Stochastic Thermodynamics with Martingales

Izaak Neri, Workshop on Martingales in Finance and Physics, 24th of May 2019

Contributions

Statistical physics

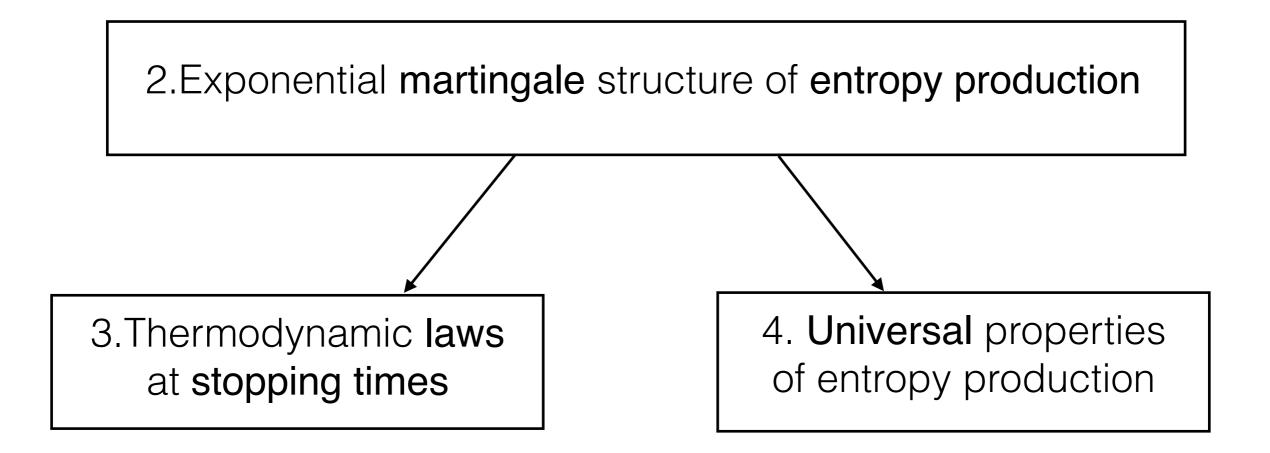
Edgar Roldán (Trieste) Frank Jülicher (Dresden) Simone Pigolotti (Okinawa) Shamik Gupta (Calcutta) Raphaël Chétrite (Nice)

Information theory

Meik Dörpinghaus (Dresden) Heinrich Meyr (Aachen)

Structure of the talk

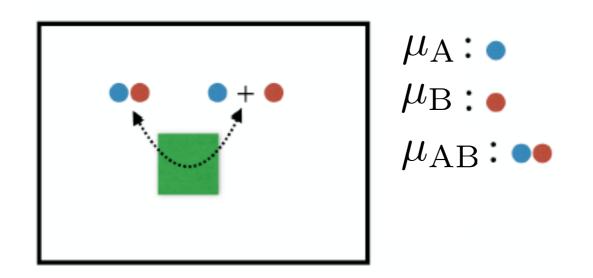
1. Introduction to stochastic thermodynamics



5. Example: overdamped Langevin processes

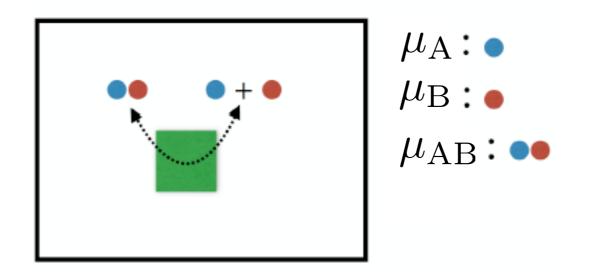
Introduction to stochastic thermodynamics

Thermodynamics of mesoscopic systems or stochastic thermodynamics



Thermodynamics: $J(t) (\mu_{AB} - \mu_A - \mu_B) \ge 0$

Thermodynamics of mesoscopic systems or stochastic thermodynamics



Thermodynamics: $J(t) (\mu_{AB} - \mu_A - \mu_B) \ge 0$

Stochastic thermodynamics:

$$\frac{k_{\bullet,\bullet\to\bullet}}{k_{\bullet,\bullet\to\bullet+\bullet}} = e^{S_{\rm env}(\bullet,\bullet\to\bullet\bullet)} = e^{\frac{\mu_{\bullet\bullet}-\mu_{\bullet}-\mu_{\bullet}}{\mathsf{T}_{\rm env}}}$$

Local detailed balance and stochastic entropy production

$$\frac{p(X(2), X(2), \dots, X(t)|X(1))}{p(X(t-1), X(t-2), \dots, X(1)|X(t))} = e^{S_{\text{env}}}$$

Local detailed balance and stochastic entropy production

$$\frac{p(X(2), X(2), \dots, X(t)|X(1))}{p(X(t-1), X(t-2), \dots, X(1)|X(t))} = e^{S_{\text{env}}}$$

$$S_{\text{tot}}(t) = \Delta S_{\text{sys}}(t) + S_{\text{env}}(t) = \log \frac{p(X(1), \dots, X(t))}{p(X(t), \dots, X(1))}$$

where
$$S_{\rm sys}(t) \equiv -\log p_{\rm ss}(X(t))$$

U Seifert, Rep. Prog. Phys. (2012)

Thermodynamic laws for mesoscopic processes

Integral fluctuation relation: $\langle e^{-S_{\text{tot}}(t)} \rangle = 1$

$$\sum_{X(1),\dots,X(t)} p(X(1),\dots,X(t)) \frac{p(X(t),\dots,X(1))}{p(X(1),\dots,X(t))} = 1$$

Thermodynamic laws for mesoscopic processes

Integral fluctuation relation: $\langle e^{-S_{\text{tot}}(t)} \rangle = 1$

$$\sum_{X(1),\dots,X(t)} p(X(1),\dots,X(t)) \frac{p(X(t),\dots,X(1))}{p(X(1),\dots,X(t))} = 1$$

Implications

$$\Rightarrow \quad \langle S_{\rm tot}(t) \rangle \ge 0$$

 \Rightarrow Events of negative entropy production must exist

$$\Rightarrow \quad P\left(S_{\text{tot}}(t) \le -s\right) \le e^{-s}$$

U Seifert, Rep. Prog. Phys. (2012)

Exponential martingale structure of entropy production

Martingales

M(t) is a martingale with respect to X(t) if:

- M(t) is a real-valued function on X(0...t)
- $\langle |M(t)| \rangle < \infty$

•
$$\langle M(t)|X(0\ldots s)\rangle = M(s)$$
, for all $s < t$

$$\langle e^{-S_{\rm tot}(t)} | X(0\dots s) \rangle =$$

$$\langle e^{-S_{\text{tot}}(t)} | X(0 \dots s) \rangle = \sum_{X(s^+ \dots t)} p\left(X(0 \dots t) | X(0 \dots s)\right) \ e^{-S_{\text{tot}}(t)}$$

$$\langle e^{-S_{\text{tot}}(t)} | X(0 \dots s) \rangle = \sum_{X(s^+ \dots t)} p(X(0 \dots t) | X(0 \dots s)) e^{-S_{\text{tot}}(t)}$$

$$= \sum_{X(s^+\dots t)} \frac{p\left(X(0\dots t)\right)}{p\left(X(0\dots s)\right)} \frac{\tilde{p}\left(X(0\dots t)\right)}{p\left(X(0\dots t)\right)}$$

$$\langle e^{-S_{\text{tot}}(t)} | X(0 \dots s) \rangle = \sum_{X(s^+ \dots t)} p(X(0 \dots t) | X(0 \dots s)) e^{-S_{\text{tot}}(t)}$$

$$= \sum_{X(s^+...t)} \frac{p\left(X(X...t)\right)}{p\left(X(0...s)\right)} \frac{\tilde{p}\left(X(0...t)\right)}{p\left(X(X...t)\right)}$$

$$\langle e^{-S_{\text{tot}}(t)} | X(0 \dots s) \rangle = \sum_{X(s^+ \dots t)} p\left(X(0 \dots t) | X(0 \dots s)\right) \ e^{-S_{\text{tot}}(t)}$$

$$= \sum_{X(s^+\dots t)} \frac{p\left(X(X\dots t)\right)}{p\left(X(0\dots s)\right)} \frac{\tilde{p}\left(X(0\dots t)\right)}{p\left(X(0\dots t)\right)}$$

$$= \frac{\tilde{p}\left(X(0\ldots s)\right)}{p\left(X(0\ldots s)\right)}$$

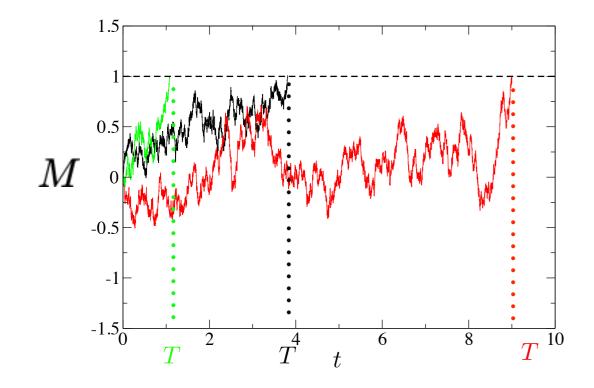
$$\langle e^{-S_{\text{tot}}(t)} | X(0 \dots s) \rangle = \sum_{X(s^+ \dots t)} p\left(X(0 \dots t) | X(0 \dots s)\right) \ e^{-S_{\text{tot}}(t)}$$

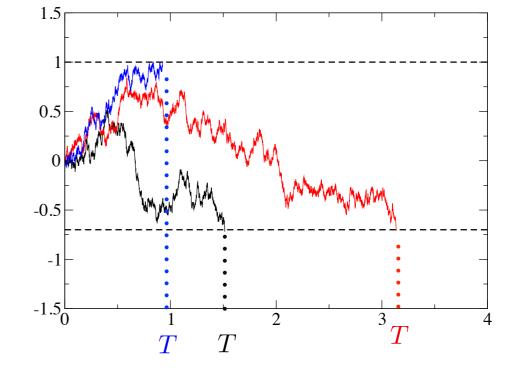
$$= \sum_{X(s^+...t)} \frac{p\left(X(X...t)\right)}{p\left(X(0...s)\right)} \frac{\tilde{p}\left(X(0...t)\right)}{p\left(X(0...t)\right)}$$

$$= \frac{\tilde{p}\left(X(0\ldots s)\right)}{p\left(X(0\ldots s)\right)}$$

$$= e^{-S_{\text{tot}}(s)}$$

Thermodynamic laws at stopping times





$$\langle M(T) \rangle = 1 \neq \langle M(0) \rangle = 0$$

Gambler makes profit

 $\langle M(T) \rangle = \langle M(0) \rangle = 0$

Gambler on average makes no profit

No, if the gambler cannot foresee the future, cannot cheat, and has access to a finite budget

T is a stopping time

No, if the gambler cannot foresee the future, cannot cheat, and has access to a finite budget

T is a stopping time

No, if the gambler cannot foresee the future, cannot cheat, and has access to a finite budget

M(t) is uniformly integrable

T is a stopping time

No, if the gambler cannot foresee the future, cannot cheat, and has access to a finite budget *M(t)* is uniformly integrable

Doob's optional stopping theorem

 $\langle M(T)|X(0)\rangle = M(0)$ if M(t) is uniformly integrable martingale and and *T* is a stopping time

R S Lipster and A N Shiryaev, Statistics of random processes: I General theory, 1977

Integral fluctuation relations for entropy production at stopping times

$$\langle e^{-S_{\text{tot}}(T)} | X(0) \rangle = e^{-S_{\text{tot}}(0)} = 1$$

IN, E Roldan, S Pigolotti, F Julicher, arXiv (2019)

Integral fluctuation relations for entropy production at stopping times

$$\langle e^{-S_{\text{tot}}(T)} | X(0) \rangle = e^{-S_{\text{tot}}(0)} = 1$$

Finite time windows

$$\langle e^{-S_{\rm tot}(T\wedge t)} \rangle = 1$$

IN, E Roldan, S Pigolotti, F Julicher, arXiv (2019)

Integral fluctuation relations for entropy production at stopping times

$$\langle e^{-S_{\text{tot}}(T)} | X(0) \rangle = e^{-S_{\text{tot}}(0)} = 1$$

Finite time windows

$$\langle e^{-S_{\text{tot}}(T\wedge t)} \rangle = 1$$

Infinite time windows

$$\langle e^{-S_{\rm tot}(T)} \rangle = 1$$

if
$$e^{-S_{\text{tot}}(t)} \to 0$$

and $S_{\text{tot}}(t) \in [-s_-, s_+]$

 $\forall t \in [0,T]$

IN, E Roldan, S Pigolotti, F Julicher, arXiv (2019)

Second law of thermodynamics at stopping times

$$1 = \langle e^{-S_{\text{tot}}(T)} \rangle \ge e^{-\langle S_{\text{tot}}(T) \rangle}$$

Jensen's Inequality

Second law of thermodynamics at stopping times

$$1 = \langle e^{-S_{\text{tot}}(T)} \rangle \ge e^{-\langle S_{\text{tot}}(T) \rangle}$$

$$\downarrow$$

$$\langle S_{\text{tot}}(T) \rangle \ge 0$$

Jensen's Inequality

Second law of thermodynamics at stopping times

$$1 = \langle e^{-S_{\text{tot}}(T)} \rangle \ge e^{-\langle S_{\text{tot}}(T) \rangle}$$
$$\downarrow$$
$$\langle S_{\text{tot}}(T) \rangle \ge 0$$

