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Stochastic thermodynamics
An emerging, evolving field studying nonequilibrium fluctuations of mesoscopic systems

Real examples
Heat Engine (from V Blickle and C Bechinger,

Nature Phys. 8, 143 (2012))
Molecular Pump (from D A Leigh et

al., Nature 424, 174 (2003))

Rotatory Motor
(from S Toyabe et al., PNAS 108, 17951 (2011))

Double quantum dot (from B Küng et
al., PRX 2, 011001 (2012))
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Molecular motors
(S Toyabe et al., PNAS 108, 17951 (2011))

Colloidal heat engines
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Figure 1 | The Brownian Carnot engine. a, Time evolution of the experimental protocol. b–d, Thermodynamic diagrams of the engine: (1) isothermal
compression (blue); (2) adiabatic compression (magenta); (3) isothermal expansion (red); (4) adiabatic expansion (green). Solid lines are the analytical
values in the quasistatic limit. Filled symbols are obtained from ensemble averages over cycles of duration ⌧ =200 ms; open symbols are obtained for
⌧ =30 ms. The black arrow indicates the direction of the operation of the engine. b, Tpart � diagram. c, Clapeyron diagram. The area within the cycle is
equal to the mean work obtained during the cycle. d, Tpart–S diagram. The entropy changes only in the isothermal steps.

of energy between the reservoir and the particle, resembling the
endo-reversible engine introduced by Curzon and Ahlborn21,22.

During a cycle of duration ⌧ , the working substance of the engine
exchanges heat with the di�erent thermal baths it is put in contact
with, and under appropriate conditions it is able to extract work.
We call W⌧ and Q⌧ the work exerted on the particle and the heat
transferred from the environment to the particle along a cycle,
respectively. The exchanged heat equalsQ⌧ =1H⌧ �W⌧ . Both work
and heat along the whole cycle (Fig. 2a) converge to their quasistatic
averages h·1i following hW⌧ i= hW1i+⌃ss/⌧ (ref. 23). Here, hW1i
is the quasistatic value of thework done per cycle and the term⌃ss/⌧
accounts for the (positive) dissipation, which decays to zero like 1/⌧
(ref. 24). In the case of the average heat per cycle, hQ⌧ i, we find
that the dissipative term is negative, that is, hQ⌧ i= hQ1i�⌃ss/⌧
with ⌃ss >0.

To quantify the performance of the engine, we analyse its power
output and e�ciency. First, we measure the power output as the
mean total work exchanged during a cycle divided by the total
duration of the cycle (Fig. 2b), P⌧ =�hW⌧ i/⌧ . For ⌧ =10ms, hW⌧ i
is positive, the particle behaves as a heat pump and the power is
negative. For larger values of ⌧ the power increases, becoming pos-
itive, and eventually reaches a maximum value Pmax =6.34kTc s�1.
Above that maximum, P⌧ decreases monotonically when increasing
the cycle length. The data of P⌧ versus ⌧ fit well to the expected
law P⌧ =�(hW1i+⌃ss/⌧ )/⌧ . The e�ciency is given by the ratio
between the extracted work and the input of heat, which is usually
considered as the heat flowing from the hot thermal bath to the
system. In our experiment, however, there is a non-zero fluctuating
heat in the adiabatic steps, which must be taken into account in
the definition of the stochastic e�ciency of the engine during a
finite number of cycles. Here we will consider this heat as input
(seeMethods for alternative definitions of the e�ciency).We define
W (i)

⌧ as the sum of the total work exerted on the particle along
i� 1 cycles of duration ⌧ , and Q(i)

↵,⌧ as the sum over i cycles of the
heat transferred to the particle in the ↵th subprocess (↵ =1, 2, 3, 4,

see Fig. 1). We therefore introduce the following definition of
stochastic e�ciency:

⌘(i)
⌧ = �W (i)

⌧

Q(i)
2,⌧ +Q(i)

3,⌧ +Q(i)
4,⌧

(1)

The long-term e�ciency of the motor is given by ⌘⌧ ⌘ ⌘(i)
⌧ with

i!1. In the quasistatic limit, the average heat in the adiabatic pro-
cesses vanishes yielding ⌘1 =⌘C ⌘1�Tc/Th '0.43 (Fig. 2b). More-
over, the standard e�ciency at maximum power, ⌘⇤ '(0.25±0.05),
is in agreement with the Curzon–Ahlborn expression for finite-time
cycles ⌘CA =1�p

Tc/Th '0.25 (refs 21,25).
Very recently, much attention has been drawn to the statistical

properties of the e�ciency of stochastic engines. Using fluctuation
theorems, it was shown that the probability density function (PDF)
of the e�ciency of an autonomous or symmetrically driven engine
has a local minimum precisely at the Carnot value ⌘C (ref. 26).
For non-symmetric driving protocols, such as our Carnot cycle,
there are several theoretical predictions concerning the PDF as
well as the large deviation function of the stochastic e�ciency10,11.
To test some of these predictions, we measure the PDF ⇢⌧ ,i(⌘)
of the stochastic e�ciency ⌘(i)

⌧ (Methods). Close to equilibrium,
near the maximum power output of the engine, the distribution
is bimodal when summing over several cycles9,11 (Fig. 3). Indeed,
local maxima of ⇢⌧ ,i(⌘) appear above standard e�ciency for large
values of i. Another universal feature tested here is that the tails
of the distribution follow a power law, ⇢⌧ ,i(⌘ !±1)⇠ ⌘�2 (inset
of Fig. 3)11,27. In the Supplementary Information, we discuss in
detail and provide further experimental tests of other universal
properties of the PDF and the large deviation function of the
stochastic e�ciency.

We have realized the first Brownian Carnot engine with a single
microscopic particle as a working substance that is able to transform
the heat transferred from thermal fluctuations into mechanical
work, characterizing both its mean behaviour and fluctuations. At
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       IA Martinez et al., Soft Matter 13, 22 (2017)

Electric circuits

On the heat flux and entropy produced by thermal fluctuations

S. Ciliberto1, A.Imparato2, A. Naert1, M. Tanase 1
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We report an experimental and theoretical analysis of the energy exchanged between two con-
ductors kept at di↵erent temperature and coupled by the electric thermal noise. Experimentally we
determine, as functions of the temperature di↵erence, the heat flux, the out-of- equilibrium variance
and a conservation law for the fluctuating entropy, which we justify theoretically. The system is
ruled by the same equations as two Brownian particles kept at di↵erent temperatures and coupled
by an elastic force. Our results set strong constrains on the energy exchanged between coupled
nano-systems held at di↵erent temperatures.

The fluctuations of thermodynamics variables play an important role in understanding the out-of-equilibrium dy-
namics of small systems [1, 2], such as Brownian particles [3–7], molecular motors [8] and other small devices [9]. The
statistical properties of work, heat and entropy, have been analyzed, within the context of the fluctuation theorem [10]
and stochastic thermodynamics [1, 2], in several experiments on systems in contact with a single heat bath and driven
out-of-equilibrium by external forces or fields [3–9]. In contrast, the important case in which the system is driven
out-of-equilibrium by a temperature di↵erence and energy exchange is produced only by the thermal noise has been
analyzed only theoretically on model systems [11–19] but never in an experiment because of the intrinsic di�culties
of dealing with large temperature di↵erences in small systems.

We report here an experimental and theoretical analysis of the statistical properties of the energy exchanged between
two conductors kept at di↵erent temperature and coupled by the electric thermal noise, as depicted in fig. 1a. This
system is inspired by the proof developed by Nyquist [20] in order to give a theoretical explanation of the measurements
of Johnson [21] on the thermal noise voltage in conductors. In his proof, assuming thermal equilibrium between the two
conductors, he deduces the Nyquist noise spectral density. At that time, well before Fluctuation Dissipation Theorem
(FDT), this was the second example, after the Einstein relation for Brownian motion, relating the dissipation of a
system to the amplitude of the thermal noise. In this letter we analyze the consequences of removing the Nyquist’s
equilibrium conditions and we study the statistical properties of the energy exchanged between the two conductors
kept at di↵erent temperature. This system is probably among the simplest examples where recent ideas of stochastic
thermodynamics can be tested but in spite of its simplicity the explanation of the observations is far from trivial. We
measure experimentally the heat flowing between the two heath baths, and show that the fluctuating entropy exhibits
a conservation law. This system is very general because is ruled by the same equations of two Brownian particles kept
at di↵erent temperatures and coupled by an elastic force [13, 19]. Thus it gives more insight into the properties of the
heat flux produced by mechanical coupling, in the famous Feymann ratchet [22–24] widely studied theoretically [13]
but never in an experiment. Therefore our results have implications well beyond the simple system we consider here.

FIG. 1: a) Diagram of the circuit. The resistances R
1

and R
2

are kept at temperature T
1

and T
2

= 296K respectively. They
are coupled via the capacitance C. The capacitances C

1

and C
2

schematize the capacitance of the cables and of the amplifier
inputs. The voltages V

1

and V
2

are amplified by the two low noise amplifiers A
1

and A
2

[33]. b) The circuit in a) is equivalent
to two Brownian particles (m

1

and m
2

) moving inside two di↵erent heat baths at T
1

and T
2

. The two particles are trapped by
two elastic potentials of sti↵ness K

1

and K
2

and coupled by a spring of sti↵ness K (see text and eqs.3,4) The analogy with the
Feymann ratchet can be made by assuming as done in ref.[13] that the particle m1 has an asymmetric shape and on average
moves faster in one direction than in the other one.

Such a system is sketched in fig.1a). It is constituted by two resistances R1 and R2, which are kept at di↵erent
temperature T1 and T2 respectively. These temperatures are controlled by thermal baths and T2 is kept fixed at
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(S Ciliberto et al., PRL 110, 180601 (2013))
Quantum dots

(S. Singh et al., PRB (2019))
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First Law of Thermodynamics
WorkHeat



First Law of Thermodynamics
WorkHeat

Sign convention:



First Law of Thermodynamics
First Law for infinitesimal changes

ideal gas soap film
Energy: state function
Heat and work: path-dependent

generalized 
 force

generalized 
 displacement

Zemansky, Dittman, “Heat and thermodynamics” (1997)



First Law for Heat engines

Hot bath Cold bathEngine
First Law 

Extracted Work

A system interacting  
with two thermal baths



Second Law of Thermodynamics



Second Law of Thermodynamics

Rudolf Clausius

For any nonequilibrium process

Sadi Carnot Q

Qrev

Entropy  
production 



Second Law of Thermodynamics

Q

Isothermal  
processes 

Entropy production



Second Law of Thermodynamics

Qh

Non-isothermal  
Heat engines 

Entropy production  
in a cycle

Qc

Carnot 
efficiency

Efficiency  
of Ferrari



Forward process

Backward process

Entropy production and irreversibility



Entropy production and irreversibility

Q

Q

Forward process

Backward process



Entropy production and irreversibility

Ilya Prigogine Lars Onsager

Linear irreversible thermodynamics (near equilibrium)

Force      Flux 

Rate of entropy production

Onsager 
reciprocity
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Stochastic thermodynamics

“stochastic thermodynamics”

Currently, an emerging field within statistical physics 
(theory and experiment)
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energetics

Projection
methods

Statistical
mechanics

Fig. 1 The Stochastic energetics as completion of the “missing link”

nanobiology, nanoscopic chemical engineering, etc. In other words, those who are
interested in the following questions will find the answer, or at least some clues, in
this book:

• What is the heat associated to the thermal random (Brownian) motion of a meso-
scopic particle?

• What work do we need for the operation and observation of small system?
• How much is the work to operate an ideal Carnot engine? Is it reversible?
• Can we cool a drop of water by agitating a nanoparticle immersed therein?
• How does the heat flow if a particle undergoing Brownian motion pulls a polymer

chain?
• Is the energy conserved during an individual realization of Brownian motion?
• Is the projection methods, which eliminates rapid microscopic motions, compat-

ible with reversible or quasiequilibrium process?
• Can we measure the free energy of the system by a single realization of stochastic

process?
• Are there quantum mechanics-like uncertainty or irreversibility upon the mea-

surement of thermal random process?
• Is the definition of the heat unique? Is the thermodynamics unique for any partic-

ular system ?
• Does a particle carry the chemical potential when it enters into an open system

from the environment?
• Why does the chemical potential of a molecule depend on its density even if the

molecule does not interact with other molecules?
• Do we need an irreversible work to make a copy of the information in a bit

memory?
• Can we detect reversibly the arrival of a Brownian particle with 100% of sureness

at finite temperature?
• Do molecular motors need to stock a large energy in order to do a large work?

K. Sekimoto, “Stochastic energetics” (Springer, 2010)
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Gaussian white noise

P. Langevin, Compt. Rendus 146, 530 (1908)

18 1 Physics of Langevin Equation

However, the microscopic origin of the free Brownian motion is the deterministic
mechanics. Therefore, we seek to formulate the free Brownian motion from the
viewpoint of Newtonian mechanics while we keep the timescale of interest much
larger than τm. To this end, we take into account all the mechanical forces that the
Brownian particle receives from the thermal environment. From the argument in
the Sect.1.1.2.4, first of all there is a random thermal force, ξ̂ (t), that is, a white
Gaussian process (1.14) with the average 0, ⟨ξ̂ (t)⟩ = 0. Another force is the viscous
friction force, −γ v(t), where v(t) is the velocity of the Brownian particle at time
t with respect to the thermal environment. (See (1.13) in the previous subsection.)
The viscous friction force can be written either as −γ p/m or as −γ dx/dt , where
m, p, and x are, respectively, the mass, momentum, and position of the Brownian
particle:16 We, therefore, have the following Newtonian-like equations of motion of
free Brownian motion:17

dp
dt

= −γ
p
m

+ ξ (t),
dx
dt

= p
m

. (1.16)

See Fig. 1.2a for the trajectory of x(t) obtained by solving (1.16).18

Einstein introduced the basic concepts of the Brownian motion [9]. We refer
the readers to Sect. 1.2.1 of [1] for his original reasoning. Einstein’s paper finally
convinced people that the heat is molecular motions [4]. The Brownian particle was
the testimony of the thermal motion. In this book we will see how the heat in the
thermal environment turns into the energy of the Brownian particle and vice versa.

(a) (b)

Fig. 1.2 Two-dimensional trajectories of a free Brownian particle. (a) A solution x(t) of (1.16),
(b) A solution x(t) of (1.19). In (a), the velocity of the Brownian particle (∼ vth) is approximately
maintained along the segment for ∼ vth(m/γ ). In (b) the trajectory shows fictive fine structures
even below the length vth(m/γ )

16 We ignore the renormalization of the mass m due to the entrainment of the fluid molecules. See
the remark after (1.16).
17 Hereafter, we will often omit the hat, “ˆ”, which signifies the stochastic process. In fact ξ (), p,
and x in (1.16) are stochastic processes.
18 The figures are drawn by simple program: (pn+1 − pn)/∆t = −Γ (pn+1 + pn)/(2m) + Ξn ,
(xn+1 − xn)/∆t = (pn+1 + pn)/(2m), where m = ∆t = 1 and Ξn are i.i.d. Gaussian random
variables with zero average. In (a) Γ = 0.1 and in (b) Γ = 2.

