Martingales in Finance

F. Ortu (Bocconi U. \& IGIER)
Workshop on Martingales in Finance and Physics
Abdus Salam International Centre for Theoretical Physics (ICTP)

May 24, 2019

Why Martingales in Finance?

- Efficient Markets Hypothesis (EMH): prices in financial markets should incorporate all available information
- Crucial for EMH: the prices at which financial securities trade must not allow for arbitrage opportunities
- it must not be possible to trade in such a way that you never "lose" and you "win" with positive probability
- Fundamental Theorem of Finance (FTF): no arbitrage holds if and only if "suitably normalized" securities prices are martingales under a "suitable" probability
- The "suitable" probability in the FTF takes the name of Risk-Neutral Probability/Equivalent Martingale measure
- it is different from the physical probability, i.e. the probability that governs the actual law of motion of prices

To be on the same page.....

- $\mathcal{T} \subset \Re$ a set of time-indexes
- $\left(\Omega, \mathcal{F}, P,\left\{\mathcal{F}_{t}\right\}_{t \in \mathcal{T}}\right)$ a filtered probability space
- $\{X(t)\}_{t \in \mathcal{T}}$ a Stochastic Process i.e.
- $X(t) \mathcal{F}_{t}$ - measurable (plus some integrability condition....)
- $\mathbf{E}\left[\bullet / \mathcal{F}_{t}\right]$ the conditional expectation operator

Definition

$\{X(t)\}_{t \in \mathcal{T}}$ is a martingale if

$$
X(t)=\mathbf{E}\left[X(s) / \mathcal{F}_{t}\right], \quad \forall s, t \in \mathcal{T}, s \geq t
$$

Plan of the Talk

- A very simple one-period model to grasp the basic intuition
- Expanding on the simple model: the discrete-time case
- The continuous-time model of Black and Scholes
- The general continuous-time cases: a primer

A simple one-period model

- Dates: $t=0,1$ (today, tomorrow)
- States: $\Omega=\left\{\omega_{1, \cdots}, \omega_{k}\right\}$, Probabilities: $\mathbf{P}\left(\omega_{k}\right)>0$
- N risky investments (e.g. shares of a risky business) plus 1 riskless investment (e.g. money in the bank)
- $S_{j}(0)$ share price today of risky investment j
- $S_{j}(1)\left(\omega_{k}\right)$ share value tomorrow of risky investment j in state k
- $r=$ interest rate: $1 \$$ in the bank at time 0 becomes $(1+r) \$$ at time 1

Investment strategies and trading

- $\vartheta_{1}, \ldots, \vartheta_{N}$ units held of N risky investments
- ϑ_{0} money in the bank today
- Total money invested today

$$
V_{\vartheta}(0)=\vartheta_{0}+\sum_{j=1}^{N} \vartheta_{j} S_{j}(0)
$$

- Total value generated tomorrow in state k

$$
V_{\vartheta}(1)\left(\omega_{k}\right)=\vartheta_{0}(1+r)+\sum_{j=1}^{N} \vartheta_{j} S_{j}(1)\left(\omega_{k}\right)
$$

Arbitrage

Definition (Arbitrage Opportunity)

An investment strategy ϑ such that $V_{\vartheta}(0) \leq 0, V_{\vartheta}(1)\left(\omega_{k}\right) \geq 0$, for all k and

$$
V_{\vartheta}(1)\left(\omega_{\bar{k}}\right)>0, \quad \text { for some } \bar{k}
$$

- In words: an investment strategy whose cost today is non positive, whose revenue tomorrow is non-negative, and the revenue tomorrow is positive in at least one state (i.e. with positive probability)
- When arbitrages exist markets unravel

The Fundamental Theorem of Finance (FTF)

Theorem

The following are equivalent:
(1) no-arbitrage holds;
(2) there exists $\mathbf{Q}\left(\omega_{k}\right)>0$ for all k such that for all j

$$
\begin{aligned}
S_{j}(0) & =\frac{1}{1+r} \mathbf{E}^{Q}\left[S_{j}(1)\right] \\
& \triangleq \frac{1}{1+r} \sum_{k=1}^{K} \mathbf{Q}\left(\omega_{k}\right) S_{j}(1)\left(\omega_{k}\right)
\end{aligned}
$$

- In words: arbitrage opportunities disappear if and only if there is some probability \mathbf{Q} that makes the price today of each security equal to the discounted expected value tomorrow
- Where are the martingales?