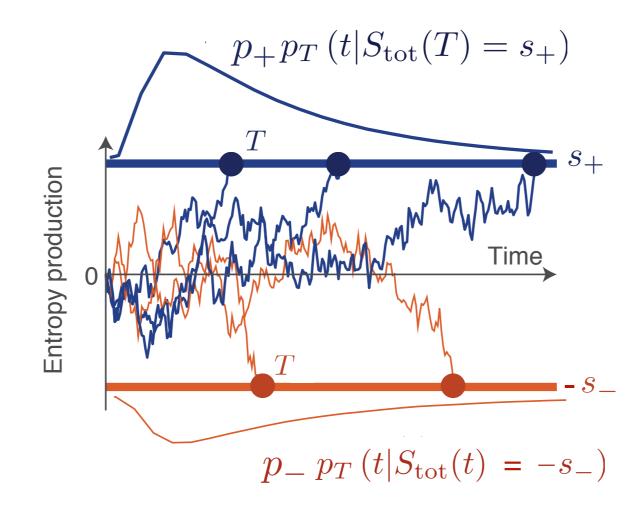
Jensen's Inequality

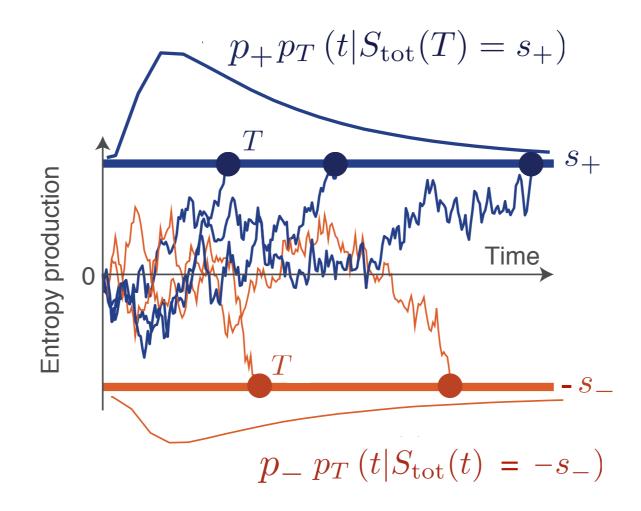
For isothermal processes:

$$\langle Q(T) \rangle \leq \mathsf{T}_{\mathrm{env}} \langle \log \frac{p_{\mathrm{ss}} \left(X(0) \right)}{p_{\mathrm{ss}} \left(X(T) \right)} \rangle$$

Universal properties of entropy production

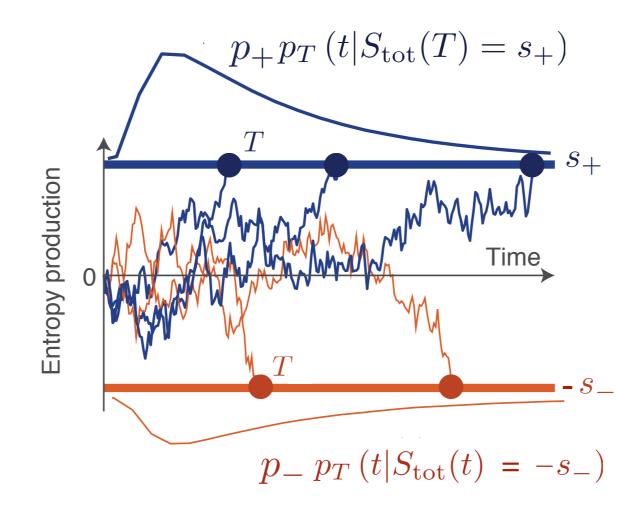
Universal properties of entropy production (for continuous stochastic processes)

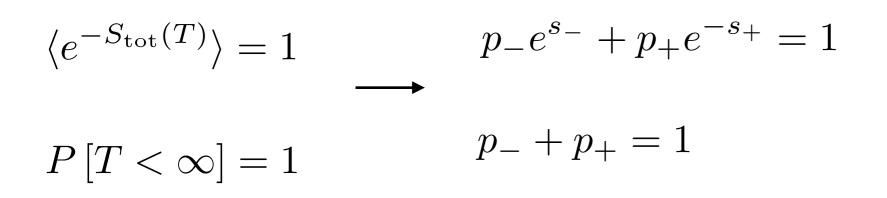


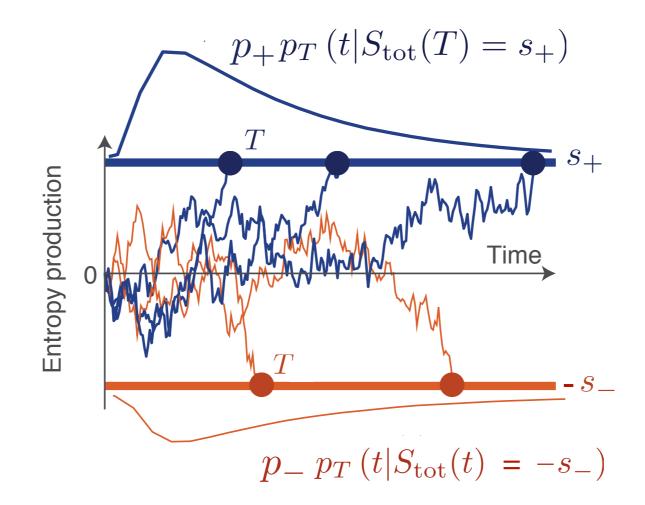


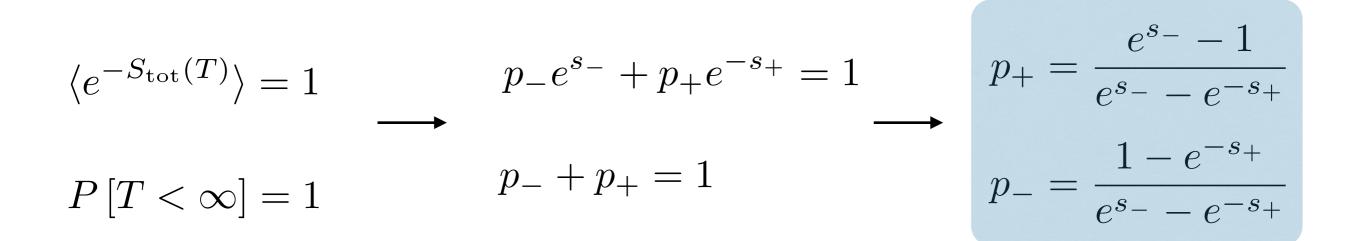
$$\langle e^{-S_{\text{tot}}(T)} \rangle = 1$$

