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Why Martingales in Finance?

o Efficient Markets Hypothesis (EMH): prices in financial markets
should incorporate all available information

@ Crucial for EMH: the prices at which financial securities trade must
not allow for arbitrage opportunities

» it must not be possible to trade in such a way that you never “lose”
and you “win" with positive probability

e Fundamental Theorem of Finance (FTF): no arbitrage holds if and
only if “suitably normalized” securities prices are martingales under a
“suitable” probability

@ The “suitable” probability in the FTF takes the name of Risk-Neutral
Probability/Equivalent Martingale measure

» it is different from the physical probability, i.e. the probability that
governs the actual law of motion of prices

Fulvio Ortu () Martingales in Finance May 24, 2019 2/31



To be on the same page.....
e 7 C R a set of time-indexes
° (Q F, P, {Ft}te'f) a filtered probability space
o {X (t)},or a Stochastic Process i.e.
> X (t) Ft — measurable (plus some integrability condition....)
o E[e/ F;] the conditional expectation operator

Definition
{X (t)},;c7 is a martingale if

X(t) =E[X(s)/ Ft]. Vs, teT, s>t
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Plan of the Talk

@ A very simple one-period model to grasp the basic intuition

Expanding on the simple model: the discrete-time case

The continuous-time model of Black and Scholes

@ The general continuous-time cases: a primer
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A simple one-period model

e Dates: t =0,1 (today, tomorrow)
o States: O = {w;s,... wk }, Probabilities: P (wy) > 0

@ N risky investments (e.g. shares of a risky business) plus 1 riskless
investment (e.g. money in the bank)

> S; (0) share price today of risky investment j
> S; (1) (wk) share value tomorrow of risky investment j in state k

> r = interest rate: 1$ in the bank at time 0 becomes (1 + r) $ at time 1
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Investment strategies and trading

o ¥q,..., On units held of N risky investments
@ U9 money in the bank today

@ Total money invested today
N
Vo (0) = o+ ) 8,5 (0)
j=1
@ Total value generated tomorrow in state k

Vo (1) (wr) = 0o(L+ 1) + 1 0,5, (1) (@)
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Arbitrage

Definition (Arbitrage Opportunity)

An investment strategy ¢ such that Vy (0) <0, V(1) (wk) > 0, for all k
and
Vi (1) (wg) >0, for some k

@ In words: an investment strategy whose cost today is non positive,
whose revenue tomorrow is non-negative, and the revenue tomorrow
is positive in at least one state (i.e. with positive probability)

@ When arbitrages exist markets unravel
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The Fundamental Theorem of Finance (FTF)

Theorem
The following are equivalent:

© no-arbitrage holds;
@ there exists Q(wk) > 0 for all k such that for all j

5 (0) = pE?[S;(1)]

2 Ly K Q(wi)S; (1) (wi)

v

@ In words: arbitrage opportunities disappear if and only if there is some
probability Q that makes the price today of each security equal to the
discounted expected value tomorrow

@ Where are the martingales?
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Martingales and Finance, act 1
o Define the Discounted Price as follows: 5;(0) £ S;(0) while
51 (wi) £
1+r
@ Statement 2 in the FTF becomes then

5(0) = E2 [5,(1)]

a (Mickey Mouse......) martingale!

S (M) (@). k=1 ..K

@ The jargon for Q:

> Risk-Neutral probability in Finance: only averages matter, variance/risk
is irrelevant

» Equivalent Martingale Measure in Math: Q and the physical probability
P are equivalent measures (but Q # P in generalll)
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The multi-period framework

@ Dates: t=0,1, ..... T

A filtered probability space (Q,}", P, {Ft}tT:())

S; (t) the price at time t of risky investment j

> S;(t) an Ft — measurable, square — integrable random variable

» 1in the bank at time O becomes (1 + r)" at time ¢

Discounted prices
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Equivalent Martingale Measures (EMMs)

Definition

An Equivalent Martingale Measure (EMM) is a probability measure
Q « P such that

i) L=92>0, & € L2

i {50}

T

. is a Q@—martingale Vj that is
t=

S(t—EQ[ /J—"t], Vs >t

@ EMMs extend the notion seen in the very simple one-period case: for

t=0,s=1
50 =% [$(1)/ 7| =2 [5(1)]
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The multi-period FTF

Theorem
The following are equivalent in a multiperiod market:

© (a suitably extended notion of) no-arbitrage holds

@ there exist EMMs

@ How many EMMs?
» One and only one if and only if markets are complete!
@ What's their use (besides characterizing No-Arbitrage)?

