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Events of negative entropy production must exist

Implications  

Thermodynamic laws for mesoscopic processes

Integral fluctuation relation:  
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Exponential martingale structure  
of entropy production



Martingales

M(t) is a martingale with respect to X(t) if: 

M(t) is a real-valued function on X(0…t)

,      for all  s<t
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Thermodynamic laws at stopping times



Can a gambler make fortune in a fair game by 
quitting at an intelligently chosen moment?
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Can a gambler make fortune in a fair game by 
quitting at an intelligently chosen moment?

No, if the gambler cannot foresee the future, cannot cheat,  
and has access to a finite budget

T is a stopping time

M(t) is uniformly integrable

if M(t) is uniformly integrable martingale and  

R S Lipster and A N Shiryaev, Statistics of random processes: I General theory, 1977  

and T is a stopping time

Doob’s optional stopping theorem
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Second law of thermodynamics at stopping times

Jensen’s Inequality
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Second law of thermodynamics at stopping times

Jensen’s Inequality

For isothermal processes: 



Universal properties of entropy production



Universal properties of entropy production
(for continuous stochastic processes)
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Bounds on negative fluctuations of entropy 
production:  “standard” thermodynamics vs 
martingale theory

U Seifert, Rep. Prog. Phys. (2012 ) IN, E Roldan, S Pigolotti, F Julicher, arXiv (2019)



Symmetry relation in the conditional distributions  
of first-passage times for entropy production
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Symmetry relation in the conditional distributions  
of first-passage times for entropy production

IN, Edgar Roldán, Frank Jülicher, Phys. Rev. X 7, 011019
Meik Dorpinghaus, IN, Edgar Roldan, Frank Julicher, Heinrich Meyer, arXiv
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Continuous 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Processes  
with jumps

???

Continuous 
 processes



Example: overdamped Langevin processes
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System set-up

,

First law of thermodynamics for overdamped 
Langevin process

Ito product

First law of thermodynamics

,
Stratanovich  

product

K Sekimoto, Prog. Theory. Phys. Suppl. 130, 17 (1998)
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Exponential martingale structure of entropy 
production

S. Pigolotti, IN, E. Roldán, and F. Jülicher, Phys. Rev. Lett. 119, 140604 

No drift term —-> martingale

,



Random-time transformation

S. Pigolotti, IN, E. Roldán, and F. Jülicher, Phys. Rev. Lett. 119, 140604 
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Random-time transformation renders certain 
properties of entropy production universal

S. Pigolotti, IN, E. Roldán, and F. Jülicher, Phys. Rev. Lett. 119, 140604 

Fluctuation properties independent of  
the time-scale are universal
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Fano factor inequality for entropy production
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Fano factor inequality for entropy production

,

,

= 2
Ito isometry

= 0 
Doob h-transform



Fano factor inequality for entropy production
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Thank you for your attention! 