 $P\left[T < \infty\right] = 1$

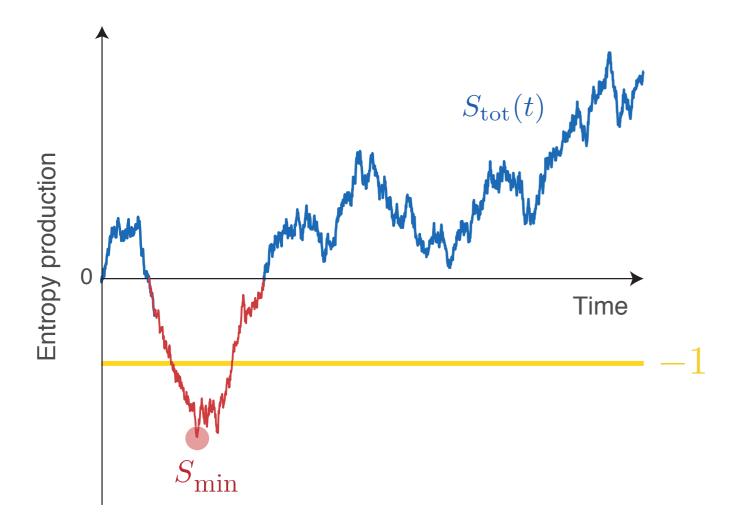






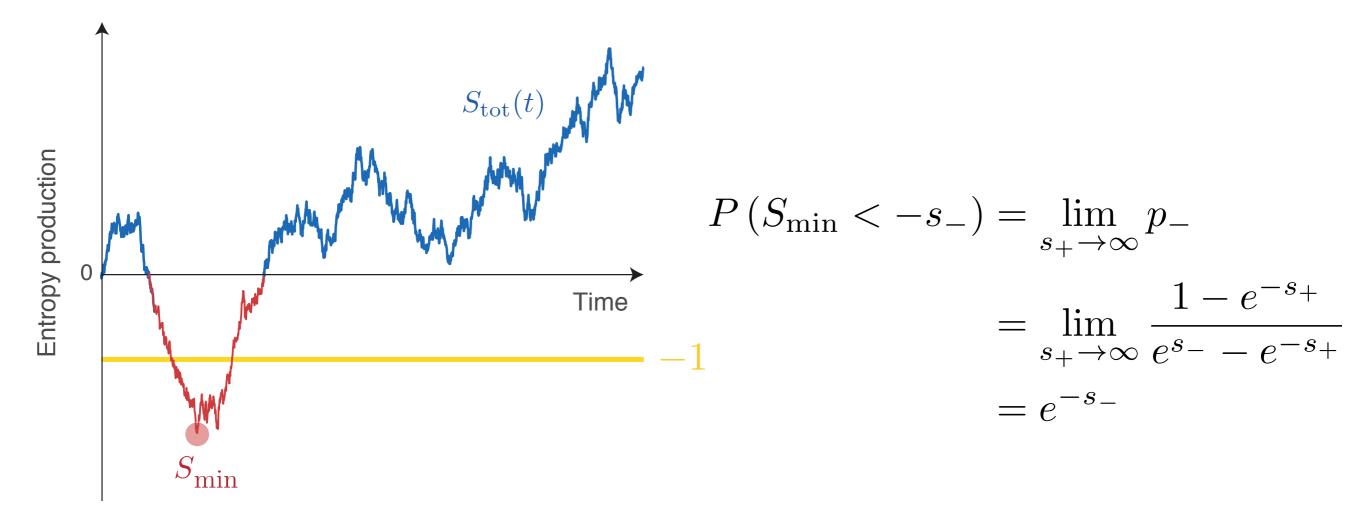


The statistics of minima of the entropy production of continuous stationary processes are universal



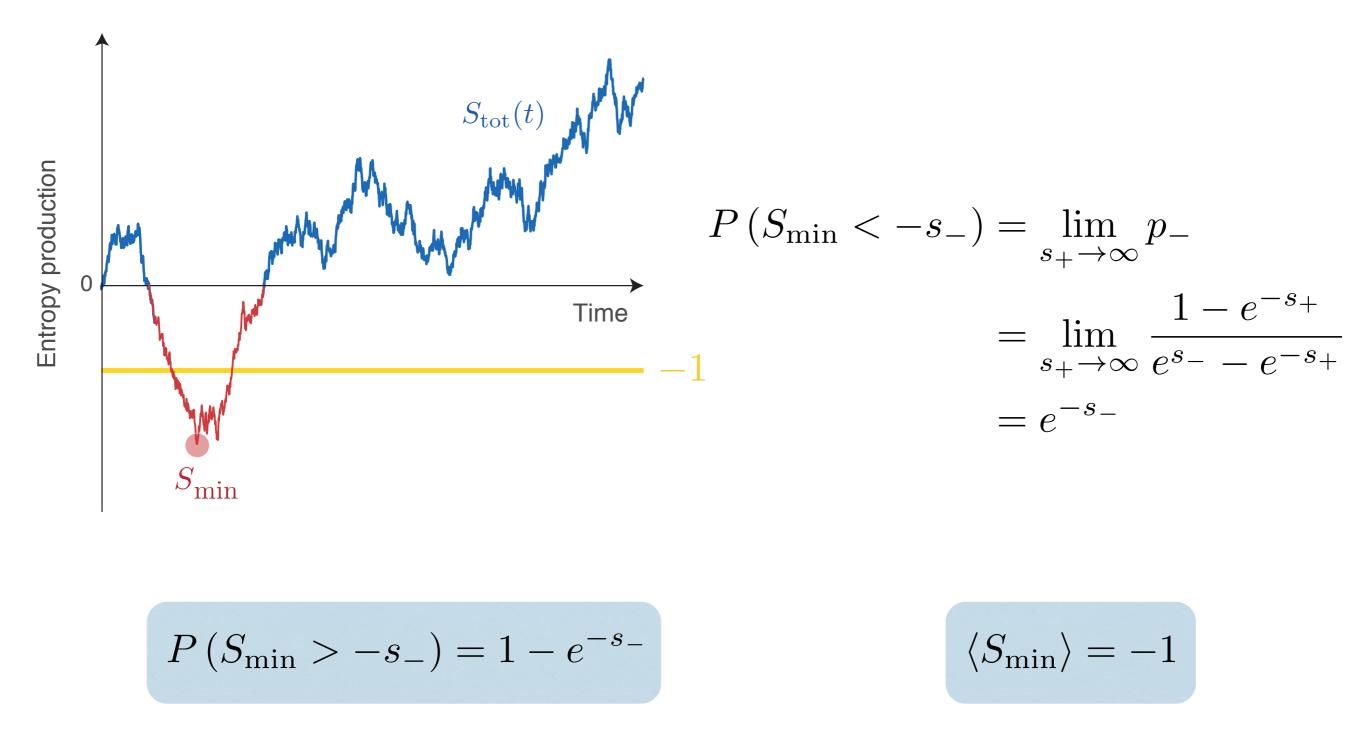
IN, Edgar Roldán, Frank Jülicher, Phys. Rev. X 7, 011019

The statistics of minima of the entropy production of continuous stationary processes are universal



IN, Edgar Roldán, Frank Jülicher, Phys. Rev. X 7, 011019

The statistics of minima of the entropy production of continuous stationary processes are universal



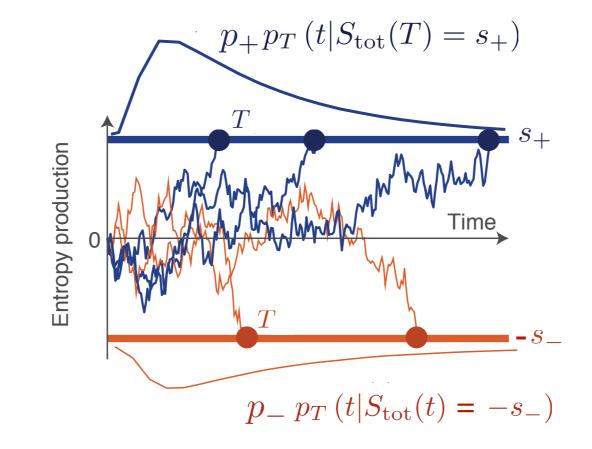
IN, Edgar Roldán, Frank Jülicher, Phys. Rev. X 7, 011019

