Stochastic thermodynamics and martingale theory for a model physical system of particles

Shamik Gupta

Ramakrishna Mission Vivekananda University, Kolkata, INDIA Quantitative Life Sciences, ICTP, Trieste, ITALY (Regular Associate) Collaborators:

- Raphäel Chetrite (University of Nice, France)
- Thierry Dauxois (ENS Lyon, France)
- Izaak Neri (King's College, UK)
- Simone Pigolotti (OIST, Japan)
- Édgar Roldán (ICTP, Italy)
- Stefano Ruffo (SISSA, Italy)

References:

 J. Stat. Phys. 143, 543 (2011); J. Stat. Mech.: Theory Exp. P11003 (2013); EPL 113, 60008 (2016); EPL 124, 60006 (2018)

Model

- N interacting point particles on a circle: Confg. C ≡ {θ_i}
- Long-ranged interparticle potential: $\mathcal{V}(\mathcal{C}) \equiv \frac{1}{2N} \sum_{i,j=1}^{N} [1 - \cos(\theta_i - \theta_j)]$
- Potential due to external field *h*: $\mathcal{V}_{\text{ext}}(\mathcal{C}; h) \equiv -h \sum_{i=1}^{N} \cos \theta_i$
- Net potential $V(\mathcal{C}; h) = \mathcal{V} + \mathcal{V}_{ext}$

Model

- *N* interacting point particles on a circle: Confg. $C \equiv \{\theta_i\}$
- Long-ranged interparticle potential: $\mathcal{V}(\mathcal{C}) \equiv \frac{1}{2N} \sum_{i,j=1}^{N} [1 - \cos(\theta_i - \theta_j)]$
- Potential due to external field *h*: $\mathcal{V}_{\text{ext}}(\mathcal{C}; h) \equiv -h \sum_{i=1}^{N} \cos \theta_i$
- Net potential $V(\mathcal{C}; h) = \mathcal{V} + \mathcal{V}_{ext}$
- Dynamics: Stochastic Markovian at temperature $T = 1/\beta$
 - Every particle in time dt attempts to hop by amount 0 < φ < 2π:

 θ_i → θ_i + φ with prob. p
 θ_i → θ_i φ with prob. 1 p

 New position accepted with
 - probability $g(\Delta V(C))dt$, where $g(z) = (1/2)[1 - \tanh(\beta z/2)]$
 - 3 N attempted hops $\equiv 1$ time step

(Gupta, Dauxois, Ruffo (2011)

- Fokker-Planck limit $\phi \ll 1$
- $N \to \infty$: motion of a single particle in a self-consistent mean field

$$rac{\mathrm{d} heta}{\mathrm{d}t} = (2 p - 1) \phi - rac{\phi^2 eta}{2} rac{\partial \langle v
angle [
ho](heta;h)}{\partial heta} + \phi \eta(t)$$

Gaussian, white noise: $\overline{\eta(t)} = 0$, $\overline{\eta(t)\eta(t')} = \delta(t - t')$

• Time evolution of the single-particle distribution

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial \theta} \left[\left((2p-1)\phi - \frac{\phi^2 \beta}{2} \frac{\partial \langle v \rangle [\rho](\theta;h)}{\partial \theta} \right) \rho \right] + \frac{\phi^2}{2} \frac{\partial^2 \rho}{\partial \theta^2}$$

• $\langle v \rangle [\rho](\theta; h) \equiv -m_x[\rho] \cos \theta - m_y[\rho] \sin \theta - h \cos \theta$ is the mean-field potential

- Fokker-Planck limit $\phi \ll 1$
- $N \to \infty$: motion of a single particle in a self-consistent mean field

$$rac{\mathrm{d} heta}{\mathrm{d}t} = (2 p - 1) \phi - rac{\phi^2 eta}{2} rac{\partial \langle v
angle [
ho](heta;h)}{\partial heta} + \phi \eta(t)$$

Gaussian, white noise: $\overline{\eta(t)} = 0$, $\overline{\eta(t)\eta(t')} = \delta(t - t')$

• Time evolution of the single-particle distribution

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial \theta} \left[\left((2p-1)\phi - \frac{\phi^2 \beta}{2} \frac{\partial \langle v \rangle [\rho](\theta;h)}{\partial \theta} \right) \rho \right] + \frac{\phi^2}{2} \frac{\partial^2 \rho}{\partial \theta^2}$$

• $\langle v \rangle [\rho](\theta; h) \equiv -m_x[\rho] \cos \theta - m_y[\rho] \sin \theta - h \cos \theta$ is the mean-field potential