V(x)

f(x)
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18 1 Physics of Langevin Equation

However, the microscopic origin of the free Brownian motion is the deterministic
mechanics. Therefore, we seek to formulate the free Brownian motion from the
viewpoint of Newtonian mechanics while we keep the timescale of interest much
larger than τm. To this end, we take into account all the mechanical forces that the
Brownian particle receives from the thermal environment. From the argument in
the Sect.1.1.2.4, first of all there is a random thermal force, ξ̂ (t), that is, a white
Gaussian process (1.14) with the average 0, ⟨ξ̂ (t)⟩ = 0. Another force is the viscous
friction force, −γ v(t), where v(t) is the velocity of the Brownian particle at time
t with respect to the thermal environment. (See (1.13) in the previous subsection.)
The viscous friction force can be written either as −γ p/m or as −γ dx/dt , where
m, p, and x are, respectively, the mass, momentum, and position of the Brownian
particle:16 We, therefore, have the following Newtonian-like equations of motion of
free Brownian motion:17

dp
dt

= −γ
p
m

+ ξ (t),
dx
dt

= p
m

. (1.16)

See Fig. 1.2a for the trajectory of x(t) obtained by solving (1.16).18

Einstein introduced the basic concepts of the Brownian motion [9]. We refer
the readers to Sect. 1.2.1 of [1] for his original reasoning. Einstein’s paper finally
convinced people that the heat is molecular motions [4]. The Brownian particle was
the testimony of the thermal motion. In this book we will see how the heat in the
thermal environment turns into the energy of the Brownian particle and vice versa.

(a) (b)

Fig. 1.2 Two-dimensional trajectories of a free Brownian particle. (a) A solution x(t) of (1.16),
(b) A solution x(t) of (1.19). In (a), the velocity of the Brownian particle (∼ vth) is approximately
maintained along the segment for ∼ vth(m/γ ). In (b) the trajectory shows fictive fine structures
even below the length vth(m/γ )

16 We ignore the renormalization of the mass m due to the entrainment of the fluid molecules. See
the remark after (1.16).
17 Hereafter, we will often omit the hat, “ˆ”, which signifies the stochastic process. In fact ξ (), p,
and x in (1.16) are stochastic processes.
18 The figures are drawn by simple program: (pn+1 − pn)/∆t = −Γ (pn+1 + pn)/(2m) + Ξn ,
(xn+1 − xn)/∆t = (pn+1 + pn)/(2m), where m = ∆t = 1 and Ξn are i.i.d. Gaussian random
variables with zero average. In (a) Γ = 0.1 and in (b) Γ = 2.

V(x)

Langevin equation
f(x)

Gaussian white noise

Overdamped Langevin equation

18 1 Physics of Langevin Equation

However, the microscopic origin of the free Brownian motion is the deterministic
mechanics. Therefore, we seek to formulate the free Brownian motion from the
viewpoint of Newtonian mechanics while we keep the timescale of interest much
larger than τm. To this end, we take into account all the mechanical forces that the
Brownian particle receives from the thermal environment. From the argument in
the Sect.1.1.2.4, first of all there is a random thermal force, ξ̂ (t), that is, a white
Gaussian process (1.14) with the average 0, ⟨ξ̂ (t)⟩ = 0. Another force is the viscous
friction force, −γ v(t), where v(t) is the velocity of the Brownian particle at time
t with respect to the thermal environment. (See (1.13) in the previous subsection.)
The viscous friction force can be written either as −γ p/m or as −γ dx/dt , where
m, p, and x are, respectively, the mass, momentum, and position of the Brownian
particle:16 We, therefore, have the following Newtonian-like equations of motion of
free Brownian motion:17

dp
dt

= −γ
p
m

+ ξ (t),
dx
dt

= p
m

. (1.16)

See Fig. 1.2a for the trajectory of x(t) obtained by solving (1.16).18

Einstein introduced the basic concepts of the Brownian motion [9]. We refer
the readers to Sect. 1.2.1 of [1] for his original reasoning. Einstein’s paper finally
convinced people that the heat is molecular motions [4]. The Brownian particle was
the testimony of the thermal motion. In this book we will see how the heat in the
thermal environment turns into the energy of the Brownian particle and vice versa.

(a) (b)

Fig. 1.2 Two-dimensional trajectories of a free Brownian particle. (a) A solution x(t) of (1.16),
(b) A solution x(t) of (1.19). In (a), the velocity of the Brownian particle (∼ vth) is approximately
maintained along the segment for ∼ vth(m/γ ). In (b) the trajectory shows fictive fine structures
even below the length vth(m/γ )

16 We ignore the renormalization of the mass m due to the entrainment of the fluid molecules. See
the remark after (1.16).
17 Hereafter, we will often omit the hat, “ˆ”, which signifies the stochastic process. In fact ξ (), p,
and x in (1.16) are stochastic processes.
18 The figures are drawn by simple program: (pn+1 − pn)/∆t = −Γ (pn+1 + pn)/(2m) + Ξn ,
(xn+1 − xn)/∆t = (pn+1 + pn)/(2m), where m = ∆t = 1 and Ξn are i.i.d. Gaussian random
variables with zero average. In (a) Γ = 0.1 and in (b) Γ = 2.

P. Langevin, Compt. Rendus 146, 530 (1908)



Primer on stochastic calculus
Standard calculus

Midpoint rule

Stochastic calculus: integration over a trajectory

Stratonovich calculus (midpoint rule) 

Ito calculus



Stochastic heat

How much heat Q(t) is exchanged
between the particle and the bath  

in a single trajectory?

bead inside the solid gel bulk, as sketched in Fig. 1(a).
After 180 s, the laser power is suddenly decreased again to
20 mW so that the temperature is homogenized by heat
diffusion into the bulk in less than 1 ms resulting in a very
efficient quench of the droplet to the final temperature
T < Tgel. At T the liquid inside the droplet solidifies in
about 1 h and the particle, trapped in the center of the drop
by the focused beam, is a probe of this relaxation dynam-
ics. The quenching procedure is repeated 60 times in order
to perform the proper ensemble averages.

Immediately after the quench we record the time evolu-
tion of the x position [see Fig. 1(a)] of the trapped particle
measured by a position sensitive detector whose output is
sampled at 8 kHz and acquired by a computer. The reso-
lution of the measurement of x is better than 1 nm [10,12].
In order to characterize the particle dynamics we measure,
using active microrheology [10], the time evolution of the
viscous drag coefficient !0 of the particle and the largest
correlation time "0 of the fluid. This is done by measuring
the response of the bead at a time-dependent sinusoidal
force F of amplitude 87 fN and frequency f applied to the
bead. The force F ¼ kx0 is obtained through the modula-
tion of the beam focus position x0. The results for !0 and
k"0, measured at f ¼ 5 Hz, are shown in Fig. 1(b). First,
for t & 200 s after the quench there is a transient regime
where the droplet is purely viscous, "0 ’ 0, whereas !0

increases in time. In this regime !0 and "0 do not depend
on f. For t > 200 s the liquid gelatin inside the drop has a
behavior similar to that observed in macroscopic samples
[6,9]; i.e., the liquid drop is actually undergoing gelation.
We will study the nonequilibrium statistical properties of
the bead dynamics in the very first 200 s after the quench
where the liquid gelatin inside the drop is mainly viscous
and the elasticity is negligible with respect to k, as shown
in the inset of 1(b), where we plot k"0=!0 as a function of
time.

We begin by analyzing the variance #xðtÞ2 of x at time t
after the quench. #xðtÞ2 is computed over 60 independent
quenches and over a short time window $t ¼ 0:1 s around
each value of t in order to improve the statistics, as de-
picted in Fig. 2(a). The time evolution of #xðtÞ2 is plotted
in Fig. 2(b). At the beginning, #xðtÞ2 is almost 3 times the
equipartition value kBT=k that would be obtained at equi-
librium. This shows the presence of a stochastic force on
the particle due to the transient formation of the gel net-
work. This force weakens compared to the thermal fluctu-
ations becoming negligible at $20 s so that #xðtÞ2 slowly
decreases in time, reaching the equilibrium value for t *
20 s. This relaxation time scale is 2 orders of magnitude
larger than the initial viscous relaxation time of the parti-
cle: "k ¼ !0=k ¼ 65 ms. Finally for t * 200 s, #xðtÞ2
starts again to decrease because of the appearance of a
strong elastic component of the gel confirming the direct
measure of !0, "0, shown in Fig. 1(b), and justifying that
for t % 200 s the gelatin elasticity is negligible. During
this relaxation process x remains Gaussian as shown in the
inset of Fig. 2(b).
In Fig. 2(b) we also plot the time evolution of #xðtÞ2

measured, after the same quenching procedure, in a
Newtonian fluid (glycerol 60 wt% in water) with the
same viscosity of the initial sol phase of gelatin. In this
case, the particle dynamics must settle into an equilibrium
state in a time $"k after the quench [13]. Indeed in
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FIG. 2 (color online). (a) Time evolution of x after a quench.
#xðtÞ2 is computed over $t ¼ 0:1 s and over 60 independent
quenches. (b) Time evolution of #xðtÞ2 (normalized by kBT=k)
after the quenches performed in gelatin (&) and glycerol (dashed
line). Inset: Probability density of x at t ¼ 0:5 and 50 s for the
quench in gelatin. The solid lines are Gaussian fits.

FIG. 1 (color online). (a) Schematic representation of the
experimental setup to perform a local quench in a sol droplet
around a trapped particle in the gel bulk. (b) Time evolution of
the viscous drag coefficient !0 of the particle and the correlation
time "0 of the gelatin droplet measured after the quench at
f ¼ 5 Hz. Inset: k"0=!0 as a function of time.
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Environment’s force 

Particle’s instataneous  
displacement 

= Stratonovich product 

Heat absorbed by the x degree of freedom in [t,t+dt]

K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)  



Stochastic heat

How much heat Q(t) is exchanged
between the particle and the bath  

in a single trajectory?

bead inside the solid gel bulk, as sketched in Fig. 1(a).
After 180 s, the laser power is suddenly decreased again to
20 mW so that the temperature is homogenized by heat
diffusion into the bulk in less than 1 ms resulting in a very
efficient quench of the droplet to the final temperature
T < Tgel. At T the liquid inside the droplet solidifies in
about 1 h and the particle, trapped in the center of the drop
by the focused beam, is a probe of this relaxation dynam-
ics. The quenching procedure is repeated 60 times in order
to perform the proper ensemble averages.

Immediately after the quench we record the time evolu-
tion of the x position [see Fig. 1(a)] of the trapped particle
measured by a position sensitive detector whose output is
sampled at 8 kHz and acquired by a computer. The reso-
lution of the measurement of x is better than 1 nm [10,12].
In order to characterize the particle dynamics we measure,
using active microrheology [10], the time evolution of the
viscous drag coefficient !0 of the particle and the largest
correlation time "0 of the fluid. This is done by measuring
the response of the bead at a time-dependent sinusoidal
force F of amplitude 87 fN and frequency f applied to the
bead. The force F ¼ kx0 is obtained through the modula-
tion of the beam focus position x0. The results for !0 and
k"0, measured at f ¼ 5 Hz, are shown in Fig. 1(b). First,
for t & 200 s after the quench there is a transient regime
where the droplet is purely viscous, "0 ’ 0, whereas !0

increases in time. In this regime !0 and "0 do not depend
on f. For t > 200 s the liquid gelatin inside the drop has a
behavior similar to that observed in macroscopic samples
[6,9]; i.e., the liquid drop is actually undergoing gelation.
We will study the nonequilibrium statistical properties of
the bead dynamics in the very first 200 s after the quench
where the liquid gelatin inside the drop is mainly viscous
and the elasticity is negligible with respect to k, as shown
in the inset of 1(b), where we plot k"0=!0 as a function of
time.

We begin by analyzing the variance #xðtÞ2 of x at time t
after the quench. #xðtÞ2 is computed over 60 independent
quenches and over a short time window $t ¼ 0:1 s around
each value of t in order to improve the statistics, as de-
picted in Fig. 2(a). The time evolution of #xðtÞ2 is plotted
in Fig. 2(b). At the beginning, #xðtÞ2 is almost 3 times the
equipartition value kBT=k that would be obtained at equi-
librium. This shows the presence of a stochastic force on
the particle due to the transient formation of the gel net-
work. This force weakens compared to the thermal fluctu-
ations becoming negligible at $20 s so that #xðtÞ2 slowly
decreases in time, reaching the equilibrium value for t *
20 s. This relaxation time scale is 2 orders of magnitude
larger than the initial viscous relaxation time of the parti-
cle: "k ¼ !0=k ¼ 65 ms. Finally for t * 200 s, #xðtÞ2
starts again to decrease because of the appearance of a
strong elastic component of the gel confirming the direct
measure of !0, "0, shown in Fig. 1(b), and justifying that
for t % 200 s the gelatin elasticity is negligible. During
this relaxation process x remains Gaussian as shown in the
inset of Fig. 2(b).
In Fig. 2(b) we also plot the time evolution of #xðtÞ2

measured, after the same quenching procedure, in a
Newtonian fluid (glycerol 60 wt% in water) with the
same viscosity of the initial sol phase of gelatin. In this
case, the particle dynamics must settle into an equilibrium
state in a time $"k after the quench [13]. Indeed in
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FIG. 2 (color online). (a) Time evolution of x after a quench.
#xðtÞ2 is computed over $t ¼ 0:1 s and over 60 independent
quenches. (b) Time evolution of #xðtÞ2 (normalized by kBT=k)
after the quenches performed in gelatin (&) and glycerol (dashed
line). Inset: Probability density of x at t ¼ 0:5 and 50 s for the
quench in gelatin. The solid lines are Gaussian fits.

FIG. 1 (color online). (a) Schematic representation of the
experimental setup to perform a local quench in a sol droplet
around a trapped particle in the gel bulk. (b) Time evolution of
the viscous drag coefficient !0 of the particle and the correlation
time "0 of the gelatin droplet measured after the quench at
f ¼ 5 Hz. Inset: k"0=!0 as a function of time.
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Heat absorbed by the x degree of freedom in [0,t]

K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)  

a functional of the stochastic trajectory 

[not a state function!]



First law of stochastic thermodynamics
Work exerted on the particle in [t,t+dt]

K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)  

+



Heat and work along a trajectory
Simple case: no external, non-conservative force (f=0)

Colloidal microscopic particle in a harmonic potential

Ideal macroscopic gas in a movable piston

stochastic

deterministic



Stochastic entropy
Nonequilibrium system’s entropy 

Time

St
at

e

Average over many realizations 

System entropy change along a single trajectory 

Second law? 

U. Seifert, Phys. Rev. Lett. 95(4) 040602 (2005)



Second law and stochastic entropy

System’s entropy change 

Environment’s entropy change 

trajectory

time-reversed 
trajectory

(*key assumption local detailed balance: bath/s in thermal equilibrium)

Stochastic Entropy production 

U. Seifert, Phys. Rev. Lett. 95(4) 040602 (2005)



However, stochastic entropy production                  can be negative  
when a rare trajectory occurs ! 