Bounds on negative fluctuations of entropy production: "standard" thermodynamics vs martingale theory

U Seifert, Rep. Prog. Phys. (2012)

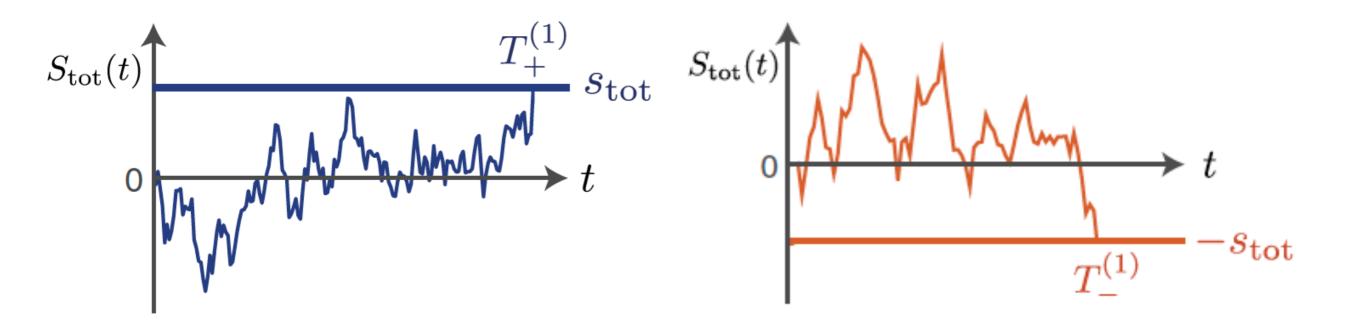
IN, E Roldan, S Pigolotti, F Julicher, arXiv (2019)

Symmetry relation in the conditional distributions of first-passage times for entropy production



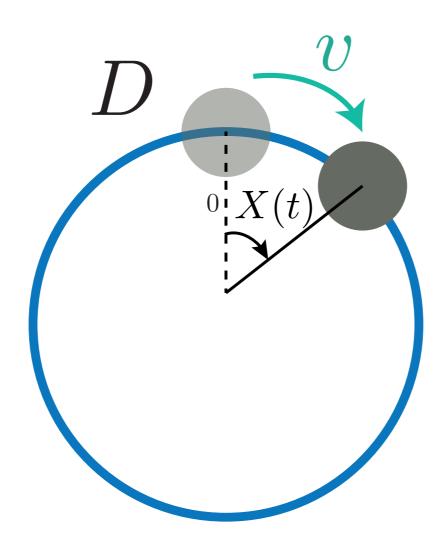
$$p_T(t|S_{\text{tot}} = s) = p_T(t|S_{\text{tot}} = -s)$$

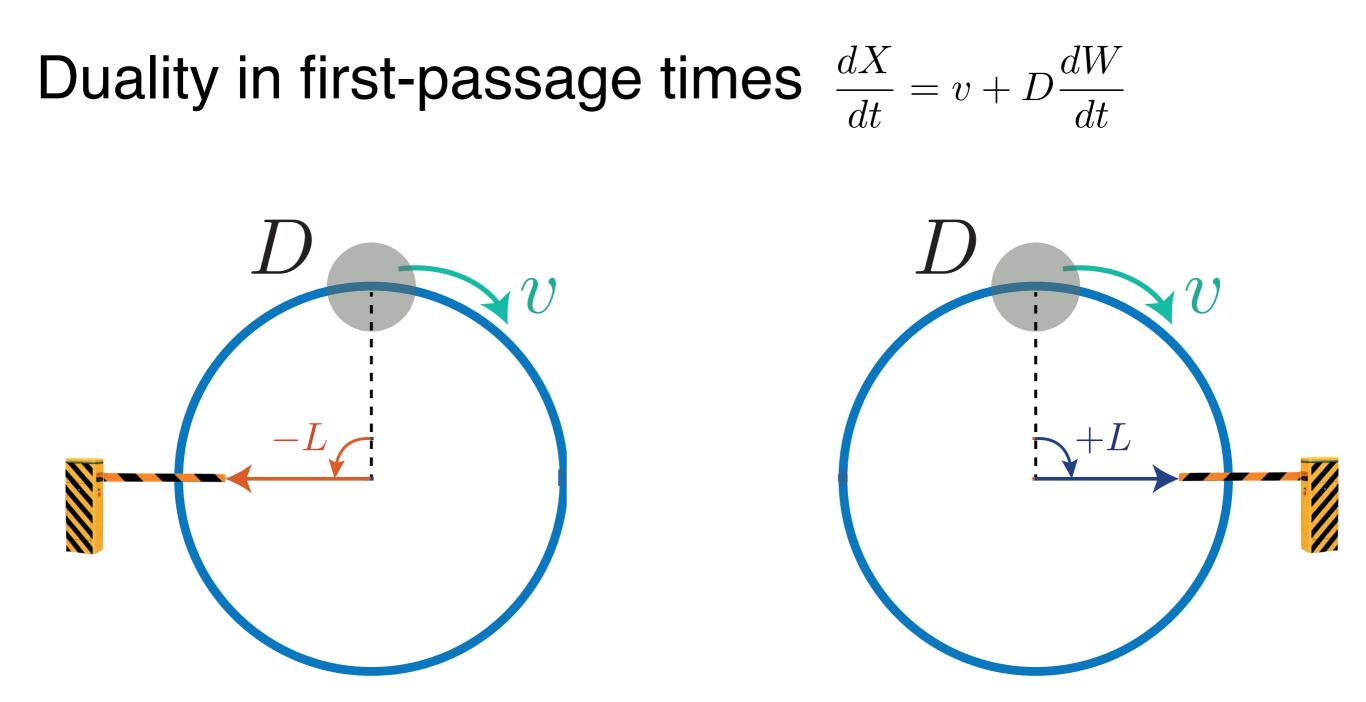
IN, Edgar Roldán, Frank Jülicher, Phys. Rev. X 7, 011019 Meik Dorpinghaus, IN, Edgar Roldan, Frank Julicher, Heinrich Meyer, arXiv Symmetry relation in the conditional distributions of first-passage times for entropy production



$$p_T(t|S_{\text{tot}} = s) = p_T(t|S_{\text{tot}} = -s)$$

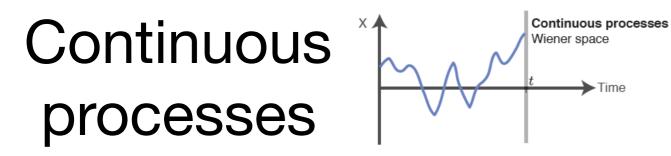
IN, Edgar Roldán, Frank Jülicher, Phys. Rev. X 7, 011019 Meik Dorpinghaus, IN, Edgar Roldan, Frank Julicher, Heinrich Meyer, arXiv





