

An Introduction to Standard Model of Particle Physics

Muhammad Alhroob

University Of Oklahoma

Elementary Particles

Elementary particles cannot be broken down Truly point like particles

- Form the basic structure of all **matter**
- Are the **force carriers** of the fundamental interactions

The Universe Started with a Big Bang

- The universe started ~13.8 billion years ago with a big bang
- It was a super hot universe
- Only elementary particles existed
- As time evolved the universe expanded and cooled down
- Energy converted into matter

Ordinary Matter

- Protons and neutrons are composite objects, made of:
 - valence quarks (uud, udd)

• gluons

 Particles composed of quarks are called **hadrons**

Inside Hadrons

Proton:

- Up quark(charge +2/3)
- Up quark(charge +2/3)
- Down quark(charge -1/3)

Neutron:

- Up quark(charge +2/3)
- Down quark(charge -1/3)
- Down quark(charge -1/3)
- Quarks have three colours (quantum charges)
- What is the electric charge of the Proton? unit?
- What is the colour of the proton?

Inside Hadrons

- Quarks and gluons collide with each other and produce more quarks and gluons
- Sea of quark and antiquark pairs
- Most of the body mass is pure kinetic energy of the proton constituents!

$$E^2 = M^2 C^4 + P^2 C^2$$

Elementary Particles

- Spin 1/2 particles called fermions:
 - Quarks
 - electric charge 2/3 or -1/3
 - three colours
 - cannot be found isolated in nature, must exist as Hadrons in groups of TWO (Mesons) or THREE (Baryons)
- Leptons:
 - neutrinos, electrically neutral
 - charged leptons, -1

Leptons

- Neutrinos, electrically neutral
 - almost massless
- Charged leptons, -1
 - only electrons are stable,

muons and tau-leptons are unstable:

Muon (μ) lifetime = 2 x 10⁻⁶ s

- Tau (τ) lifetime = 3 x 10⁻¹³ s
- much heavier than electrons
- muons are produced when cosmic rays hit the atmosphere (15 km above the earth surface, How can muon arrive the earth with the very short lifetime?! 1 muon/sec/cm² hit your body

Antimatter

• For every elementary particle there is an anti particle

- Anti particles are exactly the same as particle except the charge
- What is the difference between neutrinos and anti neutrinos?!

Fundamental Forces

Gravity:

- the first known force, occurs between all objects that carry energy
- long range force related to space and time
- responsible for the movements of the planets, stars and galaxies
- well described by general relativity (GR)

Electromagnetic:

- occurs between all objects that carry electric charge (quarks and charged leptons)
- responsible for almost all phenomena countered in the daily life: chemistry biology, friction, etc.
- long range force and well described by Maxwell's equations

Fundamental Forces

Strong force:

- occurs between all objects that carry colours (only quarks)
- very short range force ~ 1 fm
- responsible:
 - holding quarks together inside hadrons
 - the stability of the nuclei (glues protons together)

Weak Force:

- occurs between quark and between leptons including neutrinos
- very short range force ~ 0.001 fm
- responsible:
 - for radioactive decay (manufacturing new elements)
 - hydrogen fusion inside stars

Force Mediators

Force	Carrier	Mass	Charge	Spin
EM	photon	0	0	1
Strong	gluon	0	0	1
Weak	W⁻,W+,Z	80.3 and 91.2 GeV	-1,1,0	1

These forces are described by a well established theory called the Standard Model theory (SM)

Feynman Diagrams

 When particles (objects) interact, they exchange other elementary particles

Higgs Particle

- Petter Higgs predicted in 1964 the existence of a particle with spin 0
- This particle plays an important rule in SM

 In 2012 this particle was discovered by ATLAS and CMS Collaborations

Higgs Particle

Production

• Decays within 10-20

Н

Fundamental Interactions

- There many things cannot be answered by the SM
 - how many quarks and leptons in nature?
 - how many fundamental interactions?
 - why the electron is extremely light particle compared to the top quark

- Cosmological observations have shown that 96% of the universe is dark!
 - has gravity effects
 - cannot interact with light (dark)

 Accelerated expansion of the universe, where does the energy come from?!

• Matter and antimatter asymmetry

