Martingales in Finance

F. Ortu (Bocconi U. & IGIER)

Workshop on Martingales in Finance and Physics

Abdus Salam International Centre for Theoretical Physics (ICTP)

May 24, 2019

Why Martingales in Finance?

- Efficient Markets Hypothesis (EMH): prices in financial markets should incorporate all available information
- Crucial for EMH: the prices at which financial securities trade must not allow for arbitrage opportunities
 - it must not be possible to trade in such a way that you never "lose" and you "win" with positive probability
- Fundamental Theorem of Finance (FTF): no arbitrage holds if and only if "suitably normalized" securities prices are martingales under a "suitable" probability
- The "suitable" probability in the FTF takes the name of Risk-Neutral Probability/Equivalent Martingale measure
 - ▶ it is different from the physical probability, i.e. the probability that governs the actual law of motion of prices

May 24, 2019

To be on the same page.....

- $\mathcal{T} \subset \Re$ a set of time-indexes
- $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}_{t \in \mathcal{T}})$ a filtered probability space
- $\{X(t)\}_{t\in\mathcal{T}}$ a Stochastic Process i.e.
 - $ightharpoonup X\left(t
 ight) \mathcal{F}_{t}-$ measurable (plus some integrability condition....)
- ullet $oxed{\mathsf{E}}\left[ullet/\mathcal{F}_t
 ight]$ the conditional expectation operator

Definition

 $\{X(t)\}_{t\in\mathcal{T}}$ is a martingale if

$$X(t) = \mathbf{E}\left[\left.X(s)\right/\mathcal{F}_t
ight], \qquad orall s, \, t \in \mathcal{T}, \, \, s \geq t$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 夕 Q ○

Plan of the Talk

- A very simple one-period model to grasp the basic intuition
- Expanding on the simple model: the discrete-time case
- The continuous-time model of Black and Scholes
- The general continuous-time cases: a primer

A simple one-period model

- Dates: t = 0, 1 (today, tomorrow)
- States: $\Omega = \{\omega_{1,\dots},\omega_{K}\}$, Probabilities: $\mathbf{P}(\omega_{k}) > 0$
- N risky investments (e.g. shares of a risky business) plus 1 riskless investment (e.g. money in the bank)
 - \triangleright $S_i(0)$ share price today of risky investment j
 - ▶ $S_i(1)(\omega_k)$ share value tomorrow of risky investment j in state k
 - ightharpoonup r = interest rate: 1\$ in the bank at time 0 becomes (1+r)\$ at time 1

Investment strategies and trading

- $\vartheta_1, \ldots, \vartheta_N$ units held of N risky investments
- ϑ_0 money in the bank today
- Total money invested today

$$V_{\vartheta}\left(0\right) = \vartheta_{0} + \sum_{j=1}^{N} \vartheta_{j} S_{j}\left(0\right)$$

Total value generated tomorrow in state k

$$V_{artheta}\left(1
ight)\left(\omega_{k}
ight)=artheta_{0}(1+r)+\sum_{j=1}^{N}artheta_{j}S_{j}\left(1
ight)\left(\omega_{k}
ight)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらで

6 / 31

Arbitrage

Definition (Arbitrage Opportunity)

An investment strategy ϑ such that $V_{\vartheta}\left(0\right)\leq0$, $V_{\vartheta}\left(1\right)\left(\omega_{k}\right)\geq0$, for all k and

$$V_{\vartheta}\left(1\right)\left(\omega_{ar{k}}
ight)>0$$
, for some $ar{k}$

- In words: an investment strategy whose cost today is non positive, whose revenue tomorrow is non-negative, and the revenue tomorrow is positive in at least one state (i.e. with positive probability)
- When arbitrages exist markets unravel

7 / 31

The Fundamental Theorem of Finance (FTF)

Theorem

The following are equivalent:

- no-arbitrage holds;
- 2 there exists $\mathbf{Q}(\omega_k) > 0$ for all k such that for all j

$$S_{j}(0) = \frac{1}{1+r} \mathbf{E}^{Q} \left[S_{j}(1) \right]$$

$$\triangleq \frac{1}{1+r} \sum_{k=1}^{K} \mathbf{Q}(\omega_{k}) S_{j}(1) (\omega_{k})$$

- In words: arbitrage opportunities disappear if and only if there is some probability **Q** that makes the price today of each security equal to the discounted expected value tomorrow
- Where are the martingales?