$$p_T(t; -L) = \frac{|L|}{\sqrt{4\pi Dt^3}} e^{-(-L-vt)^2/(4Dt)} \qquad p_T(t; -L) = \frac{|L|}{\sqrt{4\pi Dt^3}} e^{-(L-vt)^2/(4Dt)}$$

$$\frac{p_T(t;L)}{p_T(t;-L)} = e^{vL/D}$$



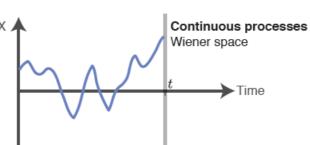
$$p_{+} = \frac{e^{s_{-}} - 1}{e^{s_{-}} - e^{-s_{+}}}$$
$$p_{-} = \frac{1 - e^{-s_{+}}}{e^{s_{-}} - e^{-s_{+}}}$$

$$P(S_{\min} > -s_{-}) = 1 - e^{-s_{-}}$$

$$\langle S_{\min} \rangle = -1$$

$$p_T(t|S_{\text{tot}} = s) = p_T(t|S_{\text{tot}} = -s)$$

Continuous processes



$$p_{+} = \frac{e^{s_{-}} - 1}{e^{s_{-}} - e^{-s_{+}}}$$
$$p_{-} = \frac{1 - e^{-s_{+}}}{e^{s_{-}} - e^{-s_{+}}}$$

$$P(S_{\min} > -s_{-}) = 1 - e^{-s_{-}}$$

$$\langle S_{\min} \rangle = -1$$

$$p_T(t|S_{\text{tot}} = s) = p_T(t|S_{\text{tot}} = -s)$$

$$p_+ \ge 1 - \frac{1}{e^{s_-} - e^{-s_+}}$$

$$p_{-} \le \frac{1}{e^{s_{-}} - e^{-s_{+}}}$$

$$P(S_{\inf} \ge -s_{-}) \ge 1 - e^{-s_{-}}$$

 $\langle S_{\inf} \rangle \ge -1$

???

Example: overdamped Langevin processes

System set-up

$$\frac{dX}{dt} = \mu F + \nabla D + \sqrt{2}\sigma \cdot \xi \quad , \qquad \langle \xi \rangle = 0, \quad \langle \xi_i(t)\xi_j(t') \rangle = \delta_{i,j}\delta(t-t')$$

$$F = -\nabla u + f$$
, $\sigma \sigma^T = D$, $D = \mu \mathsf{T}_{env}$

System set-up

$$\frac{dX}{dt} = \mu F + \nabla D + \sqrt{2\sigma \cdot \xi}, \quad \langle \xi \rangle = 0, \quad \langle \xi_i(t)\xi_j(t') \rangle = \delta_{i,j}\delta(t-t')$$

$$F = -\nabla u + f$$
, $\sigma \sigma^T = D$, $D = \mu \mathsf{T}_{env}$

System set-up

$$\frac{dX}{dt} = \mu F + \nabla D + \sqrt{2\sigma \cdot \xi}, \quad \langle \xi \rangle = 0, \quad \langle \xi_i(t)\xi_j(t') \rangle = \delta_{i,j}\delta(t - t')$$

$$F = -\nabla u + f, \quad \sigma\sigma^T = D, \quad D = \mu \mathsf{T}_{env}$$

First law of thermodynamics

$$dW = f \circ dX$$
 , $dQ = du - dW$

K Sekimoto, Prog. Theory. Phys. Suppl. 130, 17 (1998)

System set-up

$$\frac{dX}{dt} = \mu F + \nabla D + \sqrt{2\sigma \cdot \xi}, \quad \langle \xi \rangle = 0, \quad \langle \xi_i(t)\xi_j(t') \rangle = \delta_{i,j}\delta(t-t')$$

$$F = -\nabla u + f$$
, $\sigma \sigma^T = D$, $D = \mu \mathsf{T}_{env}$

First law of thermodynamics

 $dW = f \circ dX$, Stratanovich product

$$dQ = du - dW$$

K Sekimoto, Prog. Theory. Phys. Suppl. 130, 17 (1998)

Definition of entropy production:

$$dS_{\rm tot}(t) = -\frac{dQ}{\mathsf{T}_{\rm env}} - d\log p_{\rm ss}(X(t))$$

where

$$\nabla \cdot \left((\mu F + \nabla D) p_{\rm ss} - \nabla (D p_{\rm ss}) \right) = 0$$

Udo Seifert, Physical review letters (2005)

Definition of entropy production:

$$dS_{\rm tot}(t) = -\frac{dQ}{\mathsf{T}_{\rm env}} - d\log p_{\rm ss}(X(t))$$

where

$$\nabla \cdot \left((\mu F + \nabla D) p_{\rm ss} - \nabla (D p_{\rm ss}) \right) = 0$$

Udo Seifert, Physical review letters (2005)

Definition of entropy production:

$$dS_{\rm tot}(t) = -\frac{dQ}{\mathsf{T}_{\rm env}} - d\log p_{\rm ss}(X(t))$$

where

$$\nabla \cdot \left((\mu F + \nabla D) p_{\rm ss} - \nabla (D p_{\rm ss}) \right) = 0$$

Udo Seifert, Physical review letters (2005)

Rules of stochastic calculus imply:

$$\frac{dS_{\text{tot}}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S ,$$

$$\xi_S = \frac{\xi \sigma^{-1} J}{\sqrt{JD^{-1} J}}, \quad v_S = \frac{J_{\text{ss}} D^{-1} J_{\text{ss}}}{p_{\text{ss}}}$$

Definition of entropy production:

$$dS_{\rm tot}(t) = -\frac{dQ}{\mathsf{T}_{\rm env}} - d\log p_{\rm ss}(X(t))$$

where

$$\nabla \cdot \left((\mu F + \nabla D) p_{\rm ss} - \nabla (D p_{\rm ss}) \right) = 0$$

Udo Seifert, Physical review letters (2005)

Rules of stochastic calculus imply:

$$\frac{dS_{\text{tot}}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S ,$$

$$\xi_S = \frac{\xi \sigma^{-1} J}{\sqrt{JD^{-1} J}}, \quad v_S = \frac{J_{\text{ss}} D^{-1} J_{\text{ss}}}{p_{\text{ss}}}$$

Definition of entropy production:

$$dS_{\rm tot}(t) = -\frac{dQ}{\mathsf{T}_{\rm env}} - d\log p_{\rm ss}(X(t))$$

where

$$\nabla \cdot \left((\mu F + \nabla D) p_{\rm ss} - \nabla (D p_{\rm ss}) \right) = 0$$

Udo Seifert, Physical review letters (2005)

Rules of stochastic calculus imply:

$$\frac{dS_{\text{tot}}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S , \qquad \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2}\sigma \cdot \xi$$