- Fokker-Planck limit $\phi \ll 1$
- $N \to \infty$: motion of a single particle in a self-consistent mean field

$$rac{\mathrm{d} heta}{\mathrm{d}t} = (2 p - 1) \phi - rac{\phi^2 eta}{2} rac{\partial \langle \mathbf{v}
angle [
ho](heta;h)}{\partial heta} + \phi \eta(t)$$

Gaussian, white noise: $\overline{\eta(t)} = 0$, $\overline{\eta(t)\eta(t')} = \delta(t-t')$

• Time evolution of the single-particle distribution

$$rac{\partial
ho}{\partial t} = -rac{\partial}{\partial heta} \Big[\Big((2p-1)\phi - rac{\phi^2 eta}{2} rac{\partial \langle v
angle [
ho](heta;h)}{\partial heta} \Big)
ho \Big] + rac{\phi^2}{2} rac{\partial^2
ho}{\partial heta^2}$$

- $\langle v \rangle [\rho](\theta; h) \equiv -m_x[\rho] \cos \theta m_y[\rho] \sin \theta h \cos \theta$ is the mean-field potential
- Self-consistent mean fields $(m_x[\rho], m_y[\rho]) \equiv \int d\theta \ (\cos\theta, \sin\theta)\rho(\theta, t)$
- Exact stationary state

$$ho_{
m ss}(heta; extsf{h}) =
ho_{
m ss}(0; heta) e^{-g(heta)} \left[1 + (e^{-rac{4\pi(2
ho-1)}{\phi}} - 1) rac{\int_0^{ heta} {
m d} heta' e^{g(heta')}}{\int_0^{2\pi} {
m d} heta' e^{g(heta')}}
ight];$$

 $g(heta) \equiv -2(2p-1) heta/\phi + eta\langle \mathbf{v}
angle [
ho_{
m ss}](heta; \mathbf{h});$

 $ho_{
m ss}(0;h)$ fixed by normalization $\int_0^{2\pi} {
m d} heta ~
ho_{
m ss}(heta;h) = 1$

- Fokker-Planck limit $\phi \ll 1$
- Exact stationary state

$$\begin{split} \rho_{\rm ss}(\theta;h) &= \rho_{\rm ss}(0;h) e^{-g(\theta)} \left[1 + \left(e^{-\frac{4\pi(2p-1)}{\phi}} - 1 \right) \frac{\int_0^\theta d\theta' e^{g(\theta')}}{\int_0^{2\pi} d\theta' e^{g(\theta')}} \right]; \\ g(\theta) &\equiv -2(2p-1)\theta/\phi + \beta \langle \mathbf{v} \rangle [\rho_{\rm ss}](\theta;h) \end{split}$$

- Fokker-Planck limit $\phi \ll 1$
- Exact stationary state

$$\begin{split} \rho_{\rm ss}(\theta;h) &= \rho_{\rm ss}(0;h) e^{-g(\theta)} \left[1 + \left(e^{-\frac{4\pi(2p-1)}{\phi}} - 1 \right) \frac{\int_0^\theta d\theta' e^{g(\theta')}}{\int_0^{2\pi} d\theta' e^{g(\theta')}} \right]; \\ g(\theta) &\equiv -2(2p-1)\theta/\phi + \beta \langle \mathbf{v} \rangle [\rho_{\rm ss}](\theta;h) \end{split}$$

- Fokker-Planck limit $\phi \ll 1$
- Exact stationary state

$$\rho_{\rm ss}(\theta;h) = \rho_{\rm ss}(0;h)e^{-g(\theta)} \left[1 + \left(e^{-\frac{4\pi(2\rho-1)}{\phi}} - 1\right)\frac{\int_0^\theta \mathsf{d}\theta' e^{g(\theta')}}{\int_0^{2\pi} \mathsf{d}\theta' e^{g(\theta')}}\right];$$

 $g(heta)\equiv -2(2p-1) heta/\phi+eta\langle v
angle[
ho_{
m ss}](heta;h)$

p = 1/2 ⇒ Equilibrium stationary state ρ_{ss} ∝ exp(−β⟨v⟩)

 p ≠ 1/2 ⇒ Nonequilibrium stationary state

- Fokker-Planck limit $\phi \ll 1$
- Exact stationary state

$$\rho_{\rm ss}(\theta;h) = \rho_{\rm ss}(0;h)e^{-g(\theta)} \left[1 + \left(e^{-\frac{4\pi(2\rho-1)}{\phi}} - 1\right)\frac{\int_0^\theta d\theta' e^{g(\theta')}}{\int_0^{2\pi} d\theta' e^{g(\theta')}}\right];$$