Second law and stochastic entropy
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Relation to financial concepts

bead inside the solid gel bulk, as sketched in Fig. 1(a).
After 180 s, the laser power is suddenly decreased again to
20 mW so that the temperature is homogenized by heat
diffusion into the bulk in less than 1 ms resulting in a very
efficient quench of the droplet to the final temperature
T < Tgel. At T the liquid inside the droplet solidifies in
about 1 h and the particle, trapped in the center of the drop
by the focused beam, is a probe of this relaxation dynam-
ics. The quenching procedure is repeated 60 times in order
to perform the proper ensemble averages.

Immediately after the quench we record the time evolu-
tion of the x position [see Fig. 1(a)] of the trapped particle
measured by a position sensitive detector whose output is
sampled at 8 kHz and acquired by a computer. The reso-
lution of the measurement of x is better than 1 nm [10,12].
In order to characterize the particle dynamics we measure,
using active microrheology [10], the time evolution of the
viscous drag coefficient !0 of the particle and the largest
correlation time "0 of the fluid. This is done by measuring
the response of the bead at a time-dependent sinusoidal
force F of amplitude 87 fN and frequency f applied to the
bead. The force F ¼ kx0 is obtained through the modula-
tion of the beam focus position x0. The results for !0 and
k"0, measured at f ¼ 5 Hz, are shown in Fig. 1(b). First,
for t & 200 s after the quench there is a transient regime
where the droplet is purely viscous, "0 ’ 0, whereas !0

increases in time. In this regime !0 and "0 do not depend
on f. For t > 200 s the liquid gelatin inside the drop has a
behavior similar to that observed in macroscopic samples
[6,9]; i.e., the liquid drop is actually undergoing gelation.
We will study the nonequilibrium statistical properties of
the bead dynamics in the very first 200 s after the quench
where the liquid gelatin inside the drop is mainly viscous
and the elasticity is negligible with respect to k, as shown
in the inset of 1(b), where we plot k"0=!0 as a function of
time.

We begin by analyzing the variance #xðtÞ2 of x at time t
after the quench. #xðtÞ2 is computed over 60 independent
quenches and over a short time window $t ¼ 0:1 s around
each value of t in order to improve the statistics, as de-
picted in Fig. 2(a). The time evolution of #xðtÞ2 is plotted
in Fig. 2(b). At the beginning, #xðtÞ2 is almost 3 times the
equipartition value kBT=k that would be obtained at equi-
librium. This shows the presence of a stochastic force on
the particle due to the transient formation of the gel net-
work. This force weakens compared to the thermal fluctu-
ations becoming negligible at $20 s so that #xðtÞ2 slowly
decreases in time, reaching the equilibrium value for t *
20 s. This relaxation time scale is 2 orders of magnitude
larger than the initial viscous relaxation time of the parti-
cle: "k ¼ !0=k ¼ 65 ms. Finally for t * 200 s, #xðtÞ2
starts again to decrease because of the appearance of a
strong elastic component of the gel confirming the direct
measure of !0, "0, shown in Fig. 1(b), and justifying that
for t % 200 s the gelatin elasticity is negligible. During
this relaxation process x remains Gaussian as shown in the
inset of Fig. 2(b).
In Fig. 2(b) we also plot the time evolution of #xðtÞ2

measured, after the same quenching procedure, in a
Newtonian fluid (glycerol 60 wt% in water) with the
same viscosity of the initial sol phase of gelatin. In this
case, the particle dynamics must settle into an equilibrium
state in a time $"k after the quench [13]. Indeed in
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FIG. 2 (color online). (a) Time evolution of x after a quench.
#xðtÞ2 is computed over $t ¼ 0:1 s and over 60 independent
quenches. (b) Time evolution of #xðtÞ2 (normalized by kBT=k)
after the quenches performed in gelatin (&) and glycerol (dashed
line). Inset: Probability density of x at t ¼ 0:5 and 50 s for the
quench in gelatin. The solid lines are Gaussian fits.

FIG. 1 (color online). (a) Schematic representation of the
experimental setup to perform a local quench in a sol droplet
around a trapped particle in the gel bulk. (b) Time evolution of
the viscous drag coefficient !0 of the particle and the correlation
time "0 of the gelatin droplet measured after the quench at
f ¼ 5 Hz. Inset: k"0=!0 as a function of time.
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Plot of this talk

• Brief review of classical “textbook” thermodynamics 

• Stochastic thermodynamics: first and second laws 

• Fluctuation theorems  

• Maxwell’s demons and feedback control 

• The latest: Uncertainty relations and Martingales



Jarzynski’s equality
Initial state  
equilibrium

Non-equilibrium  
process

Final state  
equilibrium

eq

eqnon-eq

Non-equilibrium equality for any protocol arbitrarily far from equilibrium

C. Jarzynski, Phys. Rev. Lett. 78, 269 (1997)

where W(t) is the nonequilibrium work

and the equilibrium free energy change



Jarzynski’s equality

C. Jarzynski, Phys. Rev. Lett. 78, 269 (1997)

Jensen’s inequality

Non-equilibrium equality for any protocol arbitrarily far from equilibrium

Probability for “second law violations”

4 October 2019  
Jarzynski @ ICTP Colloquium  



Jarzynski’s equality

J Liphardt, S Dumont, SB Smith, I Tinoco, C Bustamante, Science 296 (5574), 1832 (2002)

Despite its possible application to systems
where the equilibrium regime is not accessi-
ble, Jarzynski’s equality has not previously
been tested experimentally. Here, we carry
out such a test and demonstrate the practical
application of the equality by using it to
extract !G values from nonequilibrium sin-
gle molecule pulling experiments. Specifical-
ly, we compare the performance of three
different !G estimates: the average work
WA " #w$N, the fluctuation-dissipation esti-
mate WFD " #w$N – %&2/2, and the estimate
obtained from Jarzynski’s equality, WJE "
–%'1 ln#exp(–%w)$N (21).

Several requirements must be met to test
Jarzynski’s equality. First, the equilibrium
and nonequilibrium regimes must both be
experimentally accessible. Second, although
Jarzynski’s equality applies in theory to sys-
tems of any size driven arbitrarily far from
equilibrium, the experimentally reachable
number N of experiments limits the use of Eq.
1 to systems in which the standard deviation
of the work values is not much greater than
kBT (5, 10). Thus, the system must be micro-
scopic. Third, measurement error must be
kept sufficiently low over a large number of
switching trajectories.

Our criteria for verification of the equality
are as follows. First, Jarzynski estimates WJE

obtained from experiments done at different
nonequilibrium switching rates must coincide
to within experimental error. This criterion
tests the validity of Jarzynski’s equality under
perturbations of different strengths. Second,
the various WJE estimates must also coincide
to within experimental error with our best
independent estimate of !G—the mean work
of reversible quasi-static switching, WA,rev.

Our experimental system is the mechanical
unfolding of single RNA molecules derived
from the P5abc domain of the Tetrahymena
thermophila group 1 intron (Fig. 1A) (22). Me-
chanical unfolding of P5abc is well suited to
test Jarzynski’s equality because both regimes
of interest are experimentally accessible: P5abc
unfolds reversibly when stretched slowly and
irreversibly when stretched more rapidly. Fur-
thermore, the mechanical unfolding reaction
follows an externally imposed and well-defined
reaction coordinate, the molecular end-to-end
extension z. Individual RNA molecules were
attached to 2- to 3-(m polystyrene beads by
RNA-DNA hybrid handles and complementary
DNA-bead chemistry (Fig. 1B) (23). One bead
was held in a force-measuring optical trap (10,
23, 24) and the other bead was linked to a
piezoelectric actuator through a micropipette
tip. Molecules were stretched by moving the tip
bead; the force acting on the RNA was deter-
mined by measuring the deflection of the trap-
ping laser beams with position-sensitive photo-
detectors. Experiments were performed at a
temperature of 298 to 301 K.

We unfolded the P5abc domain at slow (2
to 5 pN/s) and fast (34 and 52 pN/s) rates.
Each fast unfolding-refolding cycle was im-
mediately followed by one slow cycle. By
interleaving fast and slow unfolding-refold-
ing cycles, we could monitor drift of the zero
force point in the instrument and of the mo-
lecular end-to-end extension, and thus reduce
instrumental artifacts in the difference be-
tween the work done at the fast and slow rates
(25). An RNA molecule was switched N
times between the folded and unfolded con-
formations, and then values for WA, WFD, and
WJE of the fast and slow cycles were com-
puted. Seven independent data sets were col-
lected, each with a different RNA molecule
and about 40 unfolding-refolding cycles per
switching rate. Data for unfolding-refolding

rates of 2 to 5 pN/s, 34 pN/s, and 52 pN/s are
shown in blue, green, and red, respectively, in
Figs. 2 and 3.

To confirm that unfolding-refolding of
P5abc is reversible at our slowest switching
rates, we quantified the mean work difference
between the forward and backward curves. In
these conditions, P5abc unfolding and refold-
ing curves nearly coincide. Initially, the
force-extension curve increases monotonical-
ly as the molecular RNA-DNA handles are
stretched against entropic elasticity (Fig. 2A,
blue). At )10 pN, the RNA molecule begins
to unfold. Above )14 pN, the force-exten-
sion curve again increases monotonically and
is dominated by the molecular handles. Here
and below, we consider only 30 nm of the
pulling reaction (341 to 371 nm) because
handle stretching is reversible at all our
switching rates. Accordingly, we place the
lower integration limit of Eq. 2, z " 0, at 341
nm. At this slow switching rate, the differ-
ence between the mean work of forward and
backward curves is smaller than kBT at any
position along the pulling coordinate z from 0
to 30 nm (N " 24 curves). We estimated the
experimental error in our measurements to be
*kBT/2 and used this value as the threshold
beyond which discrepancies between energy
estimates are significant. Slow unfolding-re-
folding of P5abc was experimentally indistin-
guishable from a reversible process and
yielded a !G between the folded and unfold-
ed states of 60.2 * 1.6 kBT.

Next, we performed the same experiment
irreversibly, stretching P5abc and the RNA-
DNA handles rapidly. As before, the begin-
ning and end of the stretching process are
reversible (Fig. 2A, red), demonstrating that
the relaxation rate of the handles is rapid
relative to all three switching rates (26). By
contrast, hysteresis is observed in the middle
of the process (Fig. 2A, red; between 9 and

Fig. 1. (A) Sequence and secondary structure of
the P5abc RNA. (B) RNA molecules were at-
tached between two beads with RNA-DNA hy-
brid handles.

Fig. 2. Force-extension unfolding curves of P5abc at three different switching rates. (A) Typical
force-extension unfolding (U) and refolding (R) curves of the P5abc RNA in 10 mM EDTA in
reversible (blue, 2 to 5 pN/s) and irreversible (red, 52 pN/s) switching conditions. (B) Two
experiments are shown: one in which a molecule was unfolded at rates of 2 to 5 pN/s and 34 pN/s
(left pair, blue and green), and another in which the molecule was unfolded at rates of 2 to 5 pN/s
and 52 pN/s (right pair, blue and red). Curves (superposition of about 40 curves per experiment)
were smoothed by convolution with a Gaussian kernel.
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12 pN), illustrating that P5abc RNA unfold-
ing is slow compared to the switching times
at 34 and 52 pN/s. As shown in Fig. 2B, at
these rapid switching rates (green and red
curves) the force-extension curves in the re-
gion dominated by P5abc RNA unfolding are
higher in force and more broadly distributed
than during reversible unfolding (blue
curves). However, the refolding curves are
slightly lower in force than the reversible
curves [on average by 0.3 pN (27)].

The performance of the three different
types of !G estimates for reversible switch-
ing is shown in Fig. 3A. The dissipated work
wdiss is defined as the difference between the
actual work performed on the system and the
reversible part of that work; solid lines show
the mean dissipated work, "Wdiss# $ "WA –
WA,rev#, where the brackets now represent
averaging over m data sets (m $ 7) and W
still represents averaging over the N pulls
within a data set. Dotted lines show "WFD –
WA,rev#, the mean difference between the
fluctuation-dissipation !G estimate, WFD,
and the reversible work. Dashed lines show
"WJE – WA,rev#, the mean difference between
the !G estimate from Jarzynski’s equality,
WJE, and the reversible work. In this revers-
ible case, the !G estimate obtained via Jar-
zynski’s equality is no different from the one
obtained using the fluctuation-dissipation re-
lation (note the coincidence to within 0.1kBT
of the dashed and dotted blue lines). The
coincidence of WFD and WJE for the revers-
ible curves is consistent with theoretical pre-
dictions for near-equilibrium conditions (21).

At these slow switching rates, WFD and
WJE both decay gradually with increasing z,
leading to underestimation of !G by 1.4 kBT
at z $ 30 nm (Fig. 3A). Such !G underesti-
mation is large under conditions of slow
switching and results from two related ef-
fects. First, the longer the switching time, the
more low-frequency instrument noise will ac-
cumulate during the experiment, increasing
the measured standard deviation of work val-
ues, %. Second, the distribution of molecular
work values narrows as the RNA molecule is
unfolded more slowly, and this increases the
relative contribution of low-frequency instru-
ment noise to the measured %. Because the
dominant contribution to WJE comes from
values in the lower tail of the work distribu-
tion, this and related estimates of !G are
particularly sensitive to artifacts that increase
% (28).

Figure 3B shows the performance of the
three different types of !G estimates for
irreversible switching. By z $ 30 nm, irre-
versible unfolding (solid green and red
curves) leads to dissipation of &2 to 3 kBT
compared to reversible unfolding (solid
blue curve; yellow band, our experimental
error of 'kBT/2). The dissipated work is
the energy penalty for switching a system

faster than its slowest relaxation rate, and
this penalty is largely paid in the central
extension range (10 ( z ( 18 nm). The
kinetic barrier for unfolding the P5abc mol-
ecule is thus located near or within the P5a
helix and the A-rich bulge (Fig. 1A). The
!G estimate from the fluctuation-dissipa-
tion relation, WFD, performs well until z $
18 nm but then fails (Fig. 3B, dotted
curves). However, WJE performs consis-
tently well over the entire extension range.
Remarkably, application of Jarzynski’s
equality (Eq. 1) to work trajectories ob-
tained at the two nonequilibrium switching
rates yields !G estimates that coincide to
within 0.3kBT over the entire extension
range (green versus red dashed curves).

Moreover, the difference between the non-
equilibrium WJE’s and the reversible work
WA,rev (solid blue curve) is less than 0.6kBT
regardless of switching rate. Both criteria
laid out earlier for successful verification
of Jarzynski’s equality are thus satisfied,
except near the end of the reaction (z $ 30
nm), where WJE, 52 pN/s underestimates !G
by 0.6 kBT.

