Chapter 1

Gaussian States

1.1 Canonical commutation relations

The canonical commutation relations (CCR) are central to almost all standard
approaches to the quantization of continuous systems, be they motional degrees
of freedom of non-relativistic particles (“first” quantization) or bosonic quantum
fields (“second” quantization). Given a finite set of degrees of freedom repre-
sented by pairs of self-adjoint canonical operators &; and p;, for j = 1,...,n,
the CCR read

[fj,ﬁk] :iéjkh. (1.1)

where €2 is a real, canonical anti-symmetric form (also known as the ‘symplectic
form’, for reasons that will become clear in the following), given by the direct
sum of identical 2 x 2 blocks:

O=Pw, with w:(_ol é) (1.2)
j=1

Note that the identity operator should be understood on the RHS of Eq. (1.1):
the commutators of pairs of canonical operators are proportional to c-numbers,
and can hence be represented by a complex-valued, rather than operator valued,
matrix i€). Also, we shall set i = 1 and only reinstate it in dealing with practical
cases.

Canonical Commutation Relations (CCR). By defining the vector of
canonical operators © = (&1,p1 ... &, pn)', Eq. (1.1) can be expediently recast
as the following geometric, label-free, expression

[, 7] =iQ, (1.3)

where the commutator of row and column vectors of operators should be taken
as an outer product.
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Borrowing from the optical and field theoretical terminologies, canonical degrees
of freedom are also referred to as ‘modes’.

Note that Q = —QT and Q% = —1,,, where 1,, is the 2n x 2n identity
matrix. Also, 2 is a real orthogonal transformation: QTQ = —Q? = 15,.
Re-ordering the canonical operators as v/ = (21,...2,,P1,...,Pn)" yields

the following equivalent expression of the CCR:

N
W =i, with o =( O» In (1.4)
_]ln On
where 1,, and 0,, are, respectively, the n x n identity and null matrices.
Another relevant, equivalent form to express the CCR is given by considering
bosonic annihilation and creation operators a; and a;, defined as

if?j-f—iﬁj
CLJ:T

It is easy to see that the vector of annihilation and creation operators a =
(a1, aI, oo an,al)7 is related to by the unitary transformation U,,, given by

(1.5)

_ - 1 1 2
U=@u, with u=< ) (1.6)
= \/ﬁ 1 —
so that the CCR may be equivalently recast as
la,al] = [UF,#107) = U, #107 = iUQUT =2 = Po. (1.7)
j=1

where o, is defined as the standard z Pauli matrix:

az:(é 01) . (1.8)

Note that the adjoint of a vector of operators has been implicitly defined as
the vector obtained by transposing the original one and conjugating each of its
operator entries, e.g. al = (a{,al,...,al,an). Also, #7 = ¢, since all of its
entries are hermitian operators.

Often, and especially in the mathematical physics literature, the CCR are
expressed by exponentiating the canonical operators, which has the