 $g(heta) \equiv -2(2p-1) heta/\phi + eta\langle v
angle[
ho_{
m ss}](heta;h)$

p = 1/2 ⇒ Equilibrium stationary state ρ_{ss} ∝ exp(−β⟨v⟩)

 p ≠ 1/2 ⇒ Nonequilibrium stationary state

• Numerical check: Measure $m_{x,y}$ in simulations

- Start in equilibrium at $h = h_0$
- Change field in time over duration $\tau \ll \tau_{eq}$; at the α -th time step: $h_{\alpha} = h_0 + \Delta h \alpha / \tau$
- $\tau \ll \tau_{\rm eq} \Rightarrow$ system taken arbitrarily far from equilibrium

- Start in equilibrium at $h = h_0$
- Change field in time over duration $\tau \ll \tau_{eq}$; at the α -th time step: $h_{\alpha} = h_0 + \Delta h \alpha / \tau$
- $\tau \ll \tau_{\rm eq} \Rightarrow$ system taken arbitrarily far from equilibrium

- Start in equilibrium at $h = h_0$
- Change field in time over duration $\tau \ll \tau_{eq}$; at the α -th time step: $h_{\alpha} = h_0 + \Delta h \alpha / \tau$
- $\tau \ll \tau_{\rm eq} \Rightarrow$ system taken arbitrarily far from equilibrium
- Work done by external field:

$$W_{
m F}\equiv\int_{0}^{ au}rac{\partial V}{\partial h}rac{{
m d}h}{{
m d}t}\,{
m d}t=-rac{1}{ au}\sum_{lpha=1}^{ au}\sum_{i=1}^{ extsf{N}}\cos heta_{i}^{(lpha)}$$

- Start in equilibrium at $h = h_0$
- Change field in time over duration $\tau \ll \tau_{eq}$; at the α -th time step: $h_{\alpha} = h_0 + \Delta h \alpha / \tau$
- $\tau \ll \tau_{\rm eq} \Rightarrow$ system taken arbitrarily far from equilibrium
- Work done by external field:

$$W_{\rm F} \equiv \int_0^{ au} rac{\partial V}{\partial h} rac{\mathrm{d}h}{\mathrm{d}t} \, \mathrm{d}t = -rac{1}{ au} \sum_{lpha=1}^{ au} \sum_{i=1}^{N} \cos heta_i^{(lpha)}$$

Reverse protocol:

system in equilibrium at h_{τ} , then change h as $h_{\alpha} = h_{\tau} - \Delta h \alpha / \tau$;

$$W_{\rm R} = \frac{1}{\tau} \sum_{\alpha=1}^{\tau} \sum_{i=1}^{N} \cos \theta_i^{(\alpha)}$$

- Start in equilibrium at $h = h_0$
- Change field in time over duration $\tau \ll \tau_{eq}$; at the α -th time step: $h_{\alpha} = h_0 + \Delta h \alpha / \tau$
- $\tau \ll \tau_{\rm eq} \Rightarrow$ system taken arbitrarily far from equilibrium
- Work done by external field:

$$W_{\rm F} \equiv \int_0^{ au} rac{\partial V}{\partial h} rac{\mathrm{d}h}{\mathrm{d}t} \, \mathrm{d}t = -rac{1}{ au} \sum_{lpha=1}^{ au} \sum_{i=1}^{N} \cos heta_i^{(lpha)}$$

Reverse protocol:

system in equilibrium at h_{τ} , then change h as $h_{\alpha} = h_{\tau} - \Delta h \alpha / \tau$;

$$W_{\rm R} = \frac{1}{\tau} \sum_{\alpha=1}^{\tau} \sum_{i=1}^{N} \cos \theta_i^{(\alpha)}$$

- Start in equilibrium at $h = h_0$
- Change field in time over duration $\tau \ll \tau_{eq}$; at the α -th time step: $h_{\alpha} = h_0 + \Delta h \alpha / \tau$
- $\tau \ll \tau_{\rm eq} \Rightarrow$ system taken arbitrarily far from equilibrium
- Work done by external field:

$$W_{\rm F} \equiv \int_0^{ au} rac{\partial V}{\partial h} rac{\mathrm{d}h}{\mathrm{d}t} \, \mathrm{d}t = -rac{1}{ au} \sum_{lpha=1}^{ au} \sum_{i=1}^{N} \cos heta_i^{(lpha)}$$

