Weak time-derivatives and pricing equations

Federico Severino USI Lugano (Université Laval)

Martingales in Finance and Physics ICTP, Trieste May 24th, 2019

通 ト イヨ ト イヨト

Plan

- I illustrate a novel mathematical tool for the characterization of martingales in continuous time: the *weak time-derivative* of Marinacci, Severino (*Finance & Stochastics*, 2018).
- I compare weak time-differentiability with other existing notions (infinitesimal generator).
- I discuss some fundamental asset pricing equations related to martingale identification.
- I present some measure changes that originate useful martingale processes for pricing.

General set-up

- Time interval [0, T].
- Filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$.
- $\mathcal U$ is the space of adapted processes $u: [0, T] \to L^1(\mathcal F_T)$ that
 - are L^1 -right-continuous in [0, T),
 - are L¹-left-continuous at T,
 - have finite $\int_0^T \mathbb{E}[|u_\tau|] d\tau$.
- Martingales belong to \mathcal{U} .

Weak time-differentiability

Definition

A process $u \in U$ is *weakly time-differentiable* when there exists a process $\mathcal{D}u \in \mathcal{U}$ such that, for every $t \in [0, T]$,

$$\int_{t}^{T} \mathbb{E}\left[\left(\mathcal{D}u\right)_{\tau} \mathbf{1}_{A_{t}}\right] \varphi(\tau) d\tau = -\int_{t}^{T} \mathbb{E}\left[u_{\tau} \mathbf{1}_{A_{t}}\right] \varphi'(\tau) d\tau$$

for all $A_t \in \mathcal{F}_t$ and $\varphi \in C_c^1([t, T])$.

 $\mathcal{D}u$ is the *weak time-derivative* of u.

- A bridge between variational and stochastic calculus.
- Purpose: capture the behaviour of the conditional expectation over time.

Martingales via weak time-derivatives

• \mathcal{U}^1 denotes the space of weakly time-differentiable processes $u \in \mathcal{U}$.

Proposition

u belongs to \mathcal{U}^1 and has $\mathcal{D}u = 0$ if and only if *u* is a martingale.

Proposition

Let $u \in \mathcal{U}^1$. Then,

- $\mathcal{D}u \ge 0$ if and only if u is a submartingale.
- $\mathcal{D}u \leq 0$ if and only if u is a supermartingale.

Properties of weak time-derivatives

Proposition

Consider $g \in \mathcal{U}$, m a martingale and

$$u_t = \int_0^t g_s ds + m_t,$$

Then, $\mathcal{D}u = g$.

- 4 目 ト - 4 日 ト - 4 日 ト

Examples: deterministic drift + martingale

- Consider $\alpha \in \mathbb{R}$ and *m* a martingale. Then, $u_t = \alpha t + m_t$ has $\mathcal{D}u = \alpha$.
- E.g. in Black-Scholes (1973) log prices satisfy

$$\log(X_t) = (r - \sigma^2/2)t + \sigma W_t^Q,$$

where W^Q is a Wiener process under the risk-neutral measure Q. Then, $\mathcal{D}(\log X)=r-\sigma^2/2$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Examples: continuous Itô semimartingales

• Consider $g \in U$, h adapted and $\int_0^T \mathbb{E}[h_s^2] ds$ finite. Then, the process $X \in U$ defined by

$$dX_t = g_t dt + h_t dW_t$$

has $\mathcal{D}X = g$.

The weak time-derivative is the drift.

• If $u_t = f(t, X_t)$ with f regular, then by Itô's formula

$$\mathcal{D}u = g\frac{\partial f}{\partial x} + \frac{\partial f}{\partial t} + \frac{1}{2}h^2\frac{\partial^2 f}{\partial x^2}.$$

Characterization of weak time-differentiable processes

Theorem

 $u \in \mathcal{U}$ is weakly time-differentiable if and only if it is a special martingale

u = a + m,

with $a_t = \int_0^t (\mathcal{D}u)_s ds$ and *m* a martingale.

 U¹ is the space of special semimartingales that feature a (unique) absolutely continuous finite variation term and a (unique) local martingale term which is actually a martingale.

Example: jump-diffusion processes

Consider

$$\frac{dX_t}{X_{t^-}} = \mu dt + \sigma dW_t + dH_t,$$

where *H* is a compound Poisson process: $H_t = \sum_{k=1}^{N_t} z_k$, where

- *N* is a Poisson process independent of *W* with intensity λ ,
- z_k are i.i.d., independent of W and N,

•
$$\mathbb{E}[z_k] = z$$
,

- $z_k \ge -1$.
- The *compensated* Poisson process $\hat{H}_t = H_t \lambda zt$ is a martingale. Hence,

$$\frac{dX_t}{X_{t^-}} = (\mu + \lambda z)dt + \sigma dW_t + d\hat{H}_t$$

has $\mathcal{D}X_t = (\mu + \lambda z)X_{t^-}$

・ロト ・聞 ト ・ ヨト ・ ヨト …

Infinitesimal generator

- Let X be a *Feller* process.
- The infinitesimal generator \mathcal{A} maps any continuous bounded function f belonging to dom(\mathcal{A}) into the function $\mathcal{A}f$ such that

$$\mathcal{A}f(X_t) = \lim_{h \to 0^+} \frac{\mathbb{E}_t \left[f(X_{t+h}) \right] - f(X_t)}{h} \qquad \forall t \in [0, T].$$

The limit is in the uniform topology over all states $\omega \in \Omega$ and $\mathcal{A}f$ is continuous and bounded.

