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Plan

I illustrate a novel mathematical tool for the characterization of
martingales in continuous time: the weak time-derivative of
Marinacci, Severino (Finance & Stochastics, 2018).

I compare weak time-differentiability with other existing notions
(infinitesimal generator).

I discuss some fundamental asset pricing equations related to
martingale identification.

I present some measure changes that originate useful martingale
processes for pricing.
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General set-up

Time interval [0,T ].

Filtered probability space (Ω,F , F,P).

U is the space of adapted processes u : [0,T ]→ L1(FT ) that

I are L1-right-continuous in [0,T ),

I are L1-left-continuous at T ,

I have finite
∫ T
0 E[|uτ |]dτ.

Martingales belong to U .
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Weak time-differentiability

Definition

A process u ∈ U is weakly time-differentiable when there exists a process
Du ∈ U such that, for every t ∈ [0,T ],∫ T

t
E [(Du)τ 1At ] ϕ(τ)dτ = −

∫ T

t
E [uτ1At ] ϕ′(τ)dτ

for all At ∈ Ft and ϕ ∈ C 1
c ([t,T ]).

Du is the weak time-derivative of u.

A bridge between variational and stochastic calculus.

Purpose: capture the behaviour of the conditional expectation over
time.
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Martingales via weak time-derivatives

U1 denotes the space of weakly time-differentiable processes u ∈ U .

Proposition

u belongs to U1 and has Du = 0 if and only if u is a martingale.

Proposition

Let u ∈ U1. Then,

Du > 0 if and only if u is a submartingale.

Du 6 0 if and only if u is a supermartingale.
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Properties of weak time-derivatives

Proposition

Consider g ∈ U , m a martingale and

ut =
∫ t

0
gsds +mt ,

Then, Du = g .
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Examples: deterministic drift + martingale

Consider α ∈ R and m a martingale. Then, ut = αt +mt has
Du = α.

E.g. in Black-Scholes (1973) log prices satisfy

log(Xt) = (r − σ2/2)t + σWQ
t ,

where WQ is a Wiener process under the risk-neutral measure Q.
Then, D(logX ) = r − σ2/2 .
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Examples: continuous Itô semimartingales

Consider g ∈ U , h adapted and
∫ T
0 E[h2s ]ds finite. Then, the process

X ∈ U defined by
dXt = gtdt + htdWt

has DX = g .

The weak time-derivative is the drift.

If ut = f (t,Xt) with f regular, then by Itô’s formula

Du = g
∂f

∂x
+

∂f

∂t
+

1

2
h2

∂2f

∂x2
.
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Characterization of weak time-differentiable processes

Theorem

u ∈ U is weakly time-differentiable if and only if it is a special martingale

u = a+m,

with at =
∫ t
0 (Du)sds and m a martingale.

U1 is the space of special semimartingales that feature a (unique)
absolutely continuous finite variation term and a (unique) local
martingale term which is actually a martingale.
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Example: jump-diffusion processes

Consider
dXt

Xt−
= µdt + σdWt + dHt ,

where H is a compound Poisson process: Ht = ∑Nt
k=1 zk , where

I N is a Poisson process independent of W with intensity λ,
I zk are i.i.d., independent of W and N,
I E[zk ] = z ,
I zk > −1.

The compensated Poisson process Ĥt = Ht − λzt is a martingale.
Hence,

dXt

Xt−
= (µ + λz)dt + σdWt + dĤt

has DXt = (µ + λz)Xt−
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Infinitesimal generator

Let X be a Feller process.

The infinitesimal generator A maps any continuous bounded function
f belonging to dom(A) into the function Af such that

Af (Xt) = lim
h→0+

Et [f (Xt+h)]− f (Xt)

h
∀t ∈ [0,T ].

The limit is in the uniform topology over all states ω ∈ Ω and Af is
continuous and bounded.

The weak time-derivative coincides with the infinitesimal generator.
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Extended infinitesimal generator

Let X be a Markov process.