Martingales and Finance, act 1

• Define the Discounted Price as follows: $\widetilde{S}_j(0) \triangleq S_j(0)$ while

$$\widetilde{S}_{j}(1)(\omega_{k}) \triangleq \frac{1}{1+r} S_{j}(1)(\omega_{k}), \qquad k=1,...,K$$

• Statement 2 in the FTF becomes then

$$\widetilde{S}_{j}(0) = \mathbf{E}^{Q}\left[\widetilde{S}_{j}(1)
ight]$$

- a (Mickey Mouse.....) martingale!
- The jargon for **Q**:
 - Risk-Neutral probability in Finance: only averages matter, variance/risk is irrelevant
 - **P** Equivalent Martingale Measure in Math: \mathbf{Q} and the physical probability \mathbf{P} are equivalent measures (but $\mathbf{Q} \neq \mathbf{P}$ in general!!)

The multi-period framework

- Dates: t = 0, 1,, T
- ullet A filtered probability space $\left(\Omega,\mathcal{F},\mathit{P},\left\{\mathcal{F}_{t}\right\}_{t=0}^{T}\right)$
- $S_{i}(t)$ the price at time t of risky investment j
 - $ightharpoonup S_{j}\left(t
 ight)$ an $\mathcal{F}_{t}-$ measurable, square integrable random variable
 - ▶ 1 in the bank at time 0 becomes $(1+r)^t$ at time t
- Discounted prices

$$\widetilde{S}_{j}(t) \triangleq \frac{1}{1+r}S_{j}(t), \qquad t=0,1,...,T$$

Equivalent Martingale Measures (EMMs)

Definition

An Equivalent Martingale Measure (EMM) is a probability measure $\mathcal{Q} \backsim \mathcal{P}$ such that

i)
$$L = \frac{dQ}{dP} > 0$$
, $\frac{L}{1+r} \in \mathcal{L}^2$

ii) $\left\{\widetilde{S}_{j}(t)\right\}_{t=0}^{I}$ is a $\mathcal{Q}-$ martingale $\forall j$ that is

$$\widetilde{S}_{j}(t) = \mathbf{E}^{Q}\left[\left.\widetilde{S}_{j}(s)\middle/\left.\mathcal{F}_{t}
ight.
ight], \qquad orall s \geq t$$

• EMMs extend the notion seen in the very simple one-period case: for $t=0,\,s=1$

$$\widetilde{S}_{j}(0) = \mathbf{E}^{Q}\left[\left.\widetilde{S}_{j}(1)\right/\mathcal{F}_{0}
ight] = \mathbf{E}^{Q}\left[\widetilde{S}_{j}(1)
ight]$$

11 / 31

Fulvio Ortu () Martingales in Finance May 24, 2019

The multi-period FTF

Theorem

The following are equivalent in a multiperiod market:

- (a suitably extended notion of) no-arbitrage holds
- there exist EMMs

- How many EMMs?
 - One and only one if and only if markets are complete!
- What's their use (besides characterizing No-Arbitrage)?
 - ► To price new securities (stocks, bonds, options, other derivative securities....) constantly added to the market by the finance industry. More on this later

The Continuous-time Black-Scholes (BS) Model: the primitives

- Dates: $t \in [0, T]$
- ullet A Standard Brownian Motion $\{W_t\}_{t\in[0,T]}$
- $\bullet \ \ \text{A filtered probability space} \ \left(\Omega,\mathcal{F},P,\left\{\mathcal{F}_{t}^{W}\right\}_{t\in[0,T]}\right)$
 - lacksquare $\left\{\mathcal{F}^W_t
 ight\}_{t\in[0,T]}$ the filtration generated by $\{W_t\}_{t\in[0,T]}$
- Only two investment opportunities: a share of common stock and a bank account