> To price new securities (stocks, bonds, options, other derivative
securities....) constantly added to the market by the finance industry.
More on this later
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The Continuous-time Black-Scholes (BS) Model: the
primitives

Dates: t € [0, T]

A Standard Brownian Motion {W; },. (o 7

A filtered probability space <Q F,P, {]:tw}te[o T]>

> {Ffw}te[o,ﬂ the filtration generated by {W:},c(o 7]

Only two investment opportunities: a share of common stock and a
bank account
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The stock and the bank account

@ The stock price S(t) follows a Geometric Brownian Motion under the

physical probability P
S(t) = 5(0)elr2) s
yields
dS(t) = uS(t)dt +oS(t)dW(t)

o Letting d =In(1+r), 1 Euro in the bank at time 0 becomes
B(t)=(1+r)=¢ ie.

dB(t) = 6B(t)dt

o Discounted stock price: S5(t) = e °*S(t), so that
dS(t) = (u —0) S(t)dt + oS(t)dW(t)
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Economic interpretation and properties

@ The stock has a lognormal distribution:

» therefore stock price never falls below zero, satisfying the economic
condition of limited liability

@ Basic economic assumption: p > &

> the average instantaneous return on the stock y is greater than the
instantaneous return § from keeping money in the bank

> u — 6 > is called the risk premium: compensation to stockholders for
the risk from holding stocks

e Both S(t) and S(t) display a drift:

> neither one is a martingale!
@ Where are the martingales in the BS model?

Fulvio Ortu () Martingales in Finance May 24, 2019 15 / 31



The EMM in the BS model: existence

Theorem (Girsanov)

Under suitable integrability conditions on v(t) there exists a probability
Q ~ P s.t.

dWQ(t) = v(t)dt + dW(t)
is a Standard Brownian Motion

@ Therefore, in the BS model there exists Q@ ~ P s.t.

dS(t) =oS(t) @dt—l—dW(t)

H/_/
v(t)
= oS(t)dW(t)

i.e. there exists Q ~ P such that S(t) under Q is a driftless diffusion:
a Martingale!

Fulvio Ortu () Martingales in Finance May 24, 2019 16 / 31




The EMM in the BS model: properties

@ By Ito’s Lemma
S(t) = S(O)e—%UZt—I—UWQ(t)

@ Therefore, since

and S(t) = €% 5(t), then
EQ[S(t)] = €°t5(0)

@ Under Q the average instantaneous return on the stock is J, the same
as the bank account:

> the notion of Risk-Neutral Probability!
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Trading in the BS model

) 190(1'), 191(t)

» money in the bank, stock shares held at time t
o Vj (t) value invested at time t :
Vi (t) = 0o(t)B(t) +01(t)S(t)
Definition (Self-financing trading)
A trading strategy is self-financing if
dVy (t) = 8o(t)dB(t) + 01 (t)dS(t)
equivalently if the discounted value Vj (t) = e %tV (t) satisfies

dVj (t) = 01(t)dS(¢)
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Self-financing trading and arbitrage

o A self-financing trading strategy 9o(t), 91(t) is an arbitrage
opportunity if

Q@ W (0)<0
@ V3 (T)>0 P-almost surely

Q@ P[Vy(T)>0]>0

@ The same economic intuition as in the simple one-period case
(technicalities aside)
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No-Arbitrage and Martingales in the BS model

e The BS EMM implies no-arbitrage (modulo integrability
conditions....)