As shown in Fig. 3B, WFD and WJE yield
different estimates of !G in irreversible condi-
tions (compare dotted and dashed curves). The
discrepancy between WFD and WJE at 34 and 52
pN/s suggests that P5abc unfolding occurs far
from equilibrium at these rates. The fluctuation-
dissipation relation is applicable only in the
near-equilibrium limit, where there is a simple

Fig. 3. (A) Estimation of free energy profile from reversible switching (r $ 2 to 5 pN/s, blue).
For each of the seven data sets, we determined the mean work WA, the fluctuation-dissipation
!G estimate WFD, and the !G estimate from Jarzynski’s equality, WJE. Next, we subtracted
WA,rev from those energies. Finally, we averaged those differences over data sets, yielding the
average dissipated work "WA – WA,rev# (solid yellow band, 'kBT/2), "WFD – WA,rev# (dotted line),
and "WJE – WA,rev# (dashed line). The two !G estimates WFD and WJE coincide everywhere to
within 0.1kBT. Both estimates decrease monotonically with extension, and, by z $ 30 nm,
underestimate the average work by &1.4kBT. (B) Estimation of free energy profile from
irreversible switching (r $ 34 pN/s, green, and 52 pN/s, red). Mean energy differences were
computed as in (A). Use of the fluctuation-dissipation relation (dotted lines) yields !G to
within kBT/2 between z $ 0 and 18 nm. Beyond z $ 18 nm, however, WFD underestimates !G
substantially. By contrast, application of Jarzynski’s equality (dashed lines) recovers !G to
within experimental error ('kBT/2) from z $ 0 to 30 nm. (C to E) Histograms of dissipated
work values at z $ 5, 15, and 25 nm. Dissipated work values for a given switching rate were
pooled. Blue, 272; green, 119; red, 153 dissipated work values. Solid lines: Gaussian with mean
and standard deviation of data.
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12 pN), illustrating that P5abc RNA unfold-
ing is slow compared to the switching times
at 34 and 52 pN/s. As shown in Fig. 2B, at
these rapid switching rates (green and red
curves) the force-extension curves in the re-
gion dominated by P5abc RNA unfolding are
higher in force and more broadly distributed
than during reversible unfolding (blue
curves). However, the refolding curves are
slightly lower in force than the reversible
curves [on average by 0.3 pN (27)].

The performance of the three different
types of !G estimates for reversible switch-
ing is shown in Fig. 3A. The dissipated work
wdiss is defined as the difference between the
actual work performed on the system and the
reversible part of that work; solid lines show
the mean dissipated work, "Wdiss# $ "WA –
WA,rev#, where the brackets now represent
averaging over m data sets (m $ 7) and W
still represents averaging over the N pulls
within a data set. Dotted lines show "WFD –
WA,rev#, the mean difference between the
fluctuation-dissipation !G estimate, WFD,
and the reversible work. Dashed lines show
"WJE – WA,rev#, the mean difference between
the !G estimate from Jarzynski’s equality,
WJE, and the reversible work. In this revers-
ible case, the !G estimate obtained via Jar-
zynski’s equality is no different from the one
obtained using the fluctuation-dissipation re-
lation (note the coincidence to within 0.1kBT
of the dashed and dotted blue lines). The
coincidence of WFD and WJE for the revers-
ible curves is consistent with theoretical pre-
dictions for near-equilibrium conditions (21).

At these slow switching rates, WFD and
WJE both decay gradually with increasing z,
leading to underestimation of !G by 1.4 kBT
at z $ 30 nm (Fig. 3A). Such !G underesti-
mation is large under conditions of slow
switching and results from two related ef-
fects. First, the longer the switching time, the
more low-frequency instrument noise will ac-
cumulate during the experiment, increasing
the measured standard deviation of work val-
ues, %. Second, the distribution of molecular
work values narrows as the RNA molecule is
unfolded more slowly, and this increases the
relative contribution of low-frequency instru-
ment noise to the measured %. Because the
dominant contribution to WJE comes from
values in the lower tail of the work distribu-
tion, this and related estimates of !G are
particularly sensitive to artifacts that increase
% (28).

Figure 3B shows the performance of the
three different types of !G estimates for
irreversible switching. By z $ 30 nm, irre-
versible unfolding (solid green and red
curves) leads to dissipation of &2 to 3 kBT
compared to reversible unfolding (solid
blue curve; yellow band, our experimental
error of 'kBT/2). The dissipated work is
the energy penalty for switching a system

faster than its slowest relaxation rate, and
this penalty is largely paid in the central
extension range (10 ( z ( 18 nm). The
kinetic barrier for unfolding the P5abc mol-
ecule is thus located near or within the P5a
helix and the A-rich bulge (Fig. 1A). The
!G estimate from the fluctuation-dissipa-
tion relation, WFD, performs well until z $
18 nm but then fails (Fig. 3B, dotted
curves). However, WJE performs consis-
tently well over the entire extension range.
Remarkably, application of Jarzynski’s
equality (Eq. 1) to work trajectories ob-
tained at the two nonequilibrium switching
rates yields !G estimates that coincide to
within 0.3kBT over the entire extension
range (green versus red dashed curves).

Moreover, the difference between the non-
equilibrium WJE’s and the reversible work
WA,rev (solid blue curve) is less than 0.6kBT
regardless of switching rate. Both criteria
laid out earlier for successful verification
of Jarzynski’s equality are thus satisfied,
except near the end of the reaction (z $ 30
nm), where WJE, 52 pN/s underestimates !G
by 0.6 kBT.

As shown in Fig. 3B, WFD and WJE yield
different estimates of !G in irreversible condi-
tions (compare dotted and dashed curves). The
discrepancy between WFD and WJE at 34 and 52
pN/s suggests that P5abc unfolding occurs far
from equilibrium at these rates. The fluctuation-
dissipation relation is applicable only in the
near-equilibrium limit, where there is a simple

Fig. 3. (A) Estimation of free energy profile from reversible switching (r $ 2 to 5 pN/s, blue).
For each of the seven data sets, we determined the mean work WA, the fluctuation-dissipation
!G estimate WFD, and the !G estimate from Jarzynski’s equality, WJE. Next, we subtracted
WA,rev from those energies. Finally, we averaged those differences over data sets, yielding the
average dissipated work "WA – WA,rev# (solid yellow band, 'kBT/2), "WFD – WA,rev# (dotted line),
and "WJE – WA,rev# (dashed line). The two !G estimates WFD and WJE coincide everywhere to
within 0.1kBT. Both estimates decrease monotonically with extension, and, by z $ 30 nm,
underestimate the average work by &1.4kBT. (B) Estimation of free energy profile from
irreversible switching (r $ 34 pN/s, green, and 52 pN/s, red). Mean energy differences were
computed as in (A). Use of the fluctuation-dissipation relation (dotted lines) yields !G to
within kBT/2 between z $ 0 and 18 nm. Beyond z $ 18 nm, however, WFD underestimates !G
substantially. By contrast, application of Jarzynski’s equality (dashed lines) recovers !G to
within experimental error ('kBT/2) from z $ 0 to 30 nm. (C to E) Histograms of dissipated
work values at z $ 5, 15, and 25 nm. Dissipated work values for a given switching rate were
pooled. Blue, 272; green, 119; red, 153 dissipated work values. Solid lines: Gaussian with mean
and standard deviation of data.
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different pulling-releasing speeds, and the results for
three speeds are shown in Fig. 7(c). We see that when
the speed is increased the difference between the mean
works in the S and R protocols increases. However, the
remarkable fact is that the PSðWÞ and PRðWÞ cross,
within experimental errors at the same value of W
independently of the pulling speed, showing the validity
of Eq. (15). As already explained, the crossing point
gives the value of the free-energy difference between the
folded and unfolded states.

3. Short discussion on applications of Jarzynski
and Crooks relations

The examples in Secs. IV C 1 and IV C 2 show the
power of Jarzynski and Crooks relations which are a very
useful tool to estimate the free-energy differences of micro
and nano systems where the role of fluctuation is very
important.
It is worth mentioning that there is a large amount

of work on this topic performed by the biophysics
and chemistry communities. The estimation of the
protein-folding landscapes is an important application,
which remains one of the main interests despite many
years of investigation; useful examples can be found in
Refs. [73,74].
Furthermore, using extensions to the basic results of

Jarzynski [68], the works in Refs. [72,75,76] collectively
show that nonequilibrium measurements give the most
precise reconstructions, to date, of free-energy landscapes
for single molecules (DNA hairpins).
The reader might also be interested in a recent extension

of these relations by Camunas-Solder et al. [77], who have

shown that fluctuation relations can be used for much more
than estimating free-energy differences. They study ligand
binding and use single-molecule force spectroscopy to
measure binding energies, selectivity, and allostery of
nucleic acids.
Finally, useful extensions and generalizations of

the Jarzynski equality that allow the study of the
transition between two nonequilibrium steady states have
been derived in Ref. [78] and checked experimentally
in Ref. [79].

V. TWO HEAT BATHS

In Secs. II, III D, and IV, we discuss systems in contact
with a single heat bath, which, within the context of
stochastic thermodynamics, are the most studied cases
both experimentally and theoretically [2,3]. Conversely,
systems, driven out of equilibrium by a temperature
gradient, in which the energy exchanges are produced
only by the thermal noise, have been analyzed mainly in
theoretical models [47,80–90]. This problem has been
studied only in a few very recent experiments [91–95],
because of the intrinsic difficulties of dealing with large
temperature differences in small systems.
In order to illustrate the main properties of the energy

fluxes in these systems driven out of equilibrium by a
temperature gradient, we summarize in this section the
main results of Refs. [91,92]. These two articles analyze
both experimentally an theoretically the statistical pro-
perties of the energy exchanged between two conductors
kept at different temperature and coupled by the electric
thermal noise.

(c)(a)

FIG. 7. (a) Experimental setup. The DNA hairpin whose sequence is shown in (b) is attached to two beads. The bottom bead is kept by
a micropipette and top bead is captured by an optical trap. The drawing is not to scale; the diameter of the beads is around 3000 nm,
much greater than the 20-nm length of the DNA. (b) DNA hairpin sequence. Labels 5 and 3 indicate the polarity of the phosphate chain
of the hairpin. (c) Typical work distributions for three different loading rates: 1 pN=s (slow, blue), 4.88 pN=s (medium, green),
14.9 pN=s (fast, red). The vertical lines show the range of the estimated experimental errors for the value ofΔF (adapted from Ref. [65]).
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Forward process

work distribution

G. E. Crooks, Phys. Rev. E 60, 2721 (2000)

Backward process

work distribution

Asymmetry relation between forward 
and backward work distributions:



Crooks theorem

D. Collin, F. Ritort, et. al, Nature 437, 231 (2005)

Figure 1. Force–extension curves
The stochasticity of the unfolding and refolding process is characterized by a distribution of
unfolding or refolding work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s−1). The blue area
under the curve represents the work returned to the machine as the molecule switches from the
unfolded to the folded state. The RNA sequence is shown as an inset.
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Figure 2. Test of the CFT using an RNA hairpin
Work distributions for RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(−W), for refolding. Statistics: 130 pulls and three molecules (r =
1.5pNs−1), 380 pulls and four molecules (r = 7.5pNs−1), 700 pulls and three molecules (r =
20.0pNs−1), for a total of ten separate experiments. Good reproducibility was obtained among
molecules (see Supplementary Fig. S2). Work values were binned into about ten equally spaced
intervals. Unfolding and refolding distributions at different speeds show a common crossing
around ΔG = 110.3kBT.
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Figure 3. Free-energy recovery and test of the CFT for non-gaussian work distributions
Experiments were carried out on the wild-type and mutant S15 three-helix junction without
Mg2+. Unfolding (continuous lines) and refolding (dashed lines) work distributions. Statistics:
900 pulls and two molecules (wild type, purple); 1,200 pulls and five molecules (mutant type,
orange). Crossings between distributions are indicated by black circles. Work histograms were
found to be reproducible among different molecules (error bars indicating the range of
variability). Inset, test of the CFT for the mutant. Data have been linearly interpolated between
contiguous bins of the unfolding and refolding work distributions.
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different pulling-releasing speeds, and the results for
three speeds are shown in Fig. 7(c). We see that when
the speed is increased the difference between the mean
works in the S and R protocols increases. However, the
remarkable fact is that the PSðWÞ and PRðWÞ cross,
within experimental errors at the same value of W
independently of the pulling speed, showing the validity
of Eq. (15). As already explained, the crossing point
gives the value of the free-energy difference between the
folded and unfolded states.

3. Short discussion on applications of Jarzynski
and Crooks relations

The examples in Secs. IV C 1 and IV C 2 show the
power of Jarzynski and Crooks relations which are a very
useful tool to estimate the free-energy differences of micro
and nano systems where the role of fluctuation is very
important.
It is worth mentioning that there is a large amount

of work on this topic performed by the biophysics
and chemistry communities. The estimation of the
protein-folding landscapes is an important application,
which remains one of the main interests despite many
years of investigation; useful examples can be found in
Refs. [73,74].
Furthermore, using extensions to the basic results of

Jarzynski [68], the works in Refs. [72,75,76] collectively
show that nonequilibrium measurements give the most
precise reconstructions, to date, of free-energy landscapes
for single molecules (DNA hairpins).
The reader might also be interested in a recent extension

of these relations by Camunas-Solder et al. [77], who have

shown that fluctuation relations can be used for much more
than estimating free-energy differences. They study ligand
binding and use single-molecule force spectroscopy to
measure binding energies, selectivity, and allostery of
nucleic acids.
Finally, useful extensions and generalizations of

the Jarzynski equality that allow the study of the
transition between two nonequilibrium steady states have
been derived in Ref. [78] and checked experimentally
in Ref. [79].

V. TWO HEAT BATHS

In Secs. II, III D, and IV, we discuss systems in contact
with a single heat bath, which, within the context of
stochastic thermodynamics, are the most studied cases
both experimentally and theoretically [2,3]. Conversely,
systems, driven out of equilibrium by a temperature
gradient, in which the energy exchanges are produced
only by the thermal noise, have been analyzed mainly in
theoretical models [47,80–90]. This problem has been
studied only in a few very recent experiments [91–95],
because of the intrinsic difficulties of dealing with large
temperature differences in small systems.
In order to illustrate the main properties of the energy

fluxes in these systems driven out of equilibrium by a
temperature gradient, we summarize in this section the
main results of Refs. [91,92]. These two articles analyze
both experimentally an theoretically the statistical pro-
perties of the energy exchanged between two conductors
kept at different temperature and coupled by the electric
thermal noise.