Reverse protocol:

system in equilibrium at h_{τ} , then change h as $h_{\alpha} = h_{\tau} - \Delta h \alpha / \tau$;

$$W_{\rm R} = \frac{1}{\tau} \sum_{\alpha=1}^{\tau} \sum_{i=1}^{N} \cos \theta_i^{(\alpha)}$$

- 1 $\{\theta_i^{(\alpha)}\}_{\rm F}$ and $\{\theta_i^{(\alpha)}\}_{\rm R}$ different due to initial conditions and stochastic evolution
 - ② $W_{
 m F} \propto \textit{N}$ and $W_{
 m R} \propto \textit{N}$
 - 3 Different distributions for work per particle: $P_{\rm F}(W_{\rm F}/N)$ and $P_{\rm R}(W_{\rm R}/N)$

• Crooks fluctuation theorem: $\frac{P_{\rm F}(W_{\rm F})}{P_{\rm R}(-W_{\rm F})} = e^{\beta(W_{\rm F}-\Delta \mathcal{F})}$

• Crooks fluctuation theorem: $\frac{P_{\rm F}(W_{\rm F})}{P_{\rm R}(-W_{\rm F})} = e^{\beta(W_{\rm F}-\Delta \mathcal{F})}$

- Crooks fluctuation theorem: $\frac{P_{\rm F}(W_{\rm F})}{P_{\rm F}(-W_{\rm F})} = e^{\beta(W_{\rm F} \Delta \mathcal{F})}$
 - 1 Implies Jarzynski equality $\langle \exp(-\beta(W_{\rm F} \Delta \mathcal{F})) \rangle = 1$
 - 2 Implies that $P_{\rm F}$ and $P_{\rm R}$ intersect at $W_{\rm F} = \Delta \mathcal{F}$

- N = 50, 100, 200, 300
 - Crooks fluctuation theorem: $\frac{P_{\rm F}(W_{\rm F})}{P_{\rm R}(-W_{\rm F})} = e^{\beta(W_{\rm F}-\Delta \mathcal{F})}$
 - 1 Implies Jarzynski equality $\langle \exp(-\beta(W_{\rm F} \Delta F)) \rangle = 1$
 - 2 Implies that $P_{\rm F}$ and $P_{\rm R}$ intersect at $W_{\rm F} = \Delta \mathcal{F}$
 - In our case, intersection at Δ*F*/*N*, the free-energy change per particle; can be computed from ρ_{eq}(θ; h)

- $N=50,\,100,\,200,\,300$
 - Crooks fluctuation theorem: $\frac{P_{\rm F}(W_{\rm F})}{P_{\rm R}(-W_{\rm F})} = e^{\beta(W_{\rm F}-\Delta \mathcal{F})}$
 - 1 Implies Jarzynski equality $\langle \exp(-\beta(W_{\rm F} \Delta F)) \rangle = 1$
 - 2 Implies that $P_{\rm F}$ and $P_{\rm R}$ intersect at $W_{\rm F} = \Delta \mathcal{F}$
 - In our case, intersection at Δ*F*/*N*, the free-energy change per particle; can be computed from ρ_{eq}(θ; h)
 - Perfect match underlines the effective single-particle nature of the N-particle dynamics for large N in the Fokker-Planck limit $\phi \ll 1$ (Gupta, Dauxois, Ruffo (2016))

• $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

$$Y \equiv \int_0^{\tau} \mathrm{d}t \; \frac{\mathrm{d}h(t)}{\mathrm{d}t} \frac{\partial \Phi}{\partial h}(\mathcal{C}(t); h(t)); \quad \Phi(\mathcal{C}; h) \equiv -\ln \rho_{\mathrm{ss}}(\mathcal{C}; h)$$

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

$$Y \equiv \int_0^\tau dt \; \frac{dh(t)}{dt} \frac{\partial \Phi}{\partial h}(\mathcal{C}(t); h(t)); \quad \Phi(\mathcal{C}; h) \equiv -\ln \rho_{\rm ss}(\mathcal{C}; h)$$

• Generalizing Jarzynski: $\langle \exp(-Y) \rangle = 1$

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

$$Y \equiv \int_0^\tau dt \; \frac{dh(t)}{dt} \frac{\partial \Phi}{\partial h}(\mathcal{C}(t); h(t)); \quad \Phi(\mathcal{C}; h) \equiv -\ln \rho_{\rm ss}(\mathcal{C}; h)$$