The extended infinitesimal generator of a measurable function f of Xt

is a measurable function g such that g(Xt) is integrable and the
process

zt = f (Xt)− f (X0)−
∫ t

0
g(Xτ)dτ

is a martingale.

The weak time-derivative coincides with
the extended infinitesimal generator.
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No arbitrage pricing

Consider an arbitrage-free market with constant interest rate r ,
several risky securities and a bond.

The value Bt = ert of the bond satisfies

dBt = rBtdt t ∈ [0,T ).

P is the given (physical) measure.

Q is a risk-neutral measure that makes discounted prices
Q-martingales.
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Weak time-derivatives and no arbitrage pricing

Consider the price π of a marketed payoff hT ∈ L1(FT ,Q).

Proposition

Under Q the following conditions are equivalent:

(i) π is a no arbitrage price process;

(ii) D(π/B) = 0;

(iii) Dπ = rπ.

Dπ = rπ generalizes the bond equation to random payoffs.
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The no arbitrage pricing equation

Theorem

Under Q there exists a unique solution π in U1 of{
(Dπ)t = rπt t ∈ [0,T )

πT = hT

given by
πt = e−r (T−t)EQ

t [hT ] .

The proof exploits the martingale property of π/B under Q.
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Example: Black-Scholes model

Under P the bond and the risky asset follow:

dBt = rBtdt, dXt = µXtdt + σXtdW
P
t .

Under Q the two securities share the same drift coefficient r :

dBt = rBtdt, dXt = rXtdt + σXtdW
Q
t .

The no arbitrage pricing equation captures
the drift change due to risk-neutrality.

Federico Severino Weak time-derivatives and pricing 16 / 21



Risk neutrality and discounting

The usefulness of martingales goes beyond discounted prices under Q.

Indeed, different ways of discounting originate different martingales.

E.g., if interest rates are stochastics (and denoted by rt), the previous
bond can be replaced

I by the money market account with
F value 1 at time 0

F value e
∫ T

0
rτdτ at time T

I or by the zero-coupon bond with
F value 1 at time T

F value EQ [e−
∫ T

0
rτdτ ] at time 0.
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The forward measure

The measure Q corresponds to discounting by the money market
account.

Discounting by zero-coupon bonds generates the forward measure F ,
which is still an equivalent martingale measure.

Drifts of prices under different measures may be very different,
although drifts of discounted prices are null.

Suppose that drt = µ(t, rt)dt + σ(t, rt)dW P
t .

E.g. rt follows a Vasicek (1977), or Ornstein-Uhlenbeck, process.
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Example: dynamics of zero-coupon bond prices πt(1T )

By Itô’s formula, the zero-coupon bond price satisfies under P

dπt (1T )

πt (1T )
= µ̃ (t, rt) dt + σ̃ (t, rt) dW

P
t .

Under Q the same price follows

dπt (1T )

πt (1T )
= rt dt + σ̃ (t, rt) dW

Q
t .

Under F the dynamics is

dπt (1T )

πt (1T )
=
(
rt + σ̃2 (t, rt)

)
dt + σ̃ (t, rt) dW

F
t .

See further details and examples in Severino (2019).
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Changes of numéraires and martingales

Martingales under the forward measure are very important: they
identify forward prices.

Forward prices are related to contracts that fix a price at time 0 for
delivering a commodity/payoff at time T .

Differential tools that are able to characterize martingales may be
useful for studying these objects.

Moreover, many changes of numéraires (and the related martingales)
are illustrated in the option pricing literature, in very diverse contexts.
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Conclusions

The weak time-derivative captures the drift of semimartingale
processes and provides a characterization of martingales.

The no arbitrage pricing equation for random payoffs exploits the
martingale property of discounted prices.

Alternative discounting ways (together with suitable measure
changes) deliver different martingales associated to asset prices.

Thank you for your attention!
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