(c)(a)

FIG. 7. (a) Experimental setup. The DNA hairpin whose sequence is shown in (b) is attached to two beads. The bottom bead is kept by
a micropipette and top bead is captured by an optical trap. The drawing is not to scale; the diameter of the beads is around 3000 nm,
much greater than the 20-nm length of the DNA. (b) DNA hairpin sequence. Labels 5 and 3 indicate the polarity of the phosphate chain
of the hairpin. (c) Typical work distributions for three different loading rates: 1 pN=s (slow, blue), 4.88 pN=s (medium, green),
14.9 pN=s (fast, red). The vertical lines show the range of the estimated experimental errors for the value ofΔF (adapted from Ref. [65]).
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Detailed and integral fluctuation theorem

U. Seifert, Phys. Rev. Lett. 95(4) 040602 (2005)

for the recurrences ofM such reference paths or patterns in
the time series. Next, we also introduce the probability
P!"ZRm; !; "; n# for a reversed path of the reversed process
to remain within a distance ! of the reference path Zm
(of the forward process) during n successive positions.
According to a numerical procedure proposed by
Grassberger, Procaccia, and others [1,2] the entropy per
unit time can be estimated by the linear growth of the mean
‘‘pattern entropy’’ defined as

 H"!; "; n# $ ! 1

M

XM

m$1

lnP%"Zm; !; "; n#: (7)

By similarity, we introduce

 HR"!; "; n# $ ! 1

M

XM

m$1

lnP!"ZRm; !; "; n# (8)

for the reversed process. The "!; "# entropies per unit time,
h"!; "# and hR"!; "#, are defined by the linear growth of
these mean pattern entropies as a function of the time n"
[1,2,4]. In the nonequilibrium steady state, the thermody-
namic entropy production should thus be given by the
difference between these two quantities:

 

1

kB

diS
dt
$ lim

!!0
lim
"!0
&hR"!; "# ! h"!; "#': (9)

It is important to note that the probabilities of the reversed
paths are averaged over the paths of the forward process in
order for Eq. (9) to hold. The entropy production is thus
expressed as the difference of two usually very large
quantities which increase with the scaling law !!2 for !,
" going to zero [4,20]. Nevertheless, their difference re-
mains finite and gives the entropy production in terms of
the time asymmetry of the dynamical randomness charac-
terized by the "!; "# entropies per unit time.

In order to test experimentally that entropy production is
related to this time asymmetry according to Eq. (9), we
have analyzed for specific values of juj or jIj a pair of time
series up to 2( 107 points each, one corresponding to the
forward process and the other corresponding to the re-
versed process, having first discarded the transient evolu-
tion. Figure 1 depicts examples of paths z"t# for the
Brownian particle in a moving optical trap.

For different values of ! between 5.6–11.2 nm [21], the
mean pattern entropy (7) is calculated with the distance
defined by taking the maximum among the deviations
jZ"t# ! Zm"t#j with respect to some reference path Zm for
the times t $ 0; "; . . . ; "n! 1#". The forward entropy per
unit time h"!; "# is evaluated from the linear growth of the
mean pattern entropy (7) with the time n". The backward
entropy per unit time hR"!; "# is obtained similarly from
the time-reversed pattern entropy (8). The difference of the
two dynamical entropies is depicted as in Fig. 2(a). The
good agreement with the entropy production (5) is the
experimental evidence that this latter is indeed related to

the time asymmetry of dynamical randomness as predicted
by Eq. (9).

On the other hand, we have analyzed by the same
method the time series of the RC electric circuit. We see
in Fig. 2(b) that the entropy production obtained from the
time series analysis of the RC circuit agrees very well with
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FIG. 1 (color online). Time series of typical paths z"t# for the
Brownian particle in the optical trap moving at the velocity u for
the forward process (upper curve) and !u for the reversed
process (lower curve) with u $ 4:24( 10!6 m=s.

 

0 1 2 3 4 5
u  (µm/s)

0

50

100

150

d iS/
dt

   
(k

B
T/

s)

(a)

0 0.1 0.2 0.3
I   (pA)

0

50

100

150

200

250

d iS/
dt

   
(k

B
T/

s)

(b)

FIG. 2 (color online). (a) Entropy production of the Brownian
particle versus the driving speed u. The solid line is given by
Eq. (5). (b) Entropy production of the RC electric circuit versus
the injected current I. The solid line is the Joule law diS=dt $
RI2=T. The dots are the results of Eq. (9).
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for the recurrences ofM such reference paths or patterns in
the time series. Next, we also introduce the probability
P!"ZRm; !; "; n# for a reversed path of the reversed process
to remain within a distance ! of the reference path Zm
(of the forward process) during n successive positions.
According to a numerical procedure proposed by
Grassberger, Procaccia, and others [1,2] the entropy per
unit time can be estimated by the linear growth of the mean
‘‘pattern entropy’’ defined as
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h"!; "# and hR"!; "#, are defined by the linear growth of
these mean pattern entropies as a function of the time n"
[1,2,4]. In the nonequilibrium steady state, the thermody-
namic entropy production should thus be given by the
difference between these two quantities:
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It is important to note that the probabilities of the reversed
paths are averaged over the paths of the forward process in
order for Eq. (9) to hold. The entropy production is thus
expressed as the difference of two usually very large
quantities which increase with the scaling law !!2 for !,
" going to zero [4,20]. Nevertheless, their difference re-
mains finite and gives the entropy production in terms of
the time asymmetry of the dynamical randomness charac-
terized by the "!; "# entropies per unit time.

In order to test experimentally that entropy production is
related to this time asymmetry according to Eq. (9), we
have analyzed for specific values of juj or jIj a pair of time
series up to 2( 107 points each, one corresponding to the
forward process and the other corresponding to the re-
versed process, having first discarded the transient evolu-
tion. Figure 1 depicts examples of paths z"t# for the
Brownian particle in a moving optical trap.

For different values of ! between 5.6–11.2 nm [21], the
mean pattern entropy (7) is calculated with the distance
defined by taking the maximum among the deviations
jZ"t# ! Zm"t#j with respect to some reference path Zm for
the times t $ 0; "; . . . ; "n! 1#". The forward entropy per
unit time h"!; "# is evaluated from the linear growth of the
mean pattern entropy (7) with the time n". The backward
entropy per unit time hR"!; "# is obtained similarly from
the time-reversed pattern entropy (8). The difference of the
two dynamical entropies is depicted as in Fig. 2(a). The
good agreement with the entropy production (5) is the
experimental evidence that this latter is indeed related to

the time asymmetry of dynamical randomness as predicted
by Eq. (9).

On the other hand, we have analyzed by the same
method the time series of the RC electric circuit. We see
in Fig. 2(b) that the entropy production obtained from the
time series analysis of the RC circuit agrees very well with
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FIG. 1 (color online). Time series of typical paths z"t# for the
Brownian particle in the optical trap moving at the velocity u for
the forward process (upper curve) and !u for the reversed
process (lower curve) with u $ 4:24( 10!6 m=s.
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FIG. 2 (color online). (a) Entropy production of the Brownian
particle versus the driving speed u. The solid line is given by
Eq. (5). (b) Entropy production of the RC electric circuit versus
the injected current I. The solid line is the Joule law diS=dt $
RI2=T. The dots are the results of Eq. (9).
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Entropy production along a stochastic trajectory of finite time duration in a 
generic non-equilibrium (stationary or non-stationary) process

• Diffusion processes e.g. Langevin
• Discrete systems e.g. continuous-time Markov processes
• Non-Markovian stochastic processes
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Detailed and integral fluctuation theorem

Reviews: S. Ciliberto, PRX 7, 021051 (2017); Martinez.Soft Matter ‘17

Experimental tests: electrical circuits, colloidal particles, nanoelectronic devices…

A. Two electric circuits interacting via
a conservative coupling

1. Experimental setup and stochastic variables

The experimental setup is sketched in Fig. 8(a). It is
constituted by two resistances R1 and R2, which are kept
at different temperatures T1 and T2, respectively. These
temperatures are controlled by thermal baths, and T2 is
fixed at 296 K, whereas T1 can be set at a value between 88
and 296 K using the stratified vapor above a liquid nitrogen
bath. In the figure, the two resistances have been drawn
with their associated thermal noise generators η1 and η2,
whose power spectral densities are given by the Nyquist
formula j~ηmj2 ¼ 4kBRmTm, with m ¼ 1, 2 [see Eqs. (16)
and (17)]. The coupling capacitance C controls the elec-
trical power exchanged between the resistances and, as a
consequence, the energy exchanged between the two baths.
No other coupling exists between the two resistances which
are inside two separated screened boxes. The quantities
C1 and C2 are the capacitances of the circuits and the
cables. Two extremely low-noise amplifiers A1 and A2 [96]
measure the voltage V1 and V2 across the resistances R1

and R2, respectively. All the relevant quantities considered
in this paper can be derived by the measurements of V1

and V2, as we discuss below.

2. Stochastic equations for the voltages

We now proceed to derive the equations for the dynami-
cal variables V1 and V2. Furthermore, we discuss how our
system can be mapped onto a system with two interacting
Brownian particles, in the overdamped regime, coupled to
two different temperatures; see Fig. 8(b). Let qm (m ¼ 1, 2)
be the charges that have flowed through the resistances
Rm, so that the instantaneous current flowing through them
is im ¼ _qm. A circuit analysis shows that the equations for
the charges are

R1 _q1 ¼ −q1
C2

X
þ ðq2 − q1Þ

C
X
þ η1; ð16Þ

R2 _q2 ¼ −q2
C1

X
þ ðq1 − q2Þ

C
X
þ η2; ð17Þ

where ηm is the usual white noise, hηiðtÞηjðt0Þi ¼
2δijkBTiRjδðt − t0Þ, and where we have introduced the
quantityX ¼ C2C1 þ CðC1 þ C2Þ. Equations (16) and (17)
are the same as those for the two coupled Brownian
particles sketched in Fig. 8(b) when one regards qm as
the displacement of the particle m, im as its velocity, Km ¼
Cm0=X (m0 ¼ 2 if m ¼ 1 and m0 ¼ 1 if m ¼ 2) as the
stiffness of the spring m, K ¼ C=X as the coupling spring,
and Rm the viscosity term. The analogy with the Feymann
ratchet can be made by assuming, as done in Ref. [82], that
the particle m1 has an asymmetric shape and on average
moves faster in one direction than in the other one.
We now rearrange Eqs. (16) and (17) to obtain the

Langevin equations for the voltages, which will be useful
in the following discussion. The relationships between the
measured voltages and the charges are

q1 ¼ ðV1 − V2ÞCþ V1C1; ð18Þ

q2 ¼ ðV1 − V2ÞC − V2C2: ð19Þ

By plugging Eqs. (18) and (19) into Eqs. (16) and (17), and
rearranging terms, we obtain

ðC1 þ CÞ _V1 ¼ C _V2 þ
1

R1

ðη1 − V1Þ; ð20Þ

ðC2 þ CÞ _V2 ¼ C _V1 þ
1

R2

ðη2 − V2Þ: ð21Þ

FIG. 8. (a) Diagram of the circuit. The resistances R1 and R2 are kept at temperature T1 and T2 ¼ 296 K, respectively. They are
coupled via the capacitance C. The capacitances C1 and C2 schematize the capacitances of the cables and of the amplifier inputs. The
voltages V1 and V2 are amplified by the two low-noise amplifiers A1 and A2 [96]. The other relevant parameters are qm (m ¼ 1, 2), i.e.,
the charges that have flowed through the resistances Rm, and the instantaneous current flowing through them, i.e., im ¼ ðdqm=dtÞ.
(b) The circuit in (a) is equivalent to two Brownian particles (m1 and m2) moving inside two different heat baths at T1 and T2. The two
particles are trapped by two elastic potentials of stiffness K1 and K2 and coupled by a spring of stiffness K [see text and Eqs. (16) and
(17)]. The analogy is straightforward by considering qm the displacement of the particle m, im its velocity, Km ¼ Cm0=X (with m ≠ m0)
the stiffness of the spring m, and K ¼ C=X the coupling spring.
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that, at equilibrium (T1 ¼ T2), the probability distribution
of ΔStot is symmetric: PeqðΔStotÞ ¼ Peqð−ΔStotÞ. Thus,
Eq. (26) implies that the probability density function of
ΔStot is a Dirac δ function when T1 ¼ T2; i.e., the quantity
ΔStot is rigorously zero in equilibrium, both in average and
fluctuations, and so its mean value and variance provide a
measure of the entropy production. The measured proba-
bilities PðΔSrÞ and PðΔStotÞ are shown in Fig. 10(a). We
see that PðΔSrÞ and PðΔStotÞ are quite different and that the
latter is close to a Gaussian and reduces to a Dirac δ
function in equilibrium, i.e., T1 ¼ T2 ¼ 296 K [notice that,
in Fig. 10(a), the small broadening of the equilibrium
PðΔStotÞ is just due to unavoidable experimental noise and
discretization of the experimental probability density func-
tions]. The experimental measurements satisfy Eq. (26) as
it is shown in Fig. 10(b). It is worth noting that Eq. (26)
implies that PðΔStotÞ should satisfy a fluctuation theorem
of the form log½PðΔStotÞ=Pð−ΔStotÞ% ¼ ΔStot=kB, ∀ τ;ΔT,
as discussed extensively in Refs. [2,53]. We clearly see in
Fig. 10(c)that this relation holds for different values of the
temperature gradient. Thus, this experiment clearly estab-
lishes a relationship between the mean and the variance
of the entropy production rate in a system driven out of
equilibrium by the temperature difference between two
thermal baths coupled by electrical noise. Because of the
formal analogy with Brownian motion, the results also
apply to mechanical coupling [95,97,98].

B. Entropy production in a single-electron box

Another interesting experiment on the measure of the
entropy production in a system subjected to a temperature
difference is presented in Ref. [93]. We summarize here the

main results. The experimental system is sketched in
Fig. 11, and it is based on a single-electron box at
low temperature. This is an excellent test benchmark for
thermodynamics in small systems [99,100], and an inter-
esting review of the statistical properties of coupled
circuits, both quantum and classical, can be found in
Ref. [101].
In the single-electron box shown in Fig. 11(a) the

electrons in the normal metal copper island (N) can tunnel
to the superconducting Al island (S) through the aluminium
oxide insulator (I). The integer net number of electrons
tunneled from S to N is denoted by n. This number,
monitored by the nearby single-electron transistor (SET)
shown in Fig. 11(a), is the classical system degree of
freedom.
Indeed, the device in Fig. 11(a) can be represented with

a classical electric circuit, in which the energy stored in
the capacitors and in the voltage sources can be exactly
measured [99]. As in the previous section, Sec. VA 1, the
conductor N and S are not at the same temperature.
Furthermore, here the system is driven by a voltage Vg

which oscillates much slower than the relaxation time of the
device. Thus, the forward and backward processes from
the maximum to the minimum of Vg can be considered.
By the measured values of nðtÞ and Vg, one can estimate
the heats, QN and QS, exchanged by the two heat baths
in a time tf, which is the period of the driving signal. In this
way the thermal entropy ΔSth ¼ QN=TN þQS=TS can be
computed. Furthermore, the trajectory-dependent entropy
can be estimated by measuring Δs ¼ −kb log½P(nðtfÞ)=
P(nð0Þ)%, where P(nðtÞ) is the probability that at time t the
system is in the state nðtÞ for a value of the driving VgðtÞ.
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FIG. 10. (a) The probability PðΔSrÞ (dashed lines) and PðΔStotÞ (continuous lines) measured at T1 ¼ 296 K (blue line) which
corresponds to equilibrium and T1 ¼ 88 K (green lines) out of equilibrium. Notice that both distributions are centered at zero at
equilibrium and shifted towards positive value in the out of equilibrium. (b) hexpð−ΔStotÞi as a function of T1 at two different τ ¼ 0.5s
and τ ¼ 0.1s. (c) Symmetry function SymðΔStotÞ ¼ log½PðΔStotÞ=Pð−ΔStotÞ% as a function of ΔStot. The black straight line of slope 1
corresponds to the theoretical prediction.
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that, at equilibrium (T1 ¼ T2), the probability distribution
of ΔStot is symmetric: PeqðΔStotÞ ¼ Peqð−ΔStotÞ. Thus,
Eq. (26) implies that the probability density function of
ΔStot is a Dirac δ function when T1 ¼ T2; i.e., the quantity
ΔStot is rigorously zero in equilibrium, both in average and
fluctuations, and so its mean value and variance provide a
measure of the entropy production. The measured proba-
bilities PðΔSrÞ and PðΔStotÞ are shown in Fig. 10(a). We
see that PðΔSrÞ and PðΔStotÞ are quite different and that the
latter is close to a Gaussian and reduces to a Dirac δ
function in equilibrium, i.e., T1 ¼ T2 ¼ 296 K [notice that,
in Fig. 10(a), the small broadening of the equilibrium
PðΔStotÞ is just due to unavoidable experimental noise and
discretization of the experimental probability density func-
tions]. The experimental measurements satisfy Eq. (26) as
it is shown in Fig. 10(b). It is worth noting that Eq. (26)
implies that PðΔStotÞ should satisfy a fluctuation theorem
of the form log½PðΔStotÞ=Pð−ΔStotÞ% ¼ ΔStot=kB, ∀ τ;ΔT,
as discussed extensively in Refs. [2,53]. We clearly see in
Fig. 10(c)that this relation holds for different values of the
temperature gradient. Thus, this experiment clearly estab-
lishes a relationship between the mean and the variance
of the entropy production rate in a system driven out of
equilibrium by the temperature difference between two
thermal baths coupled by electrical noise. Because of the
formal analogy with Brownian motion, the results also
apply to mechanical coupling [95,97,98].