◆ロト ◆個ト ◆差ト ◆差ト を めるぐ

The stock and the bank account

ullet The stock price S(t) follows a Geometric Brownian Motion under the physical probability P

$$S(t) = S(0)e^{\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W(t)}$$

▶ Ito's Lemma yields

$$dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$$

• Letting $\delta = \ln{(1+r)}$, 1 Euro in the bank at time 0 becomes $B(t) = (1+r)^t \equiv e^{\delta t}$, i.e.

$$dB(t) = \delta B(t)dt$$

ullet Discounted stock price: $\widetilde{S}(t)=e^{-\delta t}S(t)$, so that

$$d\widetilde{S}(t) = (\mu - \delta)\widetilde{S}(t)dt + \sigma\widetilde{S}(t)dW(t)$$

Economic interpretation and properties

- The stock has a lognormal distribution:
 - therefore stock price never falls below zero, satisfying the economic condition of limited liability
- Basic economic assumption: $\mu > \delta$
 - the average instantaneous return on the stock μ is greater than the instantaneous return δ from keeping money in the bank
 - $\mu-\delta>$ is called the risk premium: compensation to stockholders for the risk from holding stocks
- Both S(t) and $\widetilde{S}(t)$ display a drift:
 - neither one is a martingale!
- Where are the martingales in the BS model?

The EMM in the BS model: existence

Theorem (Girsanov)

Under suitable integrability conditions on v(t) there exists a probability $Q \sim P s.t.$

$$dW^Q(t) = v(t)dt + dW(t)$$

is a Standard Brownian Motion

• Therefore, in the BS model there exists $Q \sim P$ s.t.

$$d\widetilde{S}(t) = \sigma \widetilde{S}(t) \left[\underbrace{\frac{(\mu - \delta)}{\sigma}}_{v(t)} dt + dW(t) \right]$$

$$= \sigma \widetilde{S}(t) dW^{Q}(t)$$

i.e. there exists $Q \sim P$ such that $\widetilde{S}(t)$ under Q is a driftless diffusion: a Martingale!

The EMM in the BS model: properties

• By Ito's Lemma

$$\widetilde{S}(t) = S(0)e^{-\frac{1}{2}\sigma^2t + \sigma W^Q(t)}$$

• Therefore, since

$$E^Q\left[\widetilde{S}(t)\right]=S(0)$$

and $S(t) = e^{\delta t} \widetilde{S}(t)$, then

$$E^{Q}[S(t)] = e^{\delta t}S(0)$$

- Under Q the average instantaneous return on the stock is δ , the same as the bank account:
 - the notion of Risk-Neutral Probability!

Trading in the BS model

- $\vartheta_0(t)$, $\vartheta_1(t)$
 - money in the bank, stock shares held at time t
- $V_{\vartheta}(t)$ value invested at time t:

$$V_{\vartheta}(t) = \vartheta_0(t)B(t) + \vartheta_1(t)S(t)$$

Definition (Self-financing trading)

A trading strategy is self-financing if

$$dV_{\vartheta}(t) = \vartheta_0(t)dB(t) + \vartheta_1(t)dS(t)$$

equivalently if the discounted value $\widetilde{V}_{artheta}\left(t
ight)=e^{-\delta t}V_{artheta}\left(t
ight)$ satisfies

$$d\widetilde{V}_{\vartheta}(t) = \vartheta_{1}(t)d\widetilde{S}(t)$$

Self-financing trading and arbitrage

- A self-financing trading strategy $\vartheta_0(t)$, $\vartheta_1(t)$ is an arbitrage opportunity if

 - $V_{\vartheta}\left(T\right)\geq0$ P-almost surely
 - **3** $P[V_{\vartheta}(T) > 0] > 0$
- The same economic intuition as in the simple one-period case (technicalities aside)

19 / 31

No-Arbitrage and Martingales in the BS model

 The BS EMM implies no-arbitrage (modulo integrability conditions....)

$$\left\{ \begin{array}{c} \widetilde{S}(t) \\ Q-\textit{martingale} \end{array} \right\} \quad \lor \quad d\widetilde{V}_{\vartheta}\left(t\right) = \vartheta_{1}(t)d\widetilde{S}(t) \\ \Downarrow \\ \widetilde{V}_{\vartheta}\left(t\right) \ Q-\textit{martingale} \\ \Downarrow \\ E^{Q}\left[\widetilde{V}_{\vartheta}\left(T\right)\right] = \widetilde{V}_{\vartheta}(0) = V_{\vartheta}(0) \\ \end{array}$$