• Generalizing Jarzynski: $\langle \exp(-Y) \rangle = 1$

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

$$Y \equiv \int_0^\tau dt \; \frac{dh(t)}{dt} \frac{\partial \Phi}{\partial h}(\mathcal{C}(t); h(t)); \quad \Phi(\mathcal{C}; h) \equiv -\ln \rho_{\rm ss}(\mathcal{C}; h)$$

- Generalizing Jarzynski: $\langle \exp(-Y) \rangle = 1$
 - In equilibrium,

 $\rho_{\rm ss}(\mathcal{C}; h) = \exp\left[-\beta(V(\mathcal{C}; h) - \mathcal{F}(h))\right]$ gives $\Phi(\mathcal{C}; h) = \beta(V(\mathcal{C}; h) - \mathcal{F}(h))$ 2 $Y = \int_0^{\tau} \mathrm{d}t \, \frac{\mathrm{d}h}{\mathrm{d}t} \left(\beta \frac{\partial V(\mathcal{C}; h)}{\partial h} - \beta \frac{\partial \mathcal{F}(h)}{\partial h}\right) = \beta(W - \Delta \mathcal{F})$

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

$$Y \equiv \int_0^\tau dt \; \frac{dh(t)}{dt} \frac{\partial \Phi}{\partial h}(\mathcal{C}(t); h(t)); \quad \Phi(\mathcal{C}; h) \equiv -\ln \rho_{\rm ss}(\mathcal{C}; h)$$

- Generalizing Jarzynski: $\langle \exp(-Y) \rangle = 1$
 - In equilibrium,

 $\rho_{\rm ss}(\mathcal{C}; h) = \exp\left[-\beta(V(\mathcal{C}; h) - \mathcal{F}(h))\right]$ gives $\Phi(\mathcal{C}; h) = \beta(V(\mathcal{C}; h) - \mathcal{F}(h))$

2 $Y = \int_0^\tau \mathrm{d}t \, \frac{\mathrm{d}h}{\mathrm{d}t} \left(\beta \frac{\partial V(\mathcal{C};h)}{\partial h} - \beta \frac{\partial \mathcal{F}(h)}{\partial h} \right) = \beta (W - \Delta \mathcal{F})$

• $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

 $Y \equiv \int_0^{\tau} \mathrm{d}t \; \frac{\mathrm{d}h(t)}{\mathrm{d}t} \frac{\partial \Phi}{\partial h}(\theta(t); h(t)); \; \Phi(\theta; h) \equiv -\ln \rho_{\mathrm{ss}}(\theta; h)$

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

 $Y \equiv \int_0^{\tau} \mathrm{d}t \; \frac{\mathrm{d}h(t)}{\mathrm{d}t} \frac{\partial \Phi}{\partial h}(\theta(t); h(t)); \; \Phi(\theta; h) \equiv -\ln \rho_{\mathrm{ss}}(\theta; h)$

- Generalizing Jarzynski: $\langle \exp(-Y) \rangle = 1$
 - $\begin{aligned} \bullet & \text{ In our case,} \\ Y_i &\approx \sum_{\alpha=1}^{\tau} \ln \left(\frac{\rho_{\text{SS}}(\theta_i^{(\alpha)}; h_{\alpha-1})}{\rho_{\text{SS}}(\theta_i^{(\alpha)}; h_{\alpha})} \right) \\ \bullet & p = 0.55, N = 500, \phi = 0.1, h_0 = \\ 1.0, \Delta h = 0.15, \tau = 15 \end{aligned}$

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

 $Y \equiv \int_0^{\tau} \mathrm{d}t \; \frac{\mathrm{d}h(t)}{\mathrm{d}t} \frac{\partial \Phi}{\partial h}(\theta(t); h(t)); \; \Phi(\theta; h) \equiv -\ln \rho_{\mathrm{ss}}(\theta; h)$

- Generalizing Jarzynski: $\langle \exp(-Y) \rangle = 1$
 - $\begin{aligned} \bullet & \text{ In our case,} \\ Y_i &\approx \sum_{\alpha=1}^{\tau} \ln \left(\frac{\rho_{\text{SS}}(\theta_i^{(\alpha)}; h_{\alpha-1})}{\rho_{\text{SS}}(\theta_i^{(\alpha)}; h_{\alpha})} \right) \\ \bullet & p = 0.55, N = 500, \phi = 0.1, h_0 = \\ 1.0, \Delta h = 0.15, \tau = 15 \end{aligned}$