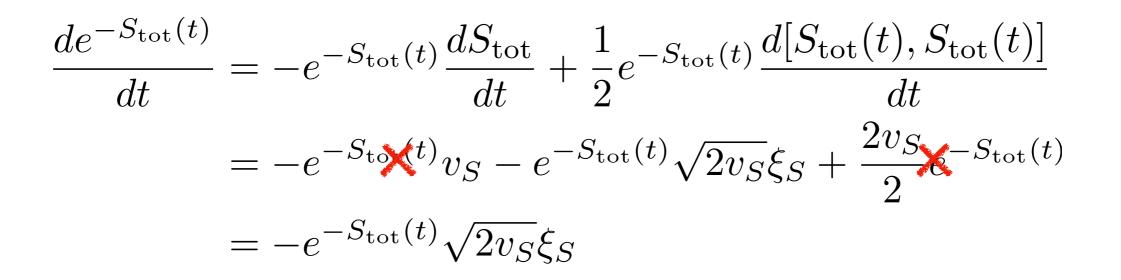
$$\frac{dS_{\text{tot}}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S , \qquad \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2\sigma} \cdot \xi$$

$$\frac{de^{-S_{\text{tot}}(t)}}{dt} = -e^{-S_{\text{tot}}(t)}\frac{dS_{\text{tot}}}{dt} + \frac{1}{2}e^{-S_{\text{tot}}(t)}\frac{d[S_{\text{tot}}(t), S_{\text{tot}}(t)]}{dt}$$

$$\frac{dS_{\text{tot}}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S , \qquad \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2\sigma} \cdot \xi$$

$$\frac{de^{-S_{\text{tot}}(t)}}{dt} = -e^{-S_{\text{tot}}(t)}\frac{dS_{\text{tot}}}{dt} + \frac{1}{2}e^{-S_{\text{tot}}(t)}\frac{d[S_{\text{tot}}(t), S_{\text{tot}}(t)]}{dt}$$
$$= -e^{-S_{\text{tot}}(t)}v_S - e^{-S_{\text{tot}}(t)}\sqrt{2v_S}\xi_S + \frac{2v_S}{2}e^{-S_{\text{tot}}(t)}$$

$$\frac{dS_{\text{tot}}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S , \qquad \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2}\sigma \cdot \xi$$



$$\frac{dS_{\text{tot}}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S , \qquad \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2}\sigma \cdot \xi$$

$$\frac{de^{-S_{\text{tot}}(t)}}{dt} = -e^{-S_{\text{tot}}(t)}\frac{dS_{\text{tot}}}{dt} + \frac{1}{2}e^{-S_{\text{tot}}(t)}\frac{d[S_{\text{tot}}(t), S_{\text{tot}}(t)]}{dt}$$
$$= -e^{-S_{\text{tot}}(t)}v_{S} - e^{-S_{\text{tot}}(t)}\sqrt{2v_{S}}\xi_{S} + \frac{2v_{S}}{2}e^{-S_{\text{tot}}(t)}$$
$$= -e^{-S_{\text{tot}}(t)}\sqrt{2v_{S}}\xi_{S}$$

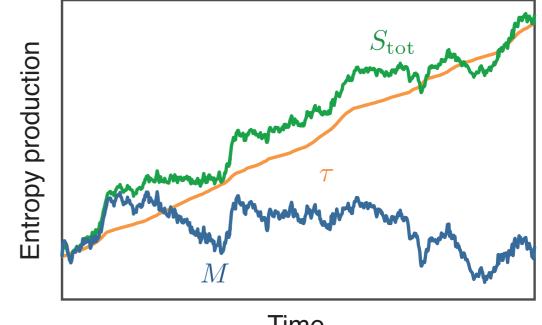
No drift term —-> martingale

Random-time transformation

$$\frac{dS_{\rm tot}(t)}{dt} = v_S + \sqrt{2v_S} \cdot \xi_S$$

Entropic time:

$$\tau = \int_0^t v_S(X(t'))dt'$$



Time

$$S_{tot}(t) = \tau(t) + M(t)$$
,
Nondecreasing Martingale

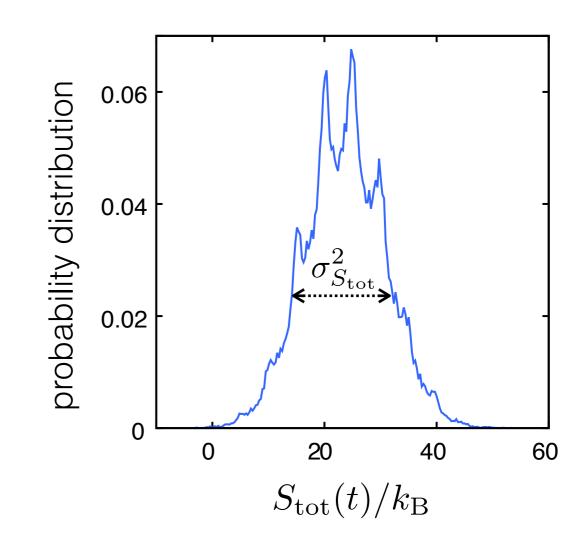
$$M(t) = \int_0^{t'} \mathrm{d}t \,\sqrt{2v_S(t')}\xi_S(t')$$

Random-time transformation renders certain properties of entropy production universal

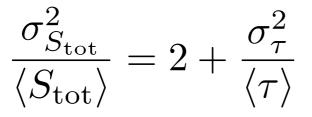
$$\frac{dS_{\text{tot}}(\tau)}{d\tau} = 1 + \sqrt{2}\eta(\tau) , \quad \eta(\tau) = \frac{\xi_S(\tau)}{\sqrt{v_S(\tau)}}$$

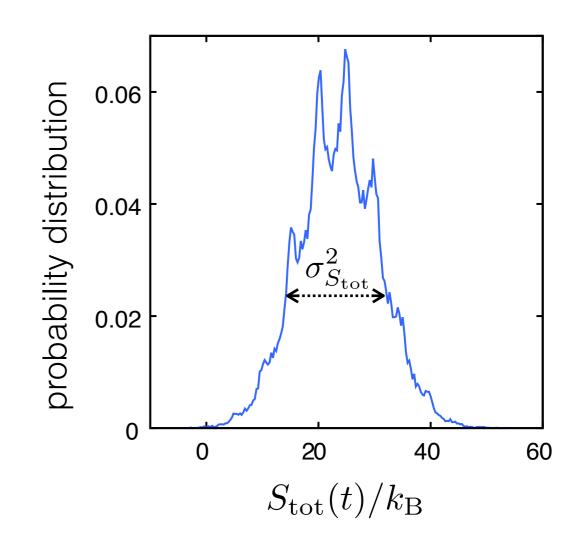
Fluctuation properties independent of the time-scale are universal