Martingales and Finance, act 1

- Define the Discounted Price as follows: $\widetilde{S}_{j}(0) \triangleq S_{j}(0)$ while

$$
\widetilde{S}_{j}(1)\left(\omega_{k}\right) \triangleq \frac{1}{1+r} S_{j}(1)\left(\omega_{k}\right), \quad k=1, \ldots, K
$$

- Statement 2 in the FTF becomes then

$$
\widetilde{S}_{j}(0)=\mathbf{E}^{Q}\left[\widetilde{S}_{j}(1)\right]
$$

a (Mickey Mouse......) martingale!

- The jargon for \mathbf{Q} :
- Risk-Neutral probability in Finance: only averages matter, variance/risk is irrelevant
- Equivalent Martingale Measure in Math: \mathbf{Q} and the physical probability \mathbf{P} are equivalent measures (but $\mathbf{Q} \neq \mathbf{P}$ in general!!)

The multi-period framework

- Dates: $t=0,1, \ldots . ., T$
- A filtered probability space $\left(\Omega, \mathcal{F}, P,\left\{\mathcal{F}_{t}\right\}_{t=0}^{T}\right)$
- $S_{j}(t)$ the price at time t of risky investment j
- $S_{j}(t)$ an \mathcal{F}_{t} - measurable, square - integrable random variable
- 1 in the bank at time 0 becomes $(1+r)^{t}$ at time t
- Discounted prices

$$
\widetilde{S}_{j}(t) \triangleq \frac{1}{1+r} S_{j}(t), \quad t=0,1, \ldots, T
$$

Equivalent Martingale Measures (EMMs)

Definition

An Equivalent Martingale Measure (EMM) is a probability measure $\mathcal{Q} \backsim \mathcal{P}$ such that
i) $L=\frac{d Q}{d P}>0, \frac{L}{1+r} \in \mathcal{L}^{2}$
ii) $\left\{\widetilde{S}_{j}(t)\right\}_{t=0}^{T}$ is a \mathcal{Q}-martingale $\forall j$ that is

$$
\widetilde{S}_{j}(t)=\mathbf{E}^{Q}\left[\widetilde{S}_{j}(s) / \mathcal{F}_{t}\right], \quad \forall s \geq t
$$

- EMMs extend the notion seen in the very simple one-period case: for $t=0, s=1$

$$
\widetilde{S}_{j}(0)=\mathbf{E}^{Q}\left[\widetilde{S}_{j}(1) / \mathcal{F}_{0}\right]=\mathbf{E}^{Q}\left[\widetilde{S}_{j}(1)\right]
$$

The multi-period FTF

Theorem

The following are equivalent in a multiperiod market:
(1) (a suitably extended notion of) no-arbitrage holds
(2) there exist EMMs

- How many EMMs?
- One and only one if and only if markets are complete!
- What's their use (besides characterizing No-Arbitrage)?
- To price new securities (stocks, bonds, options, other derivative securities....) constantly added to the market by the finance industry. More on this later

The Continuous-time Black-Scholes (BS) Model: the primitives

- Dates: $t \in[0, T]$
- A Standard Brownian Motion $\left\{W_{t}\right\}_{t \in[0, T]}$
- A filtered probability space $\left(\Omega, \mathcal{F}, P,\left\{\mathcal{F}_{t}^{W}\right\}_{t \in[0, T]}\right)$
- $\left\{\mathcal{F}_{t}^{W}\right\}_{t \in[0, T]}$ the filtration generated by $\left\{W_{t}\right\}_{t \in[0, T]}$
- Only two investment opportunities: a share of common stock and a bank account

The stock and the bank account

- The stock price $S(t)$ follows a Geometric Brownian Motion under the physical probability P

$$
S(t)=S(0) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)}
$$

Ito's Lemma yields

$$
d S(t)=\mu S(t) d t+\sigma S(t) d W(t)
$$

- Letting $\delta=\ln (1+r), 1$ Euro in the bank at time 0 becomes $B(t)=(1+r)^{t} \equiv e^{\delta t}$, i.e.