- $p \neq 1/2$ in our model; Start with NESS at $h = h_0$, change field over time τ as $h_{\alpha} = h_0 + \Delta h \alpha / \tau$.
- Hatano-Sasa:

 $Y \equiv \int_0^{\tau} \mathrm{d}t \; rac{\mathrm{d}h(t)}{\mathrm{d}t} rac{\partial \Phi}{\partial h}(\theta(t); h(t)); \; \Phi(\theta; h) \equiv -\ln
ho_\mathrm{ss}(\theta; h)$

- $\begin{aligned} \bullet \quad & \text{In our case,} \\ Y_i \approx \sum_{\alpha=1}^{\tau} \ln \left(\frac{\rho_{\text{SS}}(\theta_i^{(\alpha)}; h_{\alpha-1})}{\rho_{\text{SS}}(\theta_i^{(\alpha)}; h_{\alpha})} \right) \\ \bullet \quad & p = 0.55, N = 500, \phi = 0.1, h_0 = \\ 1.0, \Delta h = 0.15, \tau = 15 \end{aligned}$
- Combined use of *N*-particle dynamics and exact single-particle stationary state distribution
- Results further highlight the effective mean-field nature of the *N*-particle dynamics for large *N*.

(Gupta, Dauxois, Ruffo (2016))

• Motion of a particle in a mean-field:

 $\frac{\mathrm{d}\theta}{\mathrm{d}t} = F(\theta;h) + \eta(t)$ $F(\theta;h) \equiv (2p-1)\phi - \frac{\phi^2\beta}{2} \frac{\partial\langle v\rangle[\rho](\theta;h)}{\partial\theta}$ Gaussian, white noise: $\overline{\eta(t)} = 0, \ \overline{\eta(t)\eta(t')} = 2D\delta(t-t'); \ D = \frac{\phi^2}{2}$

• Motion of a particle in a mean-field:

 $\frac{d\theta}{dt} = F(\theta; h) + \eta(t)$ $F(\theta; h) \equiv (2p - 1)\phi - \frac{\phi^2 \beta}{2} \frac{\partial \langle v \rangle [\rho](\theta; h)}{\partial \theta}$ Gaussian, white noise: $\overline{\eta(t)} = 0$, $\overline{\eta(t)\eta(t')} = 2D\delta(t - t')$; $D = \frac{\phi^2}{2}$ If *h* were time independent \Rightarrow stationary state $\rho_{ss}(\theta; h)$; Correspondingly a current in the phase space:

$$j_{\rm ss}(\theta) = \underbrace{F(\theta; h)\rho_{\rm ss}(\theta; h)}_{\rm Drift} - \underbrace{D\frac{\partial\rho_{\rm ss}(\theta; h)}{\partial\theta}}_{\rm Diffusion}$$
Current identically zero if the stationary state is in equilibrium $(\rho = 1/2)$

• Motion of a particle in a mean-field:

 $\frac{d\theta}{dt} = F(\theta; h) + \eta(t)$ $F(\theta; h) \equiv (2p - 1)\phi - \frac{\phi^2 \beta}{2} \frac{\partial \langle v \rangle [\rho](\theta; h)}{\partial \theta}$ Gaussian, white noise: $\overline{\eta(t)} = 0, \ \overline{\eta(t)\eta(t')} = 2D\delta(t - t'); \ D = \frac{\phi^2}{2}$ • If *h* were time independent \Rightarrow stationary state $\rho_{ss}(\theta; h);$ Correspondingly a current in the phase space:

$$j_{\rm ss}(\theta) = \underbrace{F(\theta; h)\rho_{\rm ss}(\theta; h)}_{\rm Drift} - \underbrace{D\frac{\partial\rho_{\rm ss}(\theta; h)}{\partial\theta}}_{\rm Diffusion}$$

Current identically zero if the stationary state is in equilibrium
$$(p = 1/2)$$

 $\bullet~$ Current \Rightarrow a velocity and hence a "Force" in the phase space

 $f(\theta; h) \equiv j_{\rm ss}(\theta) / \rho_{\rm ss}(\theta; h)$

• Motion of a particle in a mean-field:

 $\begin{aligned} \frac{d\theta}{dt} &= F(\theta; h) + \eta(t) \\ F(\theta; h) &\equiv (2p-1)\phi - \frac{\phi^2 \beta}{2} \frac{\partial \langle v \rangle [\rho](\theta; h)}{\partial \theta} \\ \text{Gaussian, white noise: } \overline{\eta(t)} &= 0, \ \overline{\eta(t)\eta(t')} = 2D\delta(t-t'); \ D = \frac{\phi^2}{2} \end{aligned}$ $\bullet \text{ If } h \text{ were time independent } \Rightarrow \text{ stationary state } \rho_{\text{ss}}(\theta; h); \\ \text{Correspondingly a current in the phase space:} \end{aligned}$

$$j_{\rm ss}(\theta) = \underbrace{F(\theta; h)\rho_{\rm ss}(\theta; h)}_{\rm Drift} - \underbrace{D\frac{\partial\rho_{\rm ss}(\theta; h)}{\partial\theta}}_{\rm Diffusion}$$

Current identically zero if the stationary state is in equilibrium
$$(p = 1/2)$$

• Current \Rightarrow a velocity and hence a "Force" in the phase space

 $f(\theta; h) \equiv j_{\rm ss}(\theta) / \rho_{\rm ss}(\theta; h)$

• But *h* varies in time and so does the instantaneous force *f*

• Motion of a particle in a mean-field:

 $\frac{d\theta}{dt} = F(\theta; h) + \eta(t)$ $F(\theta; h) \equiv (2p - 1)\phi - \frac{\phi^2 \beta}{2} \frac{\partial \langle v \rangle [\rho](\theta; h)}{\partial \theta}$ Gaussian, white noise: $\overline{\eta(t)} = 0$, $\overline{\eta(t)\eta(t')} = 2D\delta(t - t')$; $D = \frac{\phi^2}{2}$ If *h* were time independent \Rightarrow stationary state $\rho_{ss}(\theta; h)$; Correspondingly a current in the phase space:

$$j_{\rm ss}(\theta) = \underbrace{F(\theta; h)\rho_{\rm ss}(\theta; h)}_{\rm Drift} - \underbrace{D\frac{\partial\rho_{\rm ss}(\theta; h)}{\partial\theta}}_{\rm Diffusion}$$
Current identically zero if the stationary state is in equilibrium
$$(p = 1/2)$$

• Current \Rightarrow a velocity and hence a "Force" in the phase space

 $f(\theta; h) \equiv j_{\rm ss}(\theta) / \rho_{\rm ss}(\theta; h)$

- But h varies in time and so does the instantaneous force f
- Work done by $f(\theta; h)$ in time $t = \int_0^t dt' \ \dot{\theta}(t') f(\theta(t'); h(t'));$ Dissipated into the environment as the Housekeeping Heat

• Housekeeping heat:

$$-Q_t^{\rm hk} = \int_0^t \mathrm{d}t' \; \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\rm ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$$

• Housekeeping heat:

 $-Q_t^{\rm hk} = \int_0^t \mathrm{d}t' \; \dot{\theta}(t') \left(\mathsf{F}(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\rm ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

• $Q_t^{hk} = 0$ if p = 1/2 (equilibrium case)

• Housekeeping heat:

 $-Q_t^{\rm hk} = \int_0^t \mathrm{d}t' \; \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\rm ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

- $Q_t^{hk} = 0$ if p = 1/2 (equilibrium case)
- $W_{\text{on the particle}}$ = $\int_0^t \mathrm{d}t' \ \dot{\theta}(t') \left(\frac{\partial \langle v \rangle}{\partial h} + (2p-1)\phi\right)$ = $\Delta \langle v \rangle + \int_0^t \mathrm{d}t' \ \dot{\theta}(t') (F(\theta(t'); h(t')))$

Housekeeping heat:

 $-Q_t^{\rm hk} = \int_0^t \mathrm{d}t' \; \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\rm ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

- $Q_t^{\rm hk} = 0$ if p = 1/2 (equilibrium case)
- $W_{\text{on the particle}}$ = $\int_0^t dt' \ \dot{\theta}(t') \left(\frac{\partial \langle v \rangle}{\partial h} + (2p-1)\phi \right)$ = $\Delta \langle v \rangle + \int_0^t dt' \ \dot{\theta}(t') (F(\theta(t'); h(t')))$
- $-Q_t \equiv \int_0^t dt' \,\dot{\theta}(t') F(\theta(t'); h(t'))$ is the heat given by the particle to the environment

Housekeeping heat:

 $-Q_t^{\rm hk} = \int_0^t \mathrm{d}t' \; \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\rm ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

