
Introduction Quantization Recursive marginal quantization Results and perspectives

From Martingales in Finance to
Quantization for pricing

Giorgia Callegaro

Università di Padova

Workshop on Martingales in Finance and Physics
ICTP, 24 May 2019.

Mostly based on recent papers with Lucio Fiorin and Martino Grasselli.

1 / 24



Introduction Quantization Recursive marginal quantization Results and perspectives

Martingales in Finance: why?

Ï [Arbitrage] Intuition: a possibility of a riskless profit. An
arbitrage is an investment strategy whose cost today is non
positive, whose (portfolio) value tomorrow is non-negative and
strictly positive with positive probability (recall today’s first
talk).

Ï [Viability] A market is viable if there is no arbitrage
opportunity: we � AOA.

Ï [Key theorem] The market is viable if and only if there exists
a probability measure Q equivalent to P such that the
discounted asset prices are Q-martingales.
P: real world measure
Q: risk neutral probability
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Pricing and hedging in a nutshell

Ï [Call and Put] A Call option gives the holder the opportunity
to buy an underlying asset X , at a fixed time T and at a
specified cost (strike) K > 0: its value is

FC
T = (XT −K )+

The Put option analogously gives the holder the right to sell:

FP
T = (K −XT )+

Ï [Pricing] The price at time t of a European option, whose
payoff is FT = f (XT ) is

EQ
[
e−r(T−t)f (XT )|Ft

]
where (Ft)t∈[0,T ] is the available filtration.

Ï [Hedging] An investment strategy whose portfolio’s value
coincides (replicates) at any time with the option’s value.
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What if we discretize XT?

In case when the random variable XT reduces to a finite set of
points, the expectation (price) is computed as a finite sum.
Quantization: approximating a signal (random variable) admitting
a continuum of possible values, by a signal that takes values in a
discrete set

Figure: Picture taken from Mc Walter et al [9]
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Quantization: a brief history

Ï [Birth] Back to the 50’s, to optimize signals’ transmission
Ï [Two worlds]

Ï Vector quantization ! random variables
Ï Functional quantization ! stochastic processes

Ï [Applications] Information theory, cluster analysis, pattern
and speech recognition, numerical integration and probability

Ï [How?] Numerical procedures mostly based on stochastic
optimization algorithms  very time consuming.

Today’s menu: discretize random variables and stochastic
processes in a fast and efficient way via recursive marginal
quantization.
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Vector quantization: some Math

Given an Rd -valued random variable X on (Ω,A ,P) (or Q), X ∈ Lr ,
N-quantizing X on a grid Γ= (x1, . . . ,xN) consists in projecting X
on Γ. In order to univocally define the projection function, we need
to specify a partition of Rd , (Ci )1≤i≤N , so that

ProjΓ(X )=
N∑
i=1

xi11Ci
(X )

Ï The induced Lr error

||X −ProjΓ(X )||r = E
[
min
1≤i≤N

|X −xi |r
]1/r

is called the Lr−mean quantization error.
N.B. For a complete background on optimal quantization: Graf and Luschgy
[7]
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Quadratic optimal quantization (r = 2)

Let us focus, from now on, on r = 2!

How do we choose the N points in Γ?
By minimizing the L2 error!

Ï A grid Γ? minimizing the L2− quantization error over all the
grids with size at most N is the optimal quadratic quantizer.

Ï The projection of X on Γ?, ProjΓ?(X ), or X̂ Γ? , or X̂ for
simplicity, is called the quantization of X and the associated
partition

Ci (Γ
?)⊂

{
ξ ∈Rd : |ξ−xi | = min

1≤j≤N
|ξ−xj |

}
is called the Voronoï partition, or tessellation induced by Γ?.
ProjΓ?(X ) is defined as the closest neighbor projection on Γ?.
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Vector quantization: example (N = 50)
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Figure: Optimal quantizer and tessellation of a 2-d Gaussian r.v.
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Vector quantization: some useful facts

Theory:
Ï The Lr− error goes to zero as N →+∞ (Zador Theorem).
Ï The distortion function (the quadratic quantization error
squared) always reaches one minimum at a N-tuple Γ? having
pairwise distinct components.

Practice:
Ï d = 1: optimal quantizers can be obtained via standard
Newton-Raphson procedure.

Ï d ≥ 2: stochastic gradient descent algorithms are required (or
standard gradient descent when the distribution can be easily
simulated)
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Vector quantization: fixing the ideas

Optimal quadratic quantization of X :

gives access to a N-tuple Γ= {x1,x2, . . . ,xN }
which minimizes the L2 distance

between X and X̂ Γ

This provides the best possible quadratic approximation of a
random vector X by a random vector taking (at most) N values.
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Vector quantization: numerical integration

Given an integrable function f , a random variable X and a
(hopefully optimal) quantizer Γ= {x1, . . . ,xN }, E[f (X )] can be
approximated by the finite sum

E[f (X̂ Γ)]=
N∑
i=1

f (xi )P(X̂
Γ = xi ).

If f is Lipschitz continuous, then∣∣E[f (X )]−E[f (X̂ Γ)]
∣∣≤ [f ]Lip ||X − X̂ Γ||2

and ||X − X̂ Γ||2 N→∞−→ 0 (Zador theorem).
N.B. When f is smoother this error bound can be significantly improved.
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Vector quantization: towards stationary quantizers

What do we need in practice to quantize X?

