NFRT ) for these facets:

F1 : ln(NFRT ) = 29.32± 1.30

F2 : ln(NFRT ) = 2391.5± 106.0

F3 : ln(NFRT ) = 10753.0± 476.7

F4 : ln(NFRT ) = 10985.9± 487.0

where we are employing an error estimate based on the average MAPE for
12 ≤ h1,1 ≤ 14 of 4.416. Using just the central values yields the prediction:

NFRST(∆◦
491) =

(
e29.32

)2 (
e2391.5

) (
e10,573.0

) (
e10,985.9

)
= (2.93× 1025)(4× 101038)(1× 104670)(1.25× 104771)

= 1.5× 1010,505

Propagating the errors (assuming MAPE of 4.416 throughout), gives a crude
estimate of the range of possible values for ∆◦

491:

NFRST = 1010,505.2±292.6 = [1010,212.6, 1010,797.8]
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Cross-Check: 3D Case (2D Facets)

⇒ This is a bold claim, given that we are extrapolating from h1,1 = 14 to
h1,1 = 491, how can we check the method?

⇒ In previous work, the 3D reflexive polytopes have been extensively studied

• Far fewer of them: 4,319 polytopes

• Only 344 unique 2D facets! Big enough to train on?

• We have exact FRT counts for most of these facets: 322 of 344 (including all
cases for h1,1 ≤ 25

• For six of the remaining, we can compute the number of FTs (dropping
regularity), which is only a slight over-count of FRTs (less than 3%)

⇒ The region of extrapolation to the largest 3D polytopes is therefore much
smaller than 4D case, but still represents substantial growth in FRTs

Halverson & Tian (1610.08864)
Carifio, Halverson, Krioukov, BDN (1707.00655)
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Cross-Check: 3D Case (2D Facets)

(Left) The number of new facets at each h1,1 value. (Right) The number of
reflexive polytopes at each h1,1 value.
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3D Case: Inputs to the EQL

Having triangulated as many facets as possible, we trained models with an EQL
hidden layer. Our input data was simpler than for the 3D facets, and consisted of:

• The number of integral points

• The number of boundary points

• The number of interior points

• The number of vertices

• The length of the longest side

• The length of the shortest side

• The average side length
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3D Case: Prediction Results

The mean value of log10(NFRST) at
h1,1, using predicted facet FRT values
(blue) and known facet FRT and FT
values (red).

h1,1 Facets MAPE MSE
6 5 7.865 0.032
7 13 16.583 0.061
8 15 8.805 0.055
9 12 5.851 0.075
10 19 5.808 0.087
11 19 10.678 0.213
12 15 8.754 0.334
13 18 9.128 0.330
14 21 10.200 0.722
15 22 8.756 0.538
16 14 9.103 0.755
17 22 9.071 0.610
18 13 7.850 0.619
19 21 10.491 1.314
20 13 10.962 2.050
21 7 9.259 1.158
22 23 9.167 0.798
23 14 14.333 6.504
24 7 7.894 1.075
25 3 2.649 0.373
26 6 12.112 2.228
27 5 3.985 0.644
28 3 6.900 0.380
29 1 5.258 0.295
30 1 2.074 0.146
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Epilogue: Interpretation of 3D Result?

⇒ EQL is meant to yield a NN output that
is meaningful... does it?

ln(NFRT) = 0.01418x20 − 0.03435x0x1 −
0.02165x21 + 0.11134x0x2 + 0.00201x1x2 +
0.00206x22 − 0.03566x0x3 − 0.02813x1x3 +
0.00993x2x3 + 0.05023x23 − 0.03399x0x4 −
0.00929x1x4− 0.01405x2x4 + 0.11072x3x4 +
0.0694x24 + 0.04551x0x5 − 0.04939x1x5 +
0.04087x2x5− 0.00532x3x5 + 0.00719x4x5−
0.00774x25 − 0.07105x0x6 + 0.04438x1x6 −
0.11917x2x6− 0.07082x3x6− 0.14734x4x6−
0.007x5x6 + 0.14731x26 − 0.28707x0 +
0.46716x1 − 0.59766x2 − 0.4975x3 −
0.35609x4 − 0.49381x5 + 1.354040x6 +
5.530190

• x6: length of longest side

• x5: length of smallest side

A heatmap showing log10(|c|) for
each coefficient c in the formula,
after rescaling each variable to
have expectation value 1. The top
row corresponds to the constant
term (top left square) and the linear
terms.
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Interpretation of 4D Result?