- $Q_t^{\rm hk} = 0$ if p = 1/2 (equilibrium case)
- $W_{\text{on the particle}}$ = $\int_{0}^{t} dt' \dot{\theta}(t') \left(\frac{\partial \langle v \rangle}{\partial h} + (2p-1)\phi\right)$ = $\Delta \langle v \rangle + \int_{0}^{t} dt' \dot{\theta}(t') (F(\theta(t'); h(t')))$
- $-Q_t \equiv \int_0^t dt' \,\dot{\theta}(t') F(\theta(t'); h(t'))$ is the heat given by the particle to the environment
- Then $(-Q_t^{hk}) (-Q_t) = -D \int_0^t dt' \ \dot{\theta}(t') \frac{\partial \ln \rho_{ss}(\theta(t');h(t'))}{\partial \theta} = Q_t^{ex}$, the excess heat

• Housekeeping heat:

 $-Q_t^{\rm hk} = \int_0^t \mathrm{d}t' \; \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\rm ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

- $Q_t^{\rm hk} = 0$ if p = 1/2 (equilibrium case)
- $W_{\text{on the particle}}$ = $\int_{0}^{t} dt' \dot{\theta}(t') \left(\frac{\partial \langle v \rangle}{\partial h} + (2p-1)\phi\right)$ = $\Delta \langle v \rangle + \int_{0}^{t} dt' \dot{\theta}(t') (F(\theta(t'); h(t')))$
- $-Q_t \equiv \int_0^t dt' \,\dot{\theta}(t') F(\theta(t'); h(t'))$ is the heat given by the particle to the environment
- Then $(-Q_t^{hk}) (-Q_t) = -D \int_0^t dt' \ \dot{\theta}(t') \frac{\partial \ln \rho_{ss}(\theta(t');h(t'))}{\partial \theta} = Q_t^{ex}$, the excess heat
- What we show:

$$\langle e^{eta Q^{
m hk}_t} | heta_{[0, au]}
angle = e^{eta Q^{
m hk}_ au}$$
 for any $t \geq au$

In a general Markovian nonequilibrium process under arbitrary time-dependent driving, the exponentiated housekeeping heat is a martingale (*Chétrite, Gupta, Neri, Roldán (2018*))

• $Q_t^{hk} = -\int_0^t \mathrm{d}t' \,\dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

• $\langle e^{eta Q_t^{
m hk}} | heta_{[0, au]}
angle = e^{eta Q_ au^{
m hk}}$ for any $\geq au$

• $Q_t^{\text{hk}} = -\int_0^t \mathrm{d}t' \ \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\text{ss}}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

• $\langle e^{\beta Q_t^{\mathrm{hk}}} | heta_{[0, au]}
angle = e^{\beta Q_{ au}^{\mathrm{hk}}}$ for any $\geq au$

 On the average, heat is given to the environment.......<u>But</u> there are instances when heat is absorbed from the environment

• $Q_t^{\text{hk}} = -\int_0^t \mathrm{d}t' \ \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{\text{ss}}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$

• $\langle e^{\beta Q_t^{\mathrm{hk}}} | heta_{[0, au]}
angle = e^{\beta Q_{ au}^{\mathrm{hk}}}$ for any $\geq au$

- On the average, heat is given to the environment.......<u>But</u> there are instances when heat is absorbed from the environment
- $Q_{\max,t}^{hk} \equiv \max_{\tau \in [0,t]} Q_{\tau}^{hk}$

•
$$Q_t^{hk} = -\int_0^t \mathrm{d}t' \ \dot{\theta}(t') \left(F(\theta(t'); h(t')) - D \frac{\partial \ln \rho_{ss}(\theta(t'); h(t'))}{\mathrm{d}\theta} \right)$$

• $\langle e^{\beta Q_t^{hk}} | \theta_{[0,\tau]} \rangle = e^{\beta Q_\tau^{hk}} \text{ for any } \geq \tau$

• $Q_{\max,t}^{hk} \equiv \max_{\tau \in [0,t]} Q_{\tau}^{hk}$

What we show:

 $\operatorname{Prob}[Q_{\max,t}^{\operatorname{hk}} \leq q] \leq 1 - e^{-\beta q}; \quad \langle Q_{\max,t}^{\operatorname{hk}} \rangle \leq k_B T$ (Chétrite, Gupta, Neri, Roldán (2018))

Take-home messages

- Implementing concepts of stochastic thermodynamics gives valuable insights into the nature of the stationary state
- Applying Martingale theory yields universal results that restrict nature of physical processes, e.g., heat exchanges with the environment
- What next ?? Experimental tests, Application to quantum systems,...