$$
d B(t)=\delta B(t) d t
$$

- Discounted stock price: $\widetilde{S}(t)=e^{-\delta t} S(t)$, so that

$$
d \widetilde{S}(t)=(\mu-\delta) \widetilde{S}(t) d t+\sigma \widetilde{S}(t) d W(t)
$$

Economic interpretation and properties

- The stock has a lognormal distribution:
- therefore stock price never falls below zero, satisfying the economic condition of limited liability
- Basic economic assumption: $\mu>\delta$
- the average instantaneous return on the stock μ is greater than the instantaneous return δ from keeping money in the bank
- $\mu-\delta>$ is called the risk premium: compensation to stockholders for the risk from holding stocks
- Both $S(t)$ and $\widetilde{S}(t)$ display a drift:
- neither one is a martingale!
- Where are the martingales in the BS model?

The EMM in the BS model: existence

Theorem (Girsanov)
Under suitable integrability conditions on $v(t)$ there exists a probability $Q \sim P$ s.t.

$$
d W^{Q}(t)=v(t) d t+d W(t)
$$

is a Standard Brownian Motion

- Therefore, in the BS model there exists $Q \sim P$ s.t.

$$
\begin{aligned}
d \widetilde{S}(t) & =\sigma \widetilde{S}(t)[\underbrace{\frac{(\mu-\delta)}{\sigma}}_{v(t)} d t+d W(t)] \\
& =\sigma \widetilde{S}(t) d W^{Q}(t)
\end{aligned}
$$

i.e. there exists $Q \sim P$ such that $\widetilde{S}(t)$ under Q is a driftless diffusion: a Martingale!

The EMM in the BS model: properties

- By Ito's Lemma

$$
\widetilde{S}(t)=S(0) e^{-\frac{1}{2} \sigma^{2} t+\sigma W^{Q}(t)}
$$

- Therefore, since

$$
E^{Q}[\widetilde{S}(t)]=S(0)
$$

and $S(t)=e^{\delta t} \widetilde{S}(t)$, then

$$
E^{Q}[S(t)]=e^{\delta t} S(0)
$$

- Under Q the average instantaneous return on the stock is δ, the same as the bank account:
- the notion of Risk-Neutral Probability!

Trading in the BS model

- $\vartheta_{0}(t), \vartheta_{1}(t)$
- money in the bank, stock shares held at time t
- $V_{\vartheta}(t)$ value invested at time t :

$$
V_{\vartheta}(t)=\vartheta_{0}(t) B(t)+\vartheta_{1}(t) S(t)
$$

Definition (Self-financing trading)

A trading strategy is self-financing if

$$
d V_{\vartheta}(t)=\vartheta_{0}(t) d B(t)+\vartheta_{1}(t) d S(t)
$$

equivalently if the discounted value $\widetilde{V}_{\vartheta}(t)=e^{-\delta t} V_{\vartheta}(t)$ satisfies

$$
d \widetilde{V}_{\vartheta}(t)=\vartheta_{1}(t) d \widetilde{S}(t)
$$

Self-financing trading and arbitrage

- A self-financing trading strategy $\vartheta_{0}(t), \vartheta_{1}(t)$ is an arbitrage opportunity if
(1) $V_{\vartheta}(0) \leq 0$
(2) $V_{\vartheta}(T) \geq 0 \quad P$-almost surely
(3) $P\left[V_{\vartheta}(T)>0\right]>0$
- The same economic intuition as in the simple one-period case (technicalities aside)

No-Arbitrage and Martingales in the BS model

- The BS EMM implies no-arbitrage (modulo integrability conditions....)

$$
\begin{aligned}
& \left\{\begin{array}{c}
\widetilde{S}(t) \\
Q-\text { martingale }
\end{array}\right\} \vee d \widetilde{V}_{\vartheta}(t)=\vartheta_{1}(t) d \widetilde{S}(t) \\
& \Downarrow \\
& \widetilde{V}_{\vartheta}(t) Q \text { - martingale } \\
& \Downarrow \\
& E^{Q}\left[\widetilde{V}_{\theta}(T)\right]=\widetilde{V}_{\theta}(0)=V_{\theta}(0)
\end{aligned}
$$