ln(NFRT) = −0.425x2
0+0.29447x0x1−0.2304x2

1+0.02462x0x2−0.17529x1x2−0.3368x2
2+0.72012x0x3+

0.0707x1x3 + 0.00583x2x3 − 0.40825x2
3 − 0.01146x0x4 − 0.00008x1x4 − 0.0789x2x4 + 0.00599x3x4 −

0.02246x2
4 + 0.35742x0x5 + 0.00696x1x5 + 0.39255x2x5 − 0.35135x3x5 + 0.09x4x5 − 0.2482x2

5 −

0.19063x0x6 − 0.02357x1x6 − 0.08904x2x6 + 0.20651x3x6 − 0.04321x4x6 + 0.21098x5x6 − 0.0609x2
6 +

0.20861x0x7 + 0.05763x1x7 + 0.5381x2x7 − 0.19461x3x7 + 0.00197x4x7 − 0.41043x5x7 + 0.12497x6x7 −

0.15195x2
7 + 0.02359x0x8 + 0.0095x1x8 + 0.05497x2x8 − 0.03016x3x8 + 0.00692x4x8 − 0.10282x5x8 +

0.06078x6x8 + 0.00153x7x8 + 0.00301x2
8 − 0.29528x0x9 − 0.00072x1x9 − 0.20046x2x9 + 0.2274x3x9 −

0.01136x4x9 + 0.25023x5x9 − 0.13467x6x9 + 0.23766x7x9 + 0.08246x8x9 − 0.11071x2
9 + 0.02683x0x10 −

0.00254x1x10 + 0.02553x2x10 + 0.01278x3x10 + 0.00554x4x10 − 0.04584x5x10 + 0.03714x6x10 +

0.01352x7x10+0.00105x8x10+0.20665x9x10−0.00099x2
10−0.34428x0x11+0.05335x1x11−0.00715x2x11+

0.33024x3x11 − 0.01736x4x11 + 0.16713x5x11 − 0.08848x6x11 + 0.08456x7x11 + 0.03144x8x11 −

0.11092x9x11−0.00151x10x11−0.07556x2
11+0.02349x0x12+0.0031x1x12−0.01155x2x12−0.03125x3x12−

0.00223x4x12 + 0.01197x5x12 − 0.00373x6x12 − 0.0372x7x12 + 0.02864x8x12 − 0.07238x9x12 +

0.01227x10x12 + 0.0125x11x12 − 0.00375x2
12 − · · · − 0.00024x0x21 + 0.01386x1x21 + 0.02516x2x21 +

0.00222x3x21 + 0.00004x4x21 − 0.06183x5x21 + 0.04606x6x21 + 0.01789x7x21 − 0.01325x8x21 +

0.02409x9x21 + 0.00023x10x21 + 0.00006x11x21 − 0.00317x12x21 + 0.00541x13x21 − 0.00012x14x21 +

0.00012x15x21 − 0.00592x16x21 + 0.02185x17x21 − 0.00001x18x21 − 0.00003x20x21 + 0.0257x2
21 −

1.548990x0+3.819380x1+4.156280x2−1.006350x3+1.110140x4−2.591030x5+1.540610x6−2.829660x7−

1.5943x8 + 1.383880x9 − 2.551x10 + 0.18922x11 + 0.72398x12 + 0.04856x13 + 0.48053x14 + 0.6916x15 −

1.253460x16 − 0.70274x17 + 0.44341x18 − 1.167680x19 − 1.8572x20 − 1.170990x21 − 23.70712
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Interpretation of 4D Result?

⇒What matters most in determining NFRT for a 3D facet?
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Interpretation of 4D Result?

⇒What matters most in determining NFRT for a 3D facet?

• x9: total number of 1 simplicies in the triangulation

• x10: total number of 2 simplicies in the triangulation

• x12: number of unique 1 simplicies in the triangulation
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Interpretation of 4D Result?

⇒What matters most in determining NFRT for a 3D facet?

• x1: number of points on the boundary

• x4: number of points in the 2-skeleton
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Interpretation of 4D Result?

⇒What matters most in determining NFRT for a 3D facet?

• x19 − x21: number of 2-simplices shared by 3 or more 3-simplices
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Things for (Someone Else) To Do

⇒ The “learned equations” are effectively a regression result

• Could standard regression (i.e. rudimentary machine learning) achieve same
result after using sklearn.preprocessing.PolynomialFeatures?

• If so, then EQL NN was irrelevant. If not, then how was EQL architecture
necessary?

⇒ For the 4D polytopes (3D facets) case, the dimension of the input space can
clearly be reduced

• Principal Component Analysis (PCA) on features?

⇒ This clearly over-estimates the number of Calabi-Yau threefolds in KS
– but by how much?
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An Invitation

String Pheno, Summer 2020

THANK YOU!