B. Entropy production in a single-electron box

Another interesting experiment on the measure of the
entropy production in a system subjected to a temperature
difference is presented in Ref. [93]. We summarize here the

main results. The experimental system is sketched in
Fig. 11, and it is based on a single-electron box at
low temperature. This is an excellent test benchmark for
thermodynamics in small systems [99,100], and an inter-
esting review of the statistical properties of coupled
circuits, both quantum and classical, can be found in
Ref. [101].
In the single-electron box shown in Fig. 11(a) the

electrons in the normal metal copper island (N) can tunnel
to the superconducting Al island (S) through the aluminium
oxide insulator (I). The integer net number of electrons
tunneled from S to N is denoted by n. This number,
monitored by the nearby single-electron transistor (SET)
shown in Fig. 11(a), is the classical system degree of
freedom.
Indeed, the device in Fig. 11(a) can be represented with

a classical electric circuit, in which the energy stored in
the capacitors and in the voltage sources can be exactly
measured [99]. As in the previous section, Sec. VA 1, the
conductor N and S are not at the same temperature.
Furthermore, here the system is driven by a voltage Vg

which oscillates much slower than the relaxation time of the
device. Thus, the forward and backward processes from
the maximum to the minimum of Vg can be considered.
By the measured values of nðtÞ and Vg, one can estimate
the heats, QN and QS, exchanged by the two heat baths
in a time tf, which is the period of the driving signal. In this
way the thermal entropy ΔSth ¼ QN=TN þQS=TS can be
computed. Furthermore, the trajectory-dependent entropy
can be estimated by measuring Δs ¼ −kb log½P(nðtfÞ)=
P(nð0Þ)%, where P(nðtÞ) is the probability that at time t the
system is in the state nðtÞ for a value of the driving VgðtÞ.
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FIG. 10. (a) The probability PðΔSrÞ (dashed lines) and PðΔStotÞ (continuous lines) measured at T1 ¼ 296 K (blue line) which
corresponds to equilibrium and T1 ¼ 88 K (green lines) out of equilibrium. Notice that both distributions are centered at zero at
equilibrium and shifted towards positive value in the out of equilibrium. (b) hexpð−ΔStotÞi as a function of T1 at two different τ ¼ 0.5s
and τ ¼ 0.1s. (c) Symmetry function SymðΔStotÞ ¼ log½PðΔStotÞ=Pð−ΔStotÞ% as a function of ΔStot. The black straight line of slope 1
corresponds to the theoretical prediction.
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The total entropy is, of course, ΔStot ¼ ΔSth þ ΔS, and
its probability distribution PðΔStotÞ can be measured.
The results for the forward and back processes are shown
in Fig. 12(a), and the corresponding symmetry func-
tions SymðΔStotÞ ¼ log½PðΔStotÞ=Pð−ΔStotÞ& are plotted
Fig. 12(b). In spite of the fact that PðΔStotÞ are highly non-
Gaussian, we notice that SymðΔStotÞ ¼ kBΔStot, which
implies that Eq. (26) is also satisfied by these data.
As in the previous section, Sec. VA 5, the main result

of this experiment is that stochastic entropy production
extracted from the trajectories is related to thermodynamic
entropy production from dissipated heat in the respective
thermal baths.

VI. MOTOR POWER AND EFFICIENCY

Historically, one of the main purposes of thermodynam-
ics has been the study of the efficiency of thermal machines
and power plants. Nowadays there is a wide interest in
extending these studies to micro and nano motors which
play a major role in biological mechanisms and small
devices. In Sec. II B, we see that in small systems all of the
thermodynamics quantities fluctuate. Thus, we are inter-
ested in knowing the influence of these fluctuations on the
efficiency of small devices where the dissipated energies
and the produced work are a few kBT. Furthermore, it is
useful to know this efficiency at the maximum power and
not in the quasistatic regimes, such as the Carnot cycle,
where the produced power is close to zero. These important
questions have been theoretically studied in several articles
[2,102–107] and only in a few proof-of-principle experi-
ments [108–111]. The first stochastic Carnot machine was
reported in Ref. [108]. In this experiment a Brownian
particle trapped by an optical tweezer is subjected to a kind
of Carnot cycle, inspired by a theoretical model proposed in
Ref. [103]. The cycle, used in a very similar experiment
[109], is sketched in Fig. 13(a), which we describe in some
detail. The Brownian particle is trapped by a harmonic
potential [bottom row in Fig. 13(a)] whose stiffness is
changed as a function of time. The increase of the stiffness
is equivalent to a compression (the motion of the particle
is more confined), the decrease to an expansion. In the
experiment the bead is subjected to a random force which
plays the role of an effective temperature, which can be
easily changed by changing the amplitude of the random
forcing. As in the Carnot cycle, the cycle in Fig. 13(a) is
composed by an isothermal and an adiabatic compression
and by an isothermal and an adiabatic expansion. Notice
that the construction of adiabatic processes for a Brownian
particle is a real challenge, which has been achieved by
changing simultaneously the temperature in such a way
that the exchanged heat, during the adiabatics, is zero on
average (see Refs. [109,112] for details). The work and the
heat in this experiment are computed as described in
Secs. II B, IV, and V. As these two quantities fluctuate,
the contribution of the fluctuations during adiabatics must

(a)

(b)

FIG. 12. (a) Probability distribution of the total entropy ΔStot,
which has been measured in the circuit shown in Fig. 11 and
described in the text. (b) The symmetry functions SymðΔStotÞ ¼
log½PðΔStotÞ=Pð−ΔStotÞ& of PðΔStotÞ as a function of ΔStot. In
spite of the highly non-Gaussian nature of PðΔStotÞ, we see that
SymðΔStotÞ ¼ kBΔStot (adapted from Ref. [93]).

FIG. 11. (a) Sketch of the measured system together with a
scanning electron micrograph of a typical sample. The colors
on the micrograph indicate the correspondingly colored circuit
elements in the sketch. (b) Typical trace of the measured detector
signal under a sinusoidal protocol for the drive Vg, plotted in
green. This trace covers three realizations of the forward protocol
(Vg from −0.1 to 1 mV), and three realizations of the backward
protocol (Vg from 1 to −0.1 mV). The SET current Idet, plotted in
black, indicates the charge state of the box. The output of the
threshold detection is shown in solid blue, with the threshold level
indicated by the dashed red line (adapted from Ref. [93]).
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distribution of the particle, PðxÞ ∝ exp½U0ðxÞ$ (see
Ref. [56] for more experimental details). To drive the
system out of equilibrium we periodically modulate the
intensity of the two beams at low frequency ω. Thus,
the potential felt by the bead has the following pro-
file: Uðx; tÞ ¼ U0ðxÞ þUpðx; tÞ ¼ U0 þ cx sinðωtÞ.
The x position of the particle can be described by an

overdamped Langevin equation:

ν
dx
dt

¼ −
∂Uðx; tÞ

∂x þ η; ð10Þ

with ν the friction coefficient and η the thermal noise delta
correlated in time. When c ≠ 0, the particle can experience
a stochastic resonance [57–59], when the forcing frequency
is close to the Kramers rate [56]. As already done in the
case of the harmonic oscillator, one can compute the work

~Wτ ¼
Z

tþτ

t
fðt0Þ_xðt0Þdt0 ð11Þ

of the external force fðtÞ ¼ −c sinð2πftÞ on the time
interval ½t; tþ τ$, where τ ¼ ð2πn=ωÞ is a multiple of
the forcing period [56].
We consider the PDF Pð ~WτÞ, which is plotted in

Fig. 5(a). Notice that for small n the distributions are
double peaked and very complex. They tend to a Gaussian
for large n [inset of Fig. 5(a)]. In Fig. 5(b) we plot the
normalized symmetry function of ~Wτ. We can see that the
curves are close to the line of slope one. For high values of
work, the dispersion of the data increases due to the lack of
events. The slope tends toward 1 as expected by the SSFT.
It is remarkable that straight lines are obtained even for n
close to 1, where the distribution presents a very complex
and unusual shape [Fig. 5(a)]. The very fast convergence to
the asymptotic value of the SSFT is quite striking in this
example. We do not show here SðQτÞ as the behavior is

quite similar to that of the harmonic oscillator (Sec. III A)
although the PDFs are more complex [56]. The measure-
ment are in full agreement with a realistic model based on
the Fokker-Planck equations where the measured values of
Uðx; tÞ have been inserted [60]. This example shows the

D

(a)
(b)

FIG. 4. (a) Drawing of the polystyrene particle trapped by two laser beams whose axis distance is about the radius of the bead.
(b) Potential felt by the bead trapped by the two laser beams. The barrier height between the two wells is about 2kBT.

FIG. 5. (a) Distribution of classical work ~Wτ for different
numbers of period n ¼ 1, 2, 4, 8, and 12 (f ¼ 0.25 Hz). Inset:
Same data in lin-log. (b) Normalized symmetry function as
function of the normalized work for n ¼ 1 (plus), 2 (circle), 4
(diamond), 8 (triangle), and 12 (square).
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8 1 Small-Scale Thermodynamics
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T

Fig. 1.2 Maxwell’s demon and the Szilard engine. a Illustration of Maxwell’s demon. Two gases
are confined in separated containers and put in contact via an adiabatic wall. The gas on the left
container is at a higher temperature T1 than the gas on the right container, T2. A demon can see the
individual molecules of the gas and selectively open or close the wall at any time. If the demon opens
the door allowing only the slow molecules in the left container (in blue) to pass from left to right,
and the fast molecules in the right container (in red) to pass from right to left, the temperature of the
gas in the left container increases and the temperature of the gas in the right container decreases.
b Illustration of the Szilard engine. A single molecule is confined in a container that is immersed in
a thermal bath at temperature T . The particle moves randomly along the two different halves of the
container, L (left) and R (right). A demon introduces a movable piston in the middle of the container
and measures in which half of the container is the particle. Then the demon exerts a pressure on the
piston equal and opposite to the pressure of the gas, making the gas expand reversibly

molecules that move slower than the average in the hotter container, and the ones
that move faster than the average in the colder container, can pass through the wall.
The result of the process is in principle forbidden by the second law: the colder gas
gets colder and the hotter gets hotter.

A simplified version of Maxwell’s demon was introduced by Szilard [61] in
another thought experiment (see Fig. 1.2b). Szilard’s engine is formed by a sin-
gle particle confined in a container of volume V . The container is assumed to be
immersed in a thermal reservoir of temperature T , therefore the particle thermalizes
at temperature T after every collision with the walls of the container. After some
time, a demon inserts a movable piston in the middle of the container and measures
the position of the particle. Then the one particle gas is let to expand reversibly and
the piston is removed [51].

The energetics of the Szilard engine reveals important aspects concerning the
relationship between thermodynamics and information [46]. We can assume that the
energy needed to insert the piston is negligible since the insertion of the piston can
be done reversibly [51]. The only energetic contribution comes from the reversible
expansion of the one particle gas against the piston from an initial volume V/2 to
a final volume V . In a reversible expansion, the gas is described by the law of ideal
gases throughout the process, pV = kT , and the expansion work is negative,

W =
V∫

V/2

−pdV = −kT

V∫

V/2

dV
V

= −kT ln 2. (1.15)



Thermodynamics of information

Information processing at the level of thermal fluctuations

9 Foundation of the second law of thermodynamics

9 Application to nanomachines and nanodevices

System Demon

Information

Feedback

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

Maxwell’s demon

Thermodynamics of information

Information processing at the level of thermal fluctuations

9 Foundation of the second law of thermodynamics

9 Application to nanomachines and nanodevices

System Demon

Information

Feedback

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

Thermodynamics of information

Information processing at the level of thermal fluctuations

9 Foundation of the second law of thermodynamics

9 Application to nanomachines and nanodevices

System Demon

Information

Feedback

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

Thermodynamics of information

Information processing at the level of thermal fluctuations

9 Foundation of the second law of thermodynamics

9 Application to nanomachines and nanodevices

System Demon

Information

Feedback

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

Thermodynamics of information

Information processing at the level of thermal fluctuations

9 Foundation of the second law of thermodynamics

9 Application to nanomachines and nanodevices

System Demon

Information

Feedback

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

Thermodynamics of information

Information processing at the level of thermal fluctuations

9 Foundation of the second law of thermodynamics

9 Application to nanomachines and nanodevices

System Demon

Information

Feedback

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).



Szilard engine

NATURE PHYSICS | VOL 10 | JUNE 2014 | www.nature.com/naturephysics 409

news & views

Thermodynamics and information 
are intrinsically linked1. The laws of 
thermodynamics impose stringent 

bounds on the information transfer in 
physical, chemical and biological systems, 
thereby determining not only practical 
but also fundamental mathematical limits 
on the efficiency of classical and quantum 
computers2. Conversely, information 
must be included in the thermodynamic 
equations to avoid logical dilemmas. The 
most famous illustration of this profound 
connection is embodied by Maxwell’s 
demon3, an intelligent operator seemingly 
capable of violating the second law of 
thermodynamics — that is if one does 
not properly account for the entropy of 
information acquired and stored by the 
operator. Maxwell’s demon and its relatives3 
have long been banished to the realm of 
thought experiments, but recent advances 
in experimental trapping and tracking 
techniques have now made it possible 
to test the underlying concepts from 
thermodynamics and information theory. 
Writing in Nature Physics, Édgar Roldán and 
colleagues4 describe experiments where a 
Brownian colloid — a macroscopic particle 
pushed about through collisions with a 
fluid of atoms or molecules — in feedback-
controlled optical traps is used to realize a 
minimal version of a Maxwell-type demon.