Inequality for the Fano-factor of entropy production

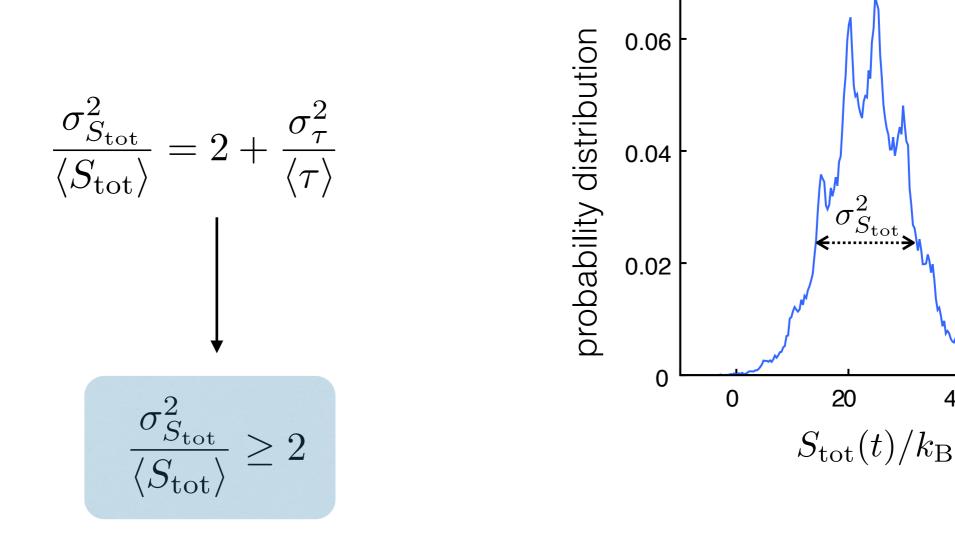


Inequality for the Fano-factor of entropy production





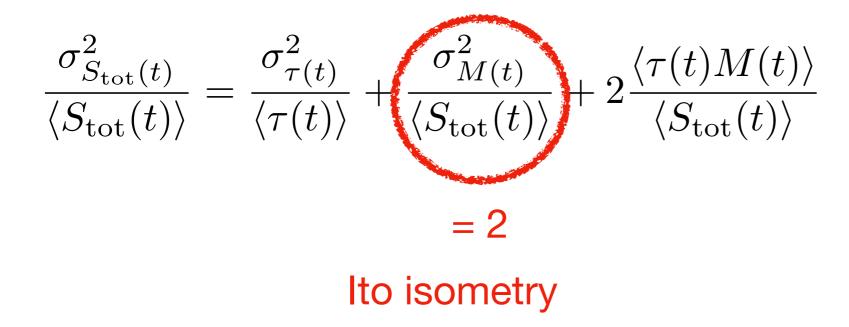
Inequality for the Fano-factor of entropy production



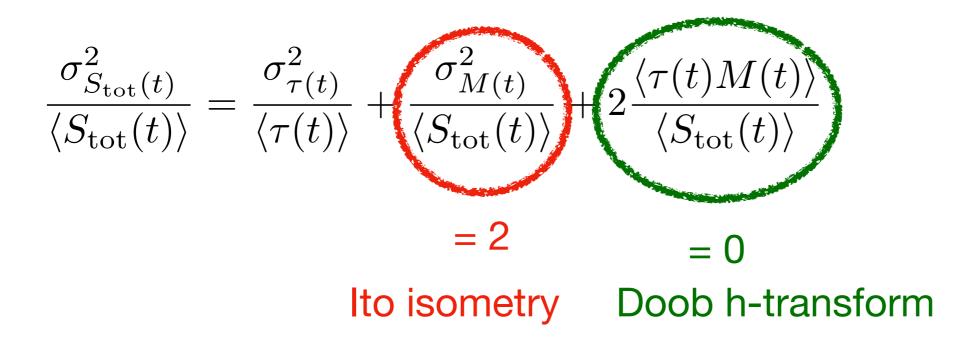
$$S_{\text{tot}}(t) = \tau(t) + M(t) , \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2}\sigma \cdot \xi$$
$$\tau = \int_0^t v_S(X(t'))dt' , \quad M(t) = \int_0^{t'} dt \sqrt{2v_S(X(t'))}\xi_S(t')$$

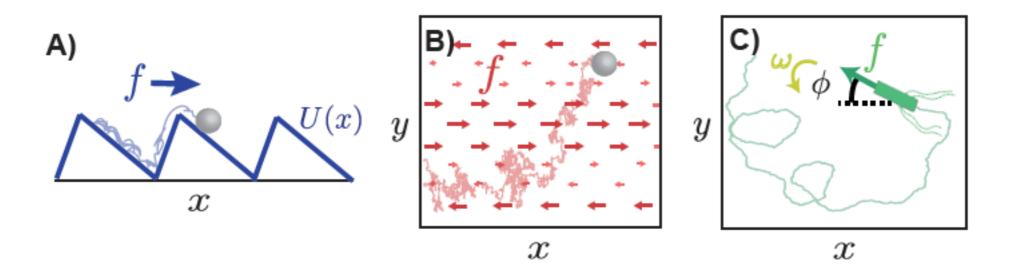
$$\frac{\sigma_{S_{\text{tot}}(t)}^2}{\langle S_{\text{tot}}(t) \rangle} = \frac{\sigma_{\tau(t)}^2}{\langle \tau(t) \rangle} + \frac{\sigma_{M(t)}^2}{\langle S_{\text{tot}}(t) \rangle} + 2\frac{\langle \tau(t)M(t) \rangle}{\langle S_{\text{tot}}(t) \rangle}$$

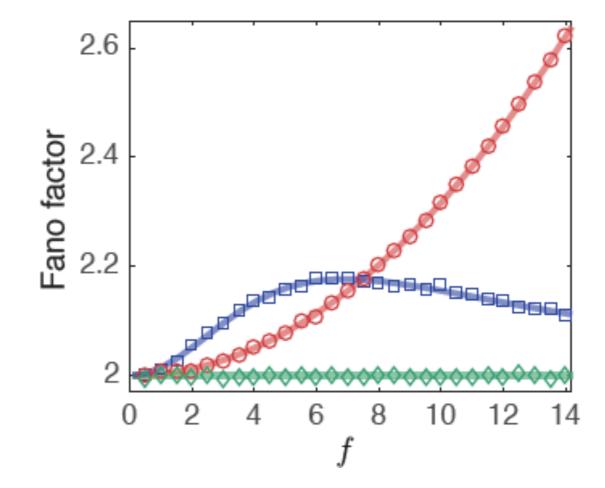
$$S_{\text{tot}}(t) = \tau(t) + M(t) , \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2\sigma} \cdot \xi$$
$$\tau = \int_0^t v_S(X(t'))dt' \quad , \quad M(t) = \int_0^{t'} dt \sqrt{2v_S(X(t'))}\xi_S(t')$$



$$S_{\text{tot}}(t) = \tau(t) + M(t) , \qquad \frac{dX}{dt} = \mu F + \nabla D + \sqrt{2\sigma} \cdot \xi$$
$$\tau = \int_0^t v_S(X(t'))dt' , \quad M(t) = \int_0^{t'} dt \sqrt{2v_S(X(t'))}\xi_S(t')$$







• Thermodynamic laws at stopping times, which may be first-passage times

- Thermodynamic laws at stopping times, which may be first-passage times
- Universal fluctuations properties of entropy production: infimum statistics, splitting probabilities, etc.

- Thermodynamic laws at stopping times, which may be first-passage times
- Universal fluctuations properties of entropy production: infimum statistics, splitting probabilities, etc.

Thank you for your attention!