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GW as a probe of inflation
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We give time in terms of e — foldings: aoxe” = e

CMB modes produced at N ~ 60 before the end of inflation, when a ~ e ®9anq

wavelength :
horizon
They only probe .~ CMB and Large Scale Structure
N =56 - 63 : in excellent agreement with inflation.

| | However, only probe \ ~ 102 — 10° Mpc

Smaller scales / later times

A~ 103 =109 km essentially unprobed

time

inflation matter/radiation
SN
We can probe N=15-28

N=0 < f~108Hz

Development of GW interferometers

opens a new window on much

smaller scales




GW production during inflation
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AXiOn inﬂatiOn Freese, Frieman, Olinto '90, ...

- Main theoretical difficulty

iIs to keep the potential flat

_ against radiative corrections

e Coupling to matter invariant under ¢ — ¢ 4+ constant

Coupling to fermions : AL =

O B
f

¢ Ou¢

to gauge fields : AL = 7 B = —47@,,@514,,8@145

LLoops with these couplings

do not modify the potential
AV =0
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Vector production from

~ |-

Anber, Sorbo '06

Originally studied for magnetogenesis. Here, generic U(1)

quF breaks parity, #* results for two polarizations
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5 A
e The produced A4 modes source inflaton perturbations ¢

_____ Y
through inverse decay. These modes are highly non-gaussian.
_ 5A
. 16 PFF
Thisimposes f 2 10°° GeV recall £ T Barnaby, MP '10
Planck '15

e The amplified gauge fields also produce GW, though Ay Ay — hr
Barnaby, MP '10
Sorbo '11

Y ¢ grows during inflation (inflation ends
Bartolo et al '16; LISA cosmology WC

because ¢ too large) = Blue GW and ,

potentially visible at interferometers | | e

Cook, Sorbo '11; Barnaby, Pajer, MP'11; B ™
Domcke, Pieroni, Binétruy '16; ... 4

Signal is chiral h; > hgr and
highly non-Gaussian, (h3) ~ (h2)3/2



V (¢) from shift etry

Due to « e‘ﬁ, signhal very sensitive to the inflaton potential

Domcke, Pieroni, Binétruy '16

Qow h?
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N = number of e-folds before the end of inflation when a mode is

produced. Different experiments probe different ranges of V (¢)
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e As in all mechanisms of GW from inflation,
the key difficulty is to produce observable GW
without overproducing density perturbations

e For a monomial V (¢), PBH bounds prevent GW from being observable

at aLIGO and LISA
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e Due to «x e‘ﬁ, significant differences from a minor change of V
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e Mechanism for a peaked distribution of PBH
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If sufficiently large, at horizon re-entry,

the perturbation collapses to form a

Primordial Black Hole (PBH)

Inflation

A significant fraction of the mass in the horizon collapses

into the PBH. So, parametrically, A < MpgH

Matter / Radiation




PBH dark matter
e PBH and PBH-DM long standing idea Zel'dovich, Novikov '67
Hawking '71; Carr '75; Chapline '75

e Recent interest due to lack of detection of particle Birdetal’l6
Clesse, Garcia-Bellido '16;

candidates, and LIGO / VIRGO events Sasaki et al '16

e 2 windows, one at ~ 10 '\, and (possibly) one at ~ 10—100M

MPBH[g]
1&@15 1018 1021 1024 1027 1030 1033 1036
E T 7 \:‘ = 'Isé T E ' o
i W EROSMAGEG - Y """ 1 Credit: G. Franciolini, update
ot 3 . EROS/MAGHO S
1077 ‘. N N e
g | HSC ‘\OGLE\;,:Z_,/ ‘*{%5 of Carr, Kuhnel, Sandstad '16
v +9 and Inomata et al '17
3:10-3— %‘
& jesiE
= ;
10 5
1071 Limits from capture from NS and WD
I Y S not shown due to uncertainty in DM
-18 -15 -12 -9 -6 -3 0 3 .
1 / e mM []\140] 10 R astrophysical abundance, and on
PBH ®

o _ nuclear physics
Cut on HSC and on limits from femtolensing of
) ) Capela, Pshirkov, Tinyakov '13
v-ray bursts. Schwarzschild radiuspgy < A,
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PBH <+ enhanched p — GW

e Whenever ép present GW produced

1) during inflation, by the same source that produced dp

2) by dp at horizon re-entry after inflation

e Mechanism 2 is unavoidable and model-independent

Standard gravitational interaction:

e Technical (but important !) point. Power spectrum <5p2> controls

the amount of GW. Full statistics of dp relevant for PBH abundance.
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axion infaltion (non-gaussian statistics)

= Fewer GW
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M ~ 10 Mg =  fow ~NHz PTAI

M~1072 M, = fow ~ mHz LISA!
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Measurement of the SGWB

SGWB from cosmological sources superimposed with astrophysical one.