The feedback protocol implemented 
by Roldán et al.4 emulates an entropy-
reducing thermal cycle originally proposed 
in 1929 by Leó Szilárd5. Szilárd, arguably 
one of the most remarkable physicists and 
inventors6 of the past century, considered a 
hypothetical scenario in which an intelligent 
being operates a heat engine consisting of 
just a single particle in a closed container 
(Fig. 1). The cycle he proposed assumes that 
the particle is coupled to an infinite heat 
bath at constant temperature T and that the 
container can be divided into two initially 
equally sized compartments by a removable 
piston. Depending on the particle’s position, 
the operator attaches a weight m to either 
the left or the right side of the piston. 
Once the piston has been pushed a certain 

distance by the particle, it is removed by 
the operator and reinserted at its original 
position. In principle, this process can be 
repeated an infinite number of times, with 
the particle continuously extracting energy 
from the heat bath and converting it into 
usable work. Szilárd reasoned that, in order 
for the system to be consistent with the 
second law of thermodynamics, the operator 
would have to create thermodynamic 
information entropy with a magnitude of at 
least S = kBln 2, where kB is the Boltzmann 
constant, during each measurement of the 
particle’s position. Around thirty years later, 
an essentially analogous conclusion was 
reached by Rolf Landauer1, who argued 

that the erasure of physical information is 
a dissipative process producing an average 
amount of heat not smaller than kBT ln 2 
for each bit deleted. This lower bound was 
confirmed in recent experiments by 
Bérut et al.7, who studied Brownian motion 
in a tunable bi-stable optical trap — a 
paradigmatic model system for classical 
memory erasure.

Roldán and colleagues4 extend the 
work of Bérut et al.7 by investigating how 
spontaneous symmetry breaking — induced 
by the spatio-temporal modulation of an 
external effective potential — affects the 
Brownian dynamics of a micrometre-sized 
colloid in a water bath at fixed temperature. 
To realize a sufficiently adjustable potential, 
the authors superimpose an electrostatic 
field on two optical traps. By varying the 
distance between the traps, the resulting 
effective potential can be changed 
continuously from a single-well to a double-
well configuration. The superimposed 
electrostatic field, which couples to the 
surface charge of the colloid, biases the 
probability of finding the particle in either of 
the two potential wells.

To emulate Szilárd’s engine, Roldán et al.4 
identify and implement a conditional 
sequence of changes in the potential 
parameters that leads to a negative mean 
entropy-production over the course of a full 
cycle. Their protocol starts with driving the 
potential from the single-well to a double-
well configuration (isothermal expansion), 
forcing the Brownian particle to choose 
one of the two wells. During this ‘symmetry 
breaking’ step, the electrostatic field is held at 
a constant value, selected so that the colloid 
is nearly twice as likely to be found in one of 
the wells. Once the expansion has completed, 
the electrostatic field strength is increased 
to a large positive (or negative) value to 
ensure that there is a high probability that 
the particle stays in the same well during the 
subsequent compression step. In contrast 
with conventional naive thermodynamic 
processes, this crucial feedback step relies on 
information about the particle’s position — 
just as the coupling of the weight in Szilárd’s 
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Engines and demons
Brownian motion in a feedback-controlled optical trap provides a minimal experimental realization of a Szilárd 
engine, confirming fluctuation theorems and demonstrating the importance of spontaneous symmetry breaking in 
small thermodynamic systems.
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Figure 1 | Schematic of the Szilárd feedback cycle. 
A particle, coupled to a heat bath at temperature T, 
moves inside a container divided into two halves 
by a piston inserted by an intelligent operator 
(‘demon’). The particle may be in either the left 
or right half of the container (top). The demon 
attaches a weight m to the left or right side of 
the piston depending on the location of the 
particle (middle). The particle’s collisions with the 
piston are used to extract work from the system 
(bottom). Roldán et al.4 have now created an 
experimental realization of such an engine and 
have probed the effect of symmetry breaking 
on the system’s entropy production. Figure 
reproduced from ref. 11, © 1996 EPL.
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Figure 1 | Schematic of the Szilárd feedback cycle. 
A particle, coupled to a heat bath at temperature T, 
moves inside a container divided into two halves 
by a piston inserted by an intelligent operator 
(‘demon’). The particle may be in either the left 
or right half of the container (top). The demon 
attaches a weight m to the left or right side of 
the piston depending on the location of the 
particle (middle). The particle’s collisions with the 
piston are used to extract work from the system 
(bottom). Roldán et al.4 have now created an 
experimental realization of such an engine and 
have probed the effect of symmetry breaking 
on the system’s entropy production. Figure 
reproduced from ref. 11, © 1996 EPL.
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Figure 1 | Schematic of the Szilárd feedback cycle. 
A particle, coupled to a heat bath at temperature T, 
moves inside a container divided into two halves 
by a piston inserted by an intelligent operator 
(‘demon’). The particle may be in either the left 
or right half of the container (top). The demon 
attaches a weight m to the left or right side of 
the piston depending on the location of the 
particle (middle). The particle’s collisions with the 
piston are used to extract work from the system 
(bottom). Roldán et al.4 have now created an 
experimental realization of such an engine and 
have probed the effect of symmetry breaking 
on the system’s entropy production. Figure 
reproduced from ref. 11, © 1996 EPL.
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Figure 1 | Schematic of the Szilárd feedback cycle. 
A particle, coupled to a heat bath at temperature T, 
moves inside a container divided into two halves 
by a piston inserted by an intelligent operator 
(‘demon’). The particle may be in either the left 
or right half of the container (top). The demon 
attaches a weight m to the left or right side of 
the piston depending on the location of the 
particle (middle). The particle’s collisions with the 
piston are used to extract work from the system 
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reproduced from ref. 11, © 1996 EPL.
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fluid of atoms or molecules — in feedback-
controlled optical traps is used to realize a 
minimal version of a Maxwell-type demon.

The feedback protocol implemented 
by Roldán et al.4 emulates an entropy-
reducing thermal cycle originally proposed 
in 1929 by Leó Szilárd5. Szilárd, arguably 
one of the most remarkable physicists and 
inventors6 of the past century, considered a 
hypothetical scenario in which an intelligent 
being operates a heat engine consisting of 
just a single particle in a closed container 
(Fig. 1). The cycle he proposed assumes that 
the particle is coupled to an infinite heat 
bath at constant temperature T and that the 
container can be divided into two initially 
equally sized compartments by a removable 
piston. Depending on the particle’s position, 
the operator attaches a weight m to either 
the left or the right side of the piston. 
Once the piston has been pushed a certain 

distance by the particle, it is removed by 
the operator and reinserted at its original 
position. In principle, this process can be 
repeated an infinite number of times, with 
the particle continuously extracting energy 
from the heat bath and converting it into 
usable work. Szilárd reasoned that, in order 
for the system to be consistent with the 
second law of thermodynamics, the operator 
would have to create thermodynamic 
information entropy with a magnitude of at 
least S = kBln 2, where kB is the Boltzmann 
constant, during each measurement of the 
particle’s position. Around thirty years later, 
an essentially analogous conclusion was 
reached by Rolf Landauer1, who argued 

that the erasure of physical information is 
a dissipative process producing an average 
amount of heat not smaller than kBT ln 2 
for each bit deleted. This lower bound was 
confirmed in recent experiments by 
Bérut et al.7, who studied Brownian motion 
in a tunable bi-stable optical trap — a 
paradigmatic model system for classical 
memory erasure.

Roldán and colleagues4 extend the 
work of Bérut et al.7 by investigating how 
spontaneous symmetry breaking — induced 
by the spatio-temporal modulation of an 
external effective potential — affects the 
Brownian dynamics of a micrometre-sized 
colloid in a water bath at fixed temperature. 
To realize a sufficiently adjustable potential, 
the authors superimpose an electrostatic 
field on two optical traps. By varying the 
distance between the traps, the resulting 
effective potential can be changed 
continuously from a single-well to a double-
well configuration. The superimposed 
electrostatic field, which couples to the 
surface charge of the colloid, biases the 
probability of finding the particle in either of 
the two potential wells.

To emulate Szilárd’s engine, Roldán et al.4 
identify and implement a conditional 
sequence of changes in the potential 
parameters that leads to a negative mean 
entropy-production over the course of a full 
cycle. Their protocol starts with driving the 
potential from the single-well to a double-
well configuration (isothermal expansion), 
forcing the Brownian particle to choose 
one of the two wells. During this ‘symmetry 
breaking’ step, the electrostatic field is held at 
a constant value, selected so that the colloid 
is nearly twice as likely to be found in one of 
the wells. Once the expansion has completed, 
the electrostatic field strength is increased 
to a large positive (or negative) value to 
ensure that there is a high probability that 
the particle stays in the same well during the 
subsequent compression step. In contrast 
with conventional naive thermodynamic 
processes, this crucial feedback step relies on 
information about the particle’s position — 
just as the coupling of the weight in Szilárd’s 
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Engines and demons
Brownian motion in a feedback-controlled optical trap provides a minimal experimental realization of a Szilárd 
engine, confirming fluctuation theorems and demonstrating the importance of spontaneous symmetry breaking in 
small thermodynamic systems.
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Figure 1 | Schematic of the Szilárd feedback cycle. 
A particle, coupled to a heat bath at temperature T, 
moves inside a container divided into two halves 
by a piston inserted by an intelligent operator 
(‘demon’). The particle may be in either the left 
or right half of the container (top). The demon 
attaches a weight m to the left or right side of 
the piston depending on the location of the 
particle (middle). The particle’s collisions with the 
piston are used to extract work from the system 
(bottom). Roldán et al.4 have now created an 
experimental realization of such an engine and 
have probed the effect of symmetry breaking 
on the system’s entropy production. Figure 
reproduced from ref. 11, © 1996 EPL.
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by a piston inserted by an intelligent operator 
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Plot of this talk

• Brief review of classical “textbook” thermodynamics 

• Stochastic thermodynamics: first and second laws 

• Fluctuation theorems 

• Maxwell’s demons and feedback control 

• The latest: Uncertainty relations and Martingales



Appetizer over thermodynamic uncertainty relations

A. C. Barato, U. Seifert, PRL 114(15), 158101 (2015);  J. M. Horowitz, T. R. Gingrich, PRE 96(2), 020103 (2017)

Formulation of the question
Example: Single Enzyme
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Generation of P is driven by free energy consumption

Is there a fundamental relation between the uncertainty (in the
number of produced P’s) and the free energy cost to sustain the
bimolecular process?
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Simplest model: biased random walk
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Appetizer over thermodynamic uncertainty relations
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Thermodynamic uncertainty relation
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Universal cost-uncertainty tradeoff for time-integrated currents in  
non-equilibrium stationary Markov processes

Appetizer over thermodynamic uncertainty relations

Dissipation bounds all steady-state current fluctuations

Todd R. Gingrich,⇤ Jordan M. Horowitz, Nikolay Perunov, and Jeremy L. England
Physics of Living Systems Group, Department of Physics,

Massachusetts Institute of Technology, 400 Technology Square, Cambridge, MA 02139

Near equilibrium, small current fluctuations are described by a Gaussian with a linear-response
variance regulated by the dissipation. Here, we demonstrate that dissipation still plays a dominant
role in structuring large fluctuations arbitrarily far from equilibrium. In particular, we prove a
linear-response-like bound on the large deviation function for currents in Markov jump processes.
We find that nonequilibrium current fluctuations are always more likely than what is expected
from a linear-response analysis. As a small-fluctuations corollary, we derive a recently-conjectured
uncertainty bound on the variance of current fluctuations.

One of the most useful insights into thermodynam-
ics has been that fluctuations near equilibrium are
completely characterized by just one principle, the
fluctuation-dissipation theorem [1]. Far from equilib-
rium, however, fluctuations exhibit less universal struc-
ture. As such, characterizing the rich anatomy of
nonequilibrium fluctuations has been handled on a case
by case basis, with few universal nonequilibrium prin-
ciples. Notable exceptions are the fluctuation theo-
rems [2–7], as well as fluctuation-dissipation theorems
for nonequilibrium steady states [8–12]. Recently, Barato
and Seifert have proposed a new kind of nonequilibrium
principle, a thermodynamic uncertainty relation that ex-
presses a trade-o↵ between the variance of current fluc-
tuations and the rate of entropy production [13]. It re-
veals that away from equilibrium, dissipation continues
to regulate small fluctuations. While the thermodynamic
uncertainty relation was not proven in general, analyti-
cal calculations and numerical evidence support its valid-
ity [13]. Applications appear myriad, and already include
insights into chemical kinetics as well as biochemical sens-
ing [14, 15].

In this paper, we demonstrate that dissipation in fact
constrains all current fluctuations. In particular, we
prove a pair of general thermodynamic inequalities for
the large deviation function of the steady-state empiri-
cal currents in Markov jump processes. Such processes
model a variety of scenarios, including molecular mo-
tors [16], chemical reaction networks [17, 18], and meso-
scopic quantum devices [19]. Our analysis reveals that
far from equilibrium, current fluctuations are always
more probable than would be predicted by linear re-
sponse [20, 21]. Remarkably, our relationship bounds
even rare fluctuations (large deviations), and by special-
izing to small deviations we obtain the thermodynamic
uncertainty relation.

We have in mind a system withN mesoscopic states (or
configurations), x = 1, . . . , N . Transitions between pairs
of states, say from y to z, are modeled as a continuous-
time Markov jump process with rates r(y, z) [22]. It
is convenient to picture these dynamics occurring on a
graph (as in Fig. 1), with vertices denoting states and

FIG. 1. Current fluctuations illustration: For a 4-state model
(inset) in a nonequilibrium steady state, the integrated cur-
rent JT – net number of hops between pairs of states – along
each edge is plotted as a function of time. Each integrated
current displays an average rate perturbed by stochastic fluc-
tuations.

edges (or links) symbolizing possible transitions. We as-
sume the dynamics to be ergodic and that r(z, y) > 0
whenever r(y, z) > 0, so the system’s probability density
relaxes to a unique steady state ⇡(x) in the long-time
limit. Thermodynamics enters by requiring the transi-
tions to satisfy local detailed balance; the ratio of rates
on each edge can then be identified with a generalized
thermodynamic force

F (y, z) = ln

✓
⇡(y)r(y, z)

⇡(z)r(z, y)

◆
, (1)

which quantifies the dissipation in each transition [23].
For example, if a transition were mediated by a thermal
reservoir at inverse temperature �, we have F = �s+�q,
where �s = � ln[⇡(z)/⇡(y)] is the change in the system’s
stochastic entropy [24] and �q = ln[r(y, z)/r(z, y)] is the
heat dissipated into the reservoir. Here and throughout,
kB = 1.