- Since $Q \sim P$

$$
\begin{array}{llll}
V_{\vartheta}(T) \geq 0 & \vee & P\left[V_{\vartheta}(T)>0\right]>0 & \Longleftrightarrow \\
\widetilde{V}_{\vartheta}(T) \geq 0 & \vee & Q\left[\widetilde{V}_{\theta}(T)>0\right]>0 \quad \Longrightarrow \quad & V_{\theta}(0)>0
\end{array}
$$

Pricing and Hedging in the BS model: the problem

- European call option: at $t<T$ a subject (the owner) buys from another subject (the seller) the right to buy from the seller the stock at the future time T at a fixed price K
- Therefore at maturity T the owner receives the random payoff

$$
\max (S(T)-K, 0)
$$

- Problem: determine the option price $c(t, S(t))$ that prevents from arbitrage opportunities to emerge in the market
- Solution: take the perspective of a trader that sells the option and wants to hedge the risk

The setup

- A trader sells one option at the price $c(t, S(t))$, and wants to hedge the risk by holding $h(t)$ shares of the stock
- The value of the trader's position is therefore

$$
V(t)=h(t) S(t)-c(t, S(t))
$$

- The hedging strategy must be self-financing, i.e.

$$
d V(t)=h(t) d S(t)-d c(t, S(t))
$$

- At maturity assets and liabilities must balance

Computing the law of motion of the value

- Recall that

$$
d S(t)=\mu S(t) d t+\sigma S(t) d W(t)
$$

- By Ito's Lemma

$$
d c(t, S(t))=\left[\frac{\partial c}{\partial t}+\frac{\partial c}{\partial S} \mu S+\frac{1}{2} \frac{\partial^{2} c}{\partial S^{2}} \sigma^{2} S^{2}\right] d t+\frac{\partial c}{\partial S} \sigma S d W(t)
$$

- Therefore

$$
\begin{aligned}
d V= & \left(-\frac{\partial c}{\partial t}+\left(h-\frac{\partial c}{\partial S}\right) \mu S+\frac{1}{2}\left(-\frac{\partial^{2} c}{\partial S^{2}}\right) \sigma^{2} S^{2}\right) d t \\
& +\left(h-\frac{\partial c}{\partial S}\right) \sigma S d W(t)
\end{aligned}
$$

Computing the optimal hedging strategy

- Objective of the trader: eliminate risk, that is eliminate the diffusion term in the value dynamics

$$
h(t)-\frac{\partial c(t, S(t)}{\partial S}=0 \quad \Longrightarrow \quad h(t)=\frac{\partial c(t, S(t)}{\partial S}
$$

- But then the law of motion of value reduces to

$$
d V=\left(-\frac{\partial c}{\partial t}-\frac{1}{2} \frac{\partial^{2} c}{\partial S^{2}} \sigma^{2} S^{2}\right) d t
$$

- Recall now that the value of cash in the bank evolves as

$$
d B(t)=\delta B(t) d t
$$

- Both instantaneously risk-free (no diffusion term!): what does no-arbitrage imply?

No-Arbitrage and the BS PDE

- No-Arbitrage implies that the optimal trading strategy and cash in the bank must earn the same return δ per unit of time

$$
\frac{1}{d t} \frac{d V(t)}{V(t)}=\delta=\frac{1}{d t} \frac{d B(t)}{B(t)}
$$

- Recalling the expressions for $V(t)$ and $d V(t)$ under optimal hedging, the first equality rewrites as

$$
\left\{\begin{array}{l}
\delta c(t, S)=\frac{\partial}{\partial t} c(t, S)+\frac{\partial}{\partial S} c(t, S) \cdot \delta S+\frac{1}{2} \frac{\partial^{2}}{\partial S^{2}} c(t, S) \cdot \sigma^{2} S^{2} \\
c(T, S)=\max (S-K, 0)
\end{array}\right.
$$

which is the celebrated PDE for the option price of F. Black and M. Scholes (1973)