Potential observables to disentangle them

Spectral shape Qgw (f)
Net Polarization Qgw

Statistics <§2”éw>

Directionality Qgew (&)
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Measurement of GW polarization

Crowder, Namba, Mandic,
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One more motivation for an Australian detector !

<Atdetector i Atdetectorj > — % [Mij,R (f) PGW,R (f) —|— ./\/lij,L (f) PGW,L (f)]
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AM = Mpr — M; measure of chirality

maximized for anti-podal detectors
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Measurement of GW polarization at LISA / ET

Two GWs related by a mirror symmetry produce the same & *\I\IER
response in a planar detector. Cannot detect net circular \/\/L. .
polarization of an isotropic SGWB . """"" :
hr -
Isotropy in any case broken by peculiar motion of \_\->. """ h
; L
the solar system. Assumption, vy~ 10~3 as CMB . g vd
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10 1.2-10 V 3y€ars  ricciardone, Sorbo, Tasinato '19

(one order of magnitude greater than estimate in Seto '06)



Measurement at LISA: X,Y, Z = time delays at the vertices

®
Correlation < X -Y-2)x(Z-Y) > vanishes if Pr = Py, / \
O — @

Detector response function : <signa|2> ~ Ry (k) (hy (k) hy(k))

Ry, has opposite sign for the two helicities, and o cosine of the angle

between the direction of the dipole and the normal to the LISA plane

Ry = /d(angles on thesky) A\ x F' [0, ¢]
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Non-G, angular anisotropies, and a probe of the large scale structure

of the Universe

/h\w/g 5p/p

>roduction mechanism & propagation imprint anisotropies, paw (Z) o< hi;ihi,

e Treatment as CMB  Apa. Maldacena '15: Contaldi '16: Cusin, Pitrou, Uzan '17: Jenkins,

Sakellariadou '18; Bartolo, Bertacca, Matarrese, MP, Ricciardone, Riotto, Tasinato '1¢€

—_ E GW

m

<a£m CLZ/m/> = C 0pr Oy Angular power spectrum

_ This is (pdy)
(Qpymy Qloms Qbsms ) X bpoop,  Bispectrum (non-G) «—
<h3> not observable



Anisotopies from the production mechanism ,
Bartolo et al '19

Coin (f) dk f ~ mHz observed GW frequency
) -2
A — ?Pln (f7 k) Jy (kto)
n k ~ Ho ~ (10 billion yrs)_1 scale of anisotropie
1
k < — &/
|67

Power in initial condition. Can depend on f - different from CMB, where

C, do not depend on f (initial thermal state)

For instance, in axion inflation ¢ (t) +6d¢ (t, ¥) — Pow + 6 Pow

= ]
W § PGW

: Co (f)

o< F (f) 66 (k)




Anisotopies from the propagation

LLarge scale density

and tensor anisotropies —"

Crs+C dk
Ls+ Cor _ / W TP (k) Tecotar + P (k) Trensor]
41 k

Bispectrum from 2nd order interactions. Already a first order, due

to propagation, induced by the non-Gaussianity of dp. At large scales

bey 1,05 = 2 fNL [Coy Co, + Co, Coy + Co, Co,] “local” scalar NG,
5p ~ dpg + fnL 6p;

New probe of large scale anisotropies (like CMB photons)



Anisotropies & non-G at the production - GW in models with PBH

Bartolo et al '19
MPBH [MQ]
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Very large GW signal @QLISA
in models of PBH-DM.

Is is isotropic 7 Is it Gaussian?
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h
C _I_ C —h Pcw ¢ C IS a short-scale mode, that
PGW ~ <h2> ~ <C4> generates GW of f ~ mHz today

In presence of scalar non-G,

a long mode (;, modulates Paw Paw

the power of { on small scales,




e Greater scalar fyL leads to greater anisotropies and non-G of GW.

e —11.1< fyr £9.3,

at 95% C.L. Planck 19

e Isocurvature constraints impose a tighter limit on fy. for PBH-DM

\/é‘(é:‘ +1)Cu(k.)/2m for P, = Poexp [—log” (k/k.) /2]
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1.25x1073

Observing a bump at LISA, with
1.x1073

significant anisotropy and non-G
7.5%x107%

indicates that the PBH constitute
5.x107%

only a small fraction of the DM
2.5%x107%

large change of fpgH
Slight change of P, —
slight change in Qgw.

Anisotropies can differentiate
between these two cases.



Conclusions B s
>
e Signal from inflation only if blue : | /,// | ~ vz
L |
LISA
1078+ Gauss(Ind)

e Probe of PBH (possibly, PBH DM)

10—14 1

10—6 16—4 Obl

f/Hz
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