Now imagine watching the system evolve for a long
time from time t = 0 to T as it jumps along a sequence
of states x(t), and we measure the integrated empirical

current through all the links by counting the net number
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Consequence of joint fluctuation theorem



Why martingales?
Most fluctuation theorems concern events that take place at a fixed time

However, most interesting stuff happens at random stopping times

Execution of cellular functions 
e.g. bacterial cell cycle

Completion of a cycle in  
e.g. autonomous heat engines



Why martingales?
Extreme-value statistics 

 of active molecular processes

Extreme-Value Statistics of Molecular Motors

Alexandre Guillet1, Édgar Roldán2, and Frank Jülicher3
1 Université Bordeaux, Laboratoire Ondes et Matière d’Aquitaine, 33405 Talence, France

2 ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy
3 Max Planck Institute for the Physics of Complex Systems, Nöthnizer Strasse 38, 01187 Dresden, Germany

We derive exact expressions for the finite-time statistics of extrema (maximum and minimum)
of the spatial displacement and the fluctuating entropy flow of continuous-time random walks de-
scribing the dynamics of molecular motors at the single-molecule level. Our results generalize the
infimum law for entropy production and reveal a symmetry of the distribution of maxima and min-
ima of stochastic entropy production, which are confirmed by numerical simulations of stochastic
models of molecular motors. Finally we identify a timescale at which extreme-value distributions
become universal, revealing a connection between extrema statistics and the Marčenko-Pastur law
of random-matrix theory.

Life is a non-equilibrium phenomenon characterised by
fluxes of energy and matter at di↵erent scales. At the
molecular level, molecular motors play a key role for the
generation of movements and forces in cells. Examples
are vesicle transport, muscle contraction, cell division
and cell locomotion [1, 2]. A molecular motor consumes a
chemical fuel, adenosine triphosphate (ATP), that is hy-
drolysed to adenosine diphosphate (ADP) and inorganic
phosphate. The chemical energy of this reaction is trans-
duced to generate sponateous movements and mechani-
cal work. Single-molecule experiments have revealed that
the activity of single or a few molecular motors exhibits
strong fluctuations [3–10] which can be captured by the
theory of stochastic processes [11–16]. An important
question is to understand general features and univer-
sal properties that govern the statistics of fluctuations of
the motion of molecular motors. Universal relations for
the fixed-time statistics of time-integrated currents, such
as the distance traveled and the work performed, have
been investigated theoretically in the framework of non-
equilibrium stochastic thermodynamics [17–21]. How-
ever, little is known about the extreme-value statistics
of active molecular processes. For example, what is the
maximal distance a stochastic motor moves against or in
the direction of the chemical bias?

In this Letter, we derive exact expressions for the
extreme-value statistics of simple models of molecular
motors. We discuss in particular the statistics of the
maximum and minimum excursion (with respect to its
initial location) and the associated extremal entropy
changes. Furthermore, we investigate the timescales as-
sociated with those extrema, combining concepts from
stochastic thermodynamics, random walks and random-
matrix theory. As we show below, our results provide
novel insights in extreme value statistics that satisfy re-
cently derived inequalities for the statistics of infima of
entropy-production [22, 23] and that relate to record
statistics of correlated stochastic processes [24–27].

Many nonequilibrium phenomena at mesoscales can be
described at a coarse-grained level as a continuous-time

Markov jump process between discrete states x, y, z etc,
with exponential waiting times. The transition rate from
x to y can be written as [28]

k(x, y) = ⌫(x, y)eA(x,y)/2

, (1)

with ⌫(x, y) = ⌫(y, x) symmetric and A(x, y) = �A(y, x)
antisymmetric with respect to the exchange x ! y. If
local detailed balance holds A(x, y) = �[W (x) � W (y)]
with W (x) the potential energy of state x, � = (k

B

T )�1

with k

B

Boltzmann’s constant and T the temperature
of a thermostat. First, we consider the simple case of
a 1D biased random walk on a line with discrete states
n 2 Z. The forward and backward jump rates are given
by k± ⌘ k(n, n± 1) = ⌫e

±A/2. Here ⌫ > 0 is a rate and
A > 0 the a�nity, which satisfy

⌫ =
p

k

+

k�, A = ln(k
+

/k�) . (2)
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FIG. 1. (a) Sketch of a 1D biased random walk with hopping
rates k

+

and k� modelling the motion of a molecular motor,
whose displacement is denoted by X. (b) Example of a tra-
jectory X(t) (black), its average hX(t)i (thick gray), its max-
imum X

max

(t) (red), and minimum X
min

(t) (blue) as a func-
tion of time t. The trajectories are obtained from a numerical
simulation of a one-dimensional biased random walk with hop-
ping rates k

+

= 1.05 and k� = 0.95 in the positive and nega-
tive direction, respectively. The entropy production along the
trajectory X(t) is S(t) = AX(t), with A = ln(k

+

/k�) = 0.1.
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We derive exact expressions for the finite-time statistics of extrema (maximum and minimum)
of the spatial displacement and the fluctuating entropy flow of continuous-time random walks de-
scribing the dynamics of molecular motors at the single-molecule level. Our results generalize the
infimum law for entropy production and reveal a symmetry of the distribution of maxima and min-
ima of stochastic entropy production, which are confirmed by numerical simulations of stochastic
models of molecular motors. Finally we identify a timescale at which extreme-value distributions
become universal, revealing a connection between extrema statistics and the Marčenko-Pastur law
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x to y can be written as [28]

k(x, y) = ⌫(x, y)eA(x,y)/2

, (1)

with ⌫(x, y) = ⌫(y, x) symmetric and A(x, y) = �A(y, x)
antisymmetric with respect to the exchange x ! y. If
local detailed balance holds A(x, y) = �[W (x) � W (y)]
with W (x) the potential energy of state x, � = (k

B

T )�1

with k

B

Boltzmann’s constant and T the temperature
of a thermostat. First, we consider the simple case of
a 1D biased random walk on a line with discrete states
n 2 Z. The forward and backward jump rates are given
by k± ⌘ k(n, n± 1) = ⌫e

±A/2. Here ⌫ > 0 is a rate and
A > 0 the a�nity, which satisfy

⌫ =
p

k

+

k�, A = ln(k
+

/k�) . (2)
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FIG. 1. (a) Sketch of a 1D biased random walk with hopping
rates k

+

and k� modelling the motion of a molecular motor,
whose displacement is denoted by X. (b) Example of a tra-
jectory X(t) (black), its average hX(t)i (thick gray), its max-
imum X

max

(t) (red), and minimum X
min

(t) (blue) as a func-
tion of time t. The trajectories are obtained from a numerical
simulation of a one-dimensional biased random walk with hop-
ping rates k

+

= 1.05 and k� = 0.95 in the positive and nega-
tive direction, respectively. The entropy production along the
trajectory X(t) is S(t) = AX(t), with A = ln(k

+

/k�) = 0.1.
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9 We study the statistics of infima, stopping times, and passage probabilities of entropy production in
10 nonequilibrium steady states, and we show that they are universal. We consider two examples of stopping
11 times: first-passage times of entropy production and waiting times of stochastic processes, which are the
12 times when a system reaches a given state for the first time. Our main results are as follows: (i) The
13 distribution of the global infimum of entropy production is exponential with mean equal to minus
14 Boltzmann’s constant; (ii) we find exact expressions for the passage probabilities of entropy production;
15 (iii) we derive a fluctuation theorem for stopping-time distributions of entropy production. These results
16 have interesting implications for stochastic processes that can be discussed in simple colloidal systems and
17 in active molecular processes. In particular, we show that the timing and statistics of discrete chemical
18 transitions of molecular processes, such as the steps of molecular motors, are governed by the statistics of
19 entropy production. We also show that the extreme-value statistics of active molecular processes are
20 governed by entropy production; for example, the infimum of entropy production of a motor can be related
21 to the maximal excursion of a motor against the direction of an external force. Using this relation, we make
22 predictions for the distribution of the maximum backtrack depth of RNA polymerases, which follow from
23 our universal results for entropy-production infima.
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I. INTRODUCTION AND STATEMENT
24 OF THE MAIN RESULTS

25 The total entropy StotðtÞ produced by a mesoscopic
26 process in a finite time interval ½0; t$ is stochastic, and
27 for a single realization, it can be negative because of
28 fluctuations. The second law of thermodynamics implies
29 that its average, taken over many realizations of the
30 process, increases in time, hStotðtÞi ≥ 0. In the 19th century,
31 Maxwell formulated the idea of a stochastic entropy [1],
32 and in the last few decades, definitions of entropy pro-
33 duction of nonequilibrium processes were established using
34 the theory of stochastic processes [2–19].
35 Little is known beyond the second law about the
36 statistics of entropy-production fluctuations. The best
37 insights, so far, in fluctuations of entropy production are
38 provided by fluctuation theorems. They express a funda-
39 mental asymmetry of the fluctuations of entropy produc-
40 tion: It is exponentially more likely to produce a positive
41 amount of entropy than to reduce entropy by the same but
42 negative amount. An example is the detailed fluctuation

43theorem, which can be written as pSðStot; tÞ=pSð−Stot; tÞ ¼
44eStot=kB , where kB is Boltzmann’s constant. Here, pSðStot; tÞ
45is the probability density describing the distribution of the
46entropy production Stot at a given time t. The detailed
47fluctuation theorem is universal and holds for a broad class
48of physical processes in a steady state [3–5,8–10,14,
4920–25]. Moreover, the detailed fluctuation theorem has
50been tested in several experiments [26–34]; for reviews, see
51Refs. [35–37].
52In addition to fluctuation theorems, an important ques-
53tion is to understand the extreme-value statistics of entropy
54production. In particular, because entropy must increase on
55averag, it is interesting to understand the statistics of
56records of negative entropy production during a given time
57interval ½0; t$. To address this question, here we introduce
58the infimum of entropy production, for a single realization,
59SinfðtÞ≡ inf0≤τ≤tStotðτÞ, which is the negative record of
60entropy production over a time interval ½0; t$.
61In this paper, we derive universal equalities and inequal-
62ities on the statistics of entropy-production infima. We
63show that the mean of the infimum of the stochastic entropy
64production, in a given time interval ½0; t$, is bounded from
65below by minus the Boltzmann constant:

hSinfðtÞi ≥ −kB: ð1Þ
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66 This infimum law for entropy production is illustrated in
67 Fig. 1(a) and expresses a fundamental bound on how much
68 entropy can be reduced in a finite time. The infimum law
69 follows from a universal bound for the cumulative distri-
70 bution of entropy-production infima:

Pr ðSinfðtÞ ≥ −sÞ ≥ 1 − e−s=kB : ð2Þ

71Here, Prð·Þ denotes the probability of an event, and the left-
72hand side is the cumulative distribution of entropy pro-
73duction with s ≥ 0. Remarkably, as we show in this paper,
74the infimum law, given by Eq. (1), is universal and holds, in
75general, for classical and stationary stochastic processes.
76The global infimum of entropy production, S∞inf≡
77limt→∞SinfðtÞ, is the lowest value that entropy production
78will ever reach in one realization of the process; note that
79the global infimum is always smaller than or equal to the
80local infimum, S∞inf ≤ SinfðtÞ. We show that the distribution
81of the global infimum of entropy production is exponential,

pS∞inf
ð−sÞ ¼ e−s=kB

kB
; ð3Þ

82where s ≥ 0, and the mean value of the global infimum is
83equal to minus the Boltzmann constant:

hS∞infi ¼ −kB: ð4Þ

84The shape of the distribution of the global infimum implies
85that the infimum lies, with 50%, probability within
86−kB ln 2 ≤ S∞inf ≤ 0, and its standard deviation equals the
87Boltzmann constant. Whereas Eqs. (1) and (2) hold gen-
88erally in steady states, the equalities given by Eqs. (3) and
89(4) are shown to be true for continuous stochastic
90processes.
91Related to the global infimum are the passage proba-
92bilities Pð2Þ

þ (Pð2Þ
− ) for entropy production to reach a

93threshold sþtot (−s−tot) without having reached −s−tot (sþtot)
94before. This corresponds to the stochastic process StotðtÞ
95with two absorbing boundaries, a positive absorbing
96boundary at StotðtÞ ¼ sþtot and a negative absorbing boun-
97dary at StotðtÞ ¼ −s−tot. If the process StotðtÞ is continuous
98and hStotðtÞi ≠ 0, we find

Pð2Þ
þ ¼ es

−
tot=kB − 1

es
−
tot=kB − e−s

þ
tot=kB

; ð5Þ

99
Pð2Þ
− ¼ 1 − e−s

þ
tot=kB

es
−
tot=kB − e−s

þ
tot=kB

: ð6Þ

100Interestingly, the relations (5) and (6) relate entropy-
101production fluctuations between two asymmetric values
102sþtot ≠ s−tot. The asymptotic value of the passage probability
103Pð2Þ

þ for sþtot ¼ þ∞ is the probability that entropy never
104reaches the value −s−tot. It is equal to the probability that the
105global infimum is larger than or equal to −s−tot. The relations
106for the passage probabilities given by Eqs. (5) and (6) thus
107imply Eqs. (3) and (4) for the global infimum. Notably, the
108infima and passage statistics of entropy production are
109independent of the strength of the nonequilibrium driving,
110i.e., the mean entropy-production rate.
111We also discuss stopping times. A stopping time is the
112time at which a stochastic trajectory satisfies a certain
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F1:1 FIG. 1. Illustration of three key results of the paper. (a) Sche-
F1:2 matic representation of the infimum law for entropy production.
F1:3 Several stochastic trajectories of entropy production are shown
F1:4 (solid lines), and their infima are indicated (filled circles). The
F1:5 infima law implies that the average infimum of the entropy
F1:6 production (green solid line) is larger than or equal to −kB
F1:7 (orange line). (b) First-passage-time fluctuation theorem for
F1:8 entropy production with two absorbing boundaries. We show
F1:9 examples of trajectories of stochastic entropy production as a

F1:10 function of time, which first reach the positive threshold stot
F1:11 (horizontal thick blue line) and which first reach the negative
F1:12 threshold −stot (horizontal thick red line). The probability
F1:13 distribution pTþðt; stotÞ to first reach the positive threshold at
F1:14 time t and the probability distribution pT−

ðt;−stotÞ to first reach
F1:15 the negative threshold at time t are related by Eq. (8). (c) Waiting-
F1:16 time fluctuations: The statistics of the waiting times between two
F1:17 states I and II are the same for forward and backward trajectories
F1:18 that absorb or dissipate a certain amount of heat Q in isothermal
F1:19 conditions.
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Abstract In the context of Markov evolution, we present two original approaches to obtain
Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochas-
tic derivatives and by using a family of exponential martingales functionals. We show
that GFDT are perturbative versions of relations verified by these exponential martingales.
Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov pro-
cesses, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the
FR to a family of backward and forward exponential martingales.

Keywords Non-equilibrium Markov Process · Fluctuation-Dissipation Theorems ·
Fluctuation Relations · Martingales

1 Introduction

One of the cornerstones of statistical physics is the Fluctuation-Dissipation Theorem
(FDT) [9, 53, 68, 80], whereby, for equilibrium systems, response to a small perturbation
of the Hamiltonian is related to dynamical correlation. This theorem rationalizes the famous
regression principle of Onsager [73, 74]: the decay of spontaneous fluctuation cannot be
distinguished from the decay of forced fluctuation. More precisely, suppose we perturb a
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