{ S(t) } V. dVy(t) = 01(£)dS(t)

Q — martingale

4
Vy (t) Q — martingale
Y
EQ Vo (T)] = Va(0) = Vo (0)
@ Since Q ~ P
Vo(T)>0 VvV P[Vy(T)>0]>0 =

Vs(T)>0 Vv Q[%(T)>O]>O — Ve(0)>0M
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Pricing and Hedging in the BS model: the problem

@ European call option: at t < T a subject (the owner) buys from
another subject (the seller) the right to buy from the seller the stock
at the future time T at a fixed price K

@ Therefore at maturity T the owner receives the random payoff
max (S(T) — K, 0)

@ Problem: determine the option price c(t, S(t)) that prevents from
arbitrage opportunities to emerge in the market

@ Solution: take the perspective of a trader that sells the option and
wants to hedge the risk
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The setup
@ A trader sells one option at the price c(t, S(t)), and wants to hedge
the risk by holding h(t) shares of the stock
@ The value of the trader’s position is therefore
V(t) = h(t)S(t) —c(t, S(t))
@ The hedging strategy must be self-financing, i.e.

dV(t) = h(t)dS(t) — dc(t, S(t))

@ At maturity assets and liabilities must balance
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Computing the law of motion of the value

@ Recall that
dS(t) = uS(t)dt +oS(t)dW(t)

@ By Ito's Lemma

oc % 19%¢ dc
ot " a5t T 2352 95

de(t,S(t)) = [—+ S+ --=0°S?| dt + ——oSdW (t)
@ Therefore
dv = (~%+ (h—28)ps+3(~%5)o%s?) ot

+ (h— %) oSaw (1)
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Computing the optimal hedging strategy

@ Objective of the trader: eliminate risk, that is eliminate the diffusion

term in the value dynamics
h(t) — 2620 =0 = p(r) = 220

@ But then the law of motion of value reduces to

dc 1% ,_,

@ Recall now that the value of cash in the bank evolves as
dB(t) = 6B(t)dt
@ Both instantaneously risk-free (no diffusion term!): what does

no-arbitrage imply?
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No-Arbitrage and the BS PDE

o No-Arbitrage implies that the optimal trading strategy and cash in
the bank must earn the same return J per unit of time

1dV(t) _5_idB t)
dt V(t) ~  dt B(t)
@ Recalling the expressions for V/(t) and dV/(t) under optimal hedging,

the first equality rewrites as
6c(t,S) = 2c(t,S) + Lc(t,S) - 6S + Qaszc(t, S)-02S?

c(T,S) =max (S —K,0)

which is the celebrated PDE for the option price of F. Black and M.
Scholes (1973)
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The Black-Scholes formula

@ The solution of the BS PDE is the celebrated Black-Scholes formula:

c(t,5(t)) =S (t) N (dy) — Ke * TN (dy)

where

while

~

dp = ﬁ (In (%) + <5+%a2> (T - t))

d=d —0o (T—t)

and
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Extension to the general diffusion case

@ The law of motion of the stock is now a general diffusion process

dS(t) = u(t,S(t)) - S(t) dt+ b(t,S(t)) - S(t) dW(t)

@ Problem: hedge and price an asset that pays F(S(T)) Euro at time
T, with F regular enough

@ Replicating the same arguments above, the price f(t, S(t)) of the
asset must satisfy the following PDE Vt € (0, T), S >0

5F(t,S) = 2F(t,S) + LF(t,S)-6S +LL,f(t,S) - b*(t,S) - S?

t

f(T,S)=F(S)
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Coming up full circle

Theorem (Corollary from the Feyman-Kac Formula)
If f solves the PDE

5F(t,S) = &F(t,S) + S (t,S) - 0S + 1L, f(t,S) - b*(¢,S) - S?
{ f(T,S)=F(S)
then under suitable regularity conditions
f(t,5(t) = e " TIEA[F(S(T))| 7]

where S(t) satisfies

dS(t) =6-S(t) ds+ b(t, S(t)) - S(t) dW(t)

with W a Standard Brownian Motion under Q
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Conclusions

@ The results seen so far extend in many various directions

» several stocks driven by a vector-valued SBM
» stochastic volatility
> jump-diffusion dynamics

» more generally, semimartingales

@ Technicalities aside, the unifying theme is the powerful connection
between the economic notion of No-Arbitrage and the mathematical

tool of Martingales
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Ito’s Lemma
Given a diffusion process

dX(t) = a(t, X(t))dt + b(t, X(t))dW(t)

and a function ¢ : [0; T] x R’ — R continuously differentiable, once with
respect to the first variable, twice with respect to the second, let

Y (1) = ¢ (5 X(1))

Then Y (t) is itself a diffusion process with

Y () = [a¢<tx<>>+ (rx<>>,a(t'x(t)”%w.bz(t,x(t))} d

22X Ly X(2))dW (1)
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