The weak time-derivative coincides with the infinitesimal generator.

Extended infinitesimal generator

- Let X be a Markov process.
- The extended infinitesimal generator of a measurable function f of X_t is a measurable function g such that g(X_t) is integrable and the process

$$z_t = f(X_t) - f(X_0) - \int_0^t g(X_\tau) d\tau$$

is a martingale.

The weak time-derivative coincides with the extended infinitesimal generator.

No arbitrage pricing

- Consider an arbitrage-free market with constant interest rate *r*, several risky securities and a bond.
- The value $B_t = e^{rt}$ of the bond satisfies

$$dB_t = rB_t dt$$
 $t \in [0, T).$

- *P* is the given (physical) measure.
- *Q* is a risk-neutral measure that makes discounted prices *Q*-martingales.

Weak time-derivatives and no arbitrage pricing

• Consider the price π of a marketed payoff $h_T \in L^1(\mathcal{F}_T, Q)$.



• $D\pi = r\pi$ generalizes the bond equation to random payoffs.

The no arbitrage pricing equation

Theorem

Under Q there exists a unique solution π in \mathcal{U}^1 of

$$\begin{cases} (\mathcal{D}\pi)_t = r\pi_t & t \in [0, T) \\ \pi_T = h_T \end{cases}$$

given by

$$\pi_t = e^{-r(T-t)} \mathbb{E}_t^Q \left[h_T \right].$$

• The proof exploits the martingale property of π/B under Q.

Example: Black-Scholes model

• Under *P* the bond and the risky asset follow:

$$dB_t = \mathbf{r}B_t dt, \qquad dX_t = \mu X_t dt + \sigma X_t dW_t^P.$$

• Under Q the two securities share the same drift coefficient r:

$$dB_t = \mathbf{r}B_t dt, \qquad dX_t = \mathbf{r}X_t dt + \sigma X_t dW_t^Q.$$

The no arbitrage pricing equation captures the drift change due to risk-neutrality.

Risk neutrality and discounting

- The usefulness of martingales goes beyond discounted prices under Q.
- Indeed, different ways of discounting originate different martingales.
- E.g., if interest rates are stochastics (and denoted by r_t), the previous bond can be replaced
 - by the money market account with
 - ★ value 1 at time 0
 - ***** value $e^{\int_0^T r_\tau d\tau}$ at time T
 - or by the zero-coupon bond with
 - ★ value 1 at time T
 - * value $\mathbb{E}^{Q}[e^{-\int_{0}^{T}r_{\tau}d\tau}]$ at time 0.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The forward measure

- The measure Q corresponds to discounting by the money market account.
- Discounting by zero-coupon bonds generates the *forward measure F*, which is still an equivalent martingale measure.
- Drifts of prices under different measures may be very different, although drifts of *discounted prices* are null.
- Suppose that $dr_t = \mu(t, r_t)dt + \sigma(t, r_t)dW_t^P$. E.g. r_t follows a Vasicek (1977), or Ornstein-Uhlenbeck, process.

Example: dynamics of zero-coupon bond prices $\pi_t(1_T)$

• By Itô's formula, the zero-coupon bond price satisfies under P

$$\frac{d\pi_{t}(1_{T})}{\pi_{t}(1_{T})} = \widetilde{\mu}(t, r_{t}) dt + \widetilde{\sigma}(t, r_{t}) dW_{t}^{P}.$$

• Under Q the same price follows

$$\frac{d\pi_t\left(1_{\mathcal{T}}\right)}{\pi_t\left(1_{\mathcal{T}}\right)} = \mathbf{r}_t \ dt + \widetilde{\sigma}\left(t, r_t\right) dW_t^Q.$$

• Under F the dynamics is

$$\frac{d\pi_{t}\left(1_{T}\right)}{\pi_{t}\left(1_{T}\right)}=\left(r_{t}+\widetilde{\sigma}^{2}\left(t,r_{t}\right)\right)dt+\widetilde{\sigma}\left(t,r_{t}\right)dW_{t}^{F}.$$

See further details and examples in Severino (2019).

Changes of numéraires and martingales

- Martingales under the forward measure are very important: they identify *forward prices*.
- Forward prices are related to contracts that fix a price at time 0 for delivering a commodity/payoff at time *T*.
- Differential tools that are able to characterize martingales may be useful for studying these objects.
- Moreover, many changes of numéraires (and the related martingales) are illustrated in the option pricing literature, in very diverse contexts.

通 ト イヨ ト イヨト

Conclusions

- The weak time-derivative captures the drift of semimartingale processes and provides a characterization of martingales.
- The no arbitrage pricing equation for random payoffs exploits the martingale property of discounted prices.
- Alternative discounting ways (together with suitable measure changes) deliver different martingales associated to asset prices.

Thank you for your attention!