The Black-Scholes formula

- The solution of the BS PDE is the celebrated Black-Scholes formula:

$$
c(t, S(t))=S(t) N\left(d_{1}\right)-K e^{-\delta(T-t)} N\left(d_{2}\right)
$$

where

$$
N(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z
$$

while

$$
d_{1}=\frac{1}{\sigma \sqrt{(T-t)}}\left(\ln \left(\frac{S(t)}{K}\right)+\left(\delta+\frac{1}{2} \sigma^{2}\right)(T-t)\right)
$$

and

$$
d_{2}=d_{1}-\sigma \sqrt{(T-t)}
$$

Extension to the general diffusion case

- The law of motion of the stock is now a general diffusion process

$$
d S(t)=\mu(t, S(t)) \cdot S(t) d t+b(t, S(t)) \cdot S(t) d W(t)
$$

- Problem: hedge and price an asset that pays $F(S(T))$ Euro at time T, with F regular enough
- Replicating the same arguments above, the price $f(t, S(t))$ of the asset must satisfy the following PDE $\forall t \in(0, T), S>0$

$$
\left\{\begin{aligned}
\delta f(t, S) & =\frac{\partial}{\partial t} f(t, S)+\frac{\partial}{\partial S} f(t, S) \cdot \delta S+\frac{1}{2} \frac{\partial^{2}}{\partial S^{2}} f(t, S) \cdot b^{2}(t, S) \cdot S^{2} \\
f(T, S) & =F(S)
\end{aligned}\right.
$$

Coming up full circle.....

Theorem (Corollary from the Feyman-Kac Formula)

 If f solves the $P D E$$$
\left\{\begin{array}{l}
\delta f(t, S)=\frac{\partial}{\partial t} f(t, S)+\frac{\partial}{\partial S} f(t, S) \cdot \delta S+\frac{1}{2} \frac{\partial^{2}}{\partial S^{2}} f(t, S) \cdot b^{2}(t, S) \cdot S^{2} \\
f(T, S)=F(S)
\end{array}\right.
$$

then under suitable regularity conditions

$$
f(t, S(t))=e^{-\delta(T-t)} E^{\mathbf{Q}}\left[F(S(T)) \mid \mathcal{F}_{t}\right]
$$

where $S(t)$ satisfies

$$
d S(t)=\delta \cdot S(t) d s+b(t, S(t)) \cdot S(t) d \widetilde{W}(t)
$$

with \widetilde{W} a Standard Brownian Motion under \mathbf{Q}

Conclusions

- The results seen so far extend in many various directions
- several stocks driven by a vector-valued SBM
- stochastic volatility
- jump-diffusion dynamics
- more generally, semimartingales
- Technicalities aside, the unifying theme is the powerful connection between the economic notion of No-Arbitrage and the mathematical tool of Martingales

Some essential references

(1) Black, F. and M. Scholes, (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy
(2) Merton, R. (1973), Theory of Rational Option Pricing, Bell Journal of Economics and Management Science
(3) Harrison, J.M. and D. Kreps, (1979), Martingales and Arbitrage in Multiperiod Securities Markets, Journal of Economic Theory
(9) Harrison, J.M. and S.R. Pliska, (1981), Martingales and Stochastic Integrals in the Theory of Continuous Trading, Stochastic Processes and Their Applications
(3) F. Delbaen and W. Schachermayer, (1994), A general version of the fundamental theorem of asset pricing, Mathematische Annalen

Ito's Lemma

Given a diffusion process

$$
d X(t)=a(t, X(t)) d t+b(t, X(t)) d W(t)
$$

and a function $\varphi:[0 ; T] \times \Re \rightarrow \Re$ continuously differentiable, once with respect to the first variable, twice with respect to the second, let

$$
Y(t)=\varphi(t ; X(t))
$$

Then $Y(t)$ is itself a diffusion process with

$$
\begin{aligned}
Y(t)= & {\left[\frac{\partial \varphi(t ; X(t))}{\partial t}+\frac{\partial \varphi(t ; X(t))}{\partial x} \cdot a(t, X(t))+\frac{1}{2} \frac{\partial^{2} \varphi(t ; X(t))}{\partial x^{2}} \cdot b^{2}(t, X(t))\right] d t } \\
& +\frac{\partial \varphi(t ; X(t))}{\partial x} \cdot b(t, X(t)) d W(t)
\end{aligned}
$$