Ï The grid Γ? = {x1,x2, . . . ,xN }

Ï The weights of the cells in the Voronöi tessellation
P(X ∈Ci (Γ

?))=P(X̂ = xi ), i = 1, . . . ,N

From a numerical point of view, finding an optimal quantizer may
be a very challenging and time consuming task.

This motivates the introduction of sub-optimal criteria:
stationary quantizers.
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Stationary quantizers

Ï Definition: Γ= {x1, · · · ,xN } is stationary for X if

E
[
X |X̂ Γ

]= X̂ Γ.

Ï Optimal quantizers are stationary;
Ï Stationary quantizers Γ are critical points of the distortion
function:

∇D(Γ)= 0 (1)

where the distortion function is the square of the L2-error

D(Γ) :=
N∑
i=1

∫
Ci (Γ)

|u−xi |2dPX (u).
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From stationary quantizers to the quantization of a
stochastic process

Stationary quantizers are interesting from a numerical point of
view: they can be found through zero search recursive procedures
like Newton’s algorithm.

⇓

Ï We � stationary (sub-optimal) quantizers.
Ï How to quantize a stochastic process with these ideas?
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“Step by step marginal quantization”: warm up

Recently introduced by Pagès and Sagna [8]
Ï Consider a continuous-time Markov process Y

dYt = b(t,Yt)dt+a(t,Yt)dWt , Y0 = y0 > 0,

where W is a standard Brownian motion and a and b satisfy
the usual conditions ensuring the existence of a (strong)
solution to the SDE;

Ï Given T > 0 and {0= t0,t1, . . . ,tM =T }, ∆k = tk − tk−1, k ≥ 1,
the Euler scheme is

Ỹtk = Ỹtk−1 +b(tk−1,Ỹtk−1)∆k +a(tk−1,Ỹtk−1)∆Wk

Ỹt0 = Ỹ0 = y0

where ∆Wk := (Wtk −Wtk−1)∼N (0,∆k).
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Ï Key remark: for every k = 1, . . . ,M

L
(
Ỹtk

∣∣Ỹtk−1 = x
)∼N

(
mk−1(x),σ2

k−1(x)
)

(2)

where
mk−1(x) = x +b(tk−1,x)∆k

σ2
k−1(x) = [a(tk−1,x)]2∆k .

Ï Idea: quantize recursively every marginal random variable
(vector quantization) Ỹtk , exploiting (2).
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“Step by step marginal quantization”: stationary quantizers

The distortion function at time tk , relative to Ỹtk , is

Dk(Γ
k)=

N∑
i=1

∫
Ci (Γk )

(y −yki )
2 P

(
Ỹtk ∈ dy

)
where N is the (fixed) size of the grid Γk = {

yk1 ,yk2 , . . . ,ykN
}
. Target:

Γk ∈RN such that
∇Dk(Γ

k)= 0

Question: applying Newton-Raphson now?
Answer: NO! We do NOT know the distribution of Ỹtk !
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Ï ... using the conditional distribution in (2) we have

P(Ỹtk ∈ dy)= dy

∫
R
φmk−1(yk−1),σk−1(yk−1)(y) P(Ỹtk−1 ∈ dyk−1)

where φm,σ is the density function of a N (m,σ2).
Ï Replacing Ỹ by Ŷ , we deduce a recursive procedure to obtain
the stationary quantizer at time tk , based on the quantizer at
time tk−1,k ∈ {0, . . . ,M −1}:
The distorsion is continuously differentiable, so (via gradient

and Hessian matrix)  Newton-Raphson  faster
computations wrt stochastic algorithms.
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The algorithm

At every step k = 1, . . . ,M −1 of the algorithm:
Ï What we need

Ï The (stationary) quantizer Ŷk−1 at time tk−1.
Ï The weights

Ï What we do
Newton - Raphson iterations until convergence to the
stationary grid Γk = (yk1 , . . . ,ykN) at time tk .

Ï What we get
Ï The quantization at time tk :

Ŷk =
N∑
i=1

yki 11Ỹk∈Ci (Γk).

Ï The weights
Ï The transition probabilities from time tk−1 to time tk .
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Recent research and perspectives - 1

Recursive marginal quantization can be safely extended to discretize
Y taking values in Rd  (local and) stochastic vola models (d = 2).
Example: Heston model

dSt
St

= rdt+
√
Vt

(
ρ dW 1

t +
√
1−ρ2dW 2

t

)
dVt = κ(θ−Vt)dt+ξ

√
VtdW

1
t

where
Ï W 1 and W 2 are independent standard Brownian motions
Ï r is the risk free interest rate
Ï θ is the long run average price variance
Ï κ is the reversion speed
Ï ρ is the correlation
Ï ξ is the volatility of the variance process (vol of vol).
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RMQuantization of the Heston model
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Quantization of the price process in the Heston model, N = 30.
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Recent research and perspectives - 2

Ï Being transition probabilities available, it is also possible to
easily price exotic options (such as American).

Ï Calibration on vanilla and american options’ prices is possible.
Ï Challenges:

Ï High dimension  machine learning?
Ï Discretizing non Markovian stochastic processes (e.g.

rough-volatility models)?
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Thank you for your attention !!!
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