• Since $Q \sim P$

$$\begin{split} &V_{\vartheta}\left(T\right) \geq 0 \quad \forall \quad P\left[V_{\vartheta}\left(T\right) > 0\right] > 0 & \iff \\ &\widetilde{V}_{\vartheta}\left(T\right) \geq 0 \quad \forall \quad Q\left[\widetilde{V}_{\vartheta}\left(T\right) > 0\right] > 0 \quad \Longrightarrow \quad V_{\vartheta}(0) > 0 \; \blacksquare \end{split}$$

Fulvio Ortu () Martingales in Finance May 24, 2019 20 / 31

Pricing and Hedging in the BS model: the problem

- European call option: at t < T a subject (the owner) buys from another subject (the seller) the right to buy from the seller the stock at the future time T at a fixed price K
- ullet Therefore at maturity T the owner receives the random payoff

$$\max\left(S(T)-K,0\right)$$

- Problem: determine the option price c(t, S(t)) that prevents from arbitrage opportunities to emerge in the market
- Solution: take the perspective of a trader that sells the option and wants to hedge the risk

The setup

- A trader sells one option at the price c(t, S(t)), and wants to hedge the risk by holding h(t) shares of the stock
- The value of the trader's position is therefore

$$V(t) = h(t)S(t) - c(t, S(t))$$

• The hedging strategy must be self-financing, i.e.

$$dV(t) = h(t)dS(t) - dc(t, S(t))$$

At maturity assets and liabilities must balance

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Computing the law of motion of the value

Recall that

$$dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$$

By Ito's Lemma

$$dc(t, S(t)) = \left[\frac{\partial c}{\partial t} + \frac{\partial c}{\partial S}\mu S + \frac{1}{2}\frac{\partial^{2} c}{\partial S^{2}}\sigma^{2}S^{2}\right]dt + \frac{\partial c}{\partial S}\sigma SdW(t)$$

Therefore

$$dV = \left(-\frac{\partial c}{\partial t} + \left(h - \frac{\partial c}{\partial S}\right)\mu S + \frac{1}{2}\left(-\frac{\partial^{2}c}{\partial S^{2}}\right)\sigma^{2}S^{2}\right)dt$$
$$+ \left(h - \frac{\partial c}{\partial S}\right)\sigma SdW(t)$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

Computing the optimal hedging strategy

 Objective of the trader: eliminate risk, that is eliminate the diffusion term in the value dynamics

$$h(t) - \frac{\partial c(t,S(t))}{\partial S} = 0 \implies h(t) = \frac{\partial c(t,S(t))}{\partial S}$$

• But then the law of motion of value reduces to

$$dV = \left(-\frac{\partial c}{\partial t} - \frac{1}{2}\frac{\partial^2 c}{\partial S^2}\sigma^2 S^2\right)dt$$

Recall now that the value of cash in the bank evolves as

$$dB(t) = \delta B(t)dt$$

 Both instantaneously risk-free (no diffusion term!): what does no-arbitrage imply?

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

No-Arbitrage and the BS PDE

• No-Arbitrage implies that the optimal trading strategy and cash in the bank must earn the same return δ per unit of time

$$\frac{1}{dt}\frac{dV(t)}{V(t)} = \delta = \frac{1}{dt}\frac{dB(t)}{B(t)}$$

• Recalling the expressions for V(t) and dV(t) under optimal hedging, the first equality rewrites as

$$\begin{cases} \delta c(t,S) = \frac{\partial}{\partial t} c(t,S) + \frac{\partial}{\partial S} c(t,S) \cdot \delta S + \frac{1}{2} \frac{\partial^2}{\partial S^2} c(t,S) \cdot \sigma^2 S^2 \\ c(T,S) = \max(S - K, 0) \end{cases}$$

which is the celebrated PDE for the option price of F. Black and M. Scholes (1973)

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

The Black-Scholes formula

The solution of the BS PDE is the celebrated Black-Scholes formula:

$$c\left(t,S(t)\right)=S\left(t\right)N\left(d_{1}\right)-Ke^{-\delta\left(T-t\right)}N\left(d_{2}\right)$$

where

$$N(y) = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz,$$

while

$$d_1 = rac{1}{\sigma \sqrt{\left(T-t
ight)}} \left(\ln \left(rac{S\left(t
ight)}{K}
ight) + \left(\delta + rac{1}{2}\sigma^2
ight) \left(T-t
ight)
ight)$$

and

$$d_2 = d_1 - \sigma \sqrt{(T-t)}$$

Extension to the general diffusion case

• The law of motion of the stock is now a general diffusion process

$$dS(t) = \mu(t, S(t)) \cdot S(t) \ dt + b(t, S(t)) \cdot S(t) \ dW(t)$$

- \bullet Problem: hedge and price an asset that pays F(S(T)) Euro at time T, with F regular enough
- Replicating the same arguments above, the price f(t,S(t)) of the asset must satisfy the following PDE $\forall t \in (0,T)$, S>0

$$\begin{cases} \delta f(t,S) = \frac{\partial}{\partial t} f(t,S) + \frac{\partial}{\partial S} f(t,S) \cdot \delta S + \frac{1}{2} \frac{\partial^2}{\partial S^2} f(t,S) \cdot b^2(t,S) \cdot S^2 \\ f(T,S) = F(S) \end{cases}$$

Coming up full circle.....

Theorem (Corollary from the Feyman-Kac Formula)

If f solves the PDE

$$\begin{cases} \delta f(t,S) = \frac{\partial}{\partial t} f(t,S) + \frac{\partial}{\partial S} f(t,S) \cdot \delta S + \frac{1}{2} \frac{\partial^2}{\partial S^2} f(t,S) \cdot b^2(t,S) \cdot S^2 \\ f(T,S) = F(S) \end{cases}$$

then under suitable regularity conditions

$$f(t,S(t)) = e^{-\delta(T-t)} E^{\mathbf{Q}} [F(S(T))|\mathcal{F}_t]$$

where S(t) satisfies

$$dS(t) = \delta \cdot S(t) \ ds + b(t, S(t)) \cdot S(t) \ d\widetilde{W}(t)$$

with W a Standard Brownian Motion under Q

40.40.45.45.5 5 000

28 / 31

Fulvio Ortu () Martingales in Finance May 24, 2019

Conclusions

- The results seen so far extend in many various directions
 - several stocks driven by a vector-valued SBM
 - stochastic volatility
 - jump-diffusion dynamics
 - more generally, semimartingales
- Technicalities aside, the unifying theme is the powerful connection between the economic notion of No-Arbitrage and the mathematical tool of Martingales

Some essential references

- Black, F. and M. Scholes, (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy
- Merton, R. (1973), Theory of Rational Option Pricing, Bell Journal of Economics and Management Science
- 3 Harrison, J.M. and D. Kreps, (1979), Martingales and Arbitrage in Multiperiod Securities Markets, Journal of Economic Theory
- 4 Harrison, J.M. and S.R. Pliska, (1981), Martingales and Stochastic Integrals in the Theory of Continuous Trading, Stochastic Processes and Their Applications
- F. Delbaen and W. Schachermayer, (1994), A general version of the fundamental theorem of asset pricing, Mathematische Annalen

30 / 31

Ito's Lemma

Given a diffusion process

$$dX(t) = a(t, X(t))dt + b(t, X(t))dW(t)$$

and a function $\varphi:[0;T] imes\Re\to\Re$ continuously differentiable, once with respect to the first variable, twice with respect to the second, let

$$Y(t) = \varphi(t; X(t))$$

Then Y(t) is itself a diffusion process with

$$Y(t) = \left[\frac{\partial \varphi(t;X(t))}{\partial t} + \frac{\partial \varphi(t;X(t))}{\partial x} \cdot a(t,X(t)) + \frac{1}{2} \frac{\partial^2 \varphi(t;X(t))}{\partial x^2} \cdot b^2(t,X(t))\right] dt$$
$$+ \frac{\partial \varphi(t;X(t))}{\partial x} \cdot b(t,X(t)) dW(t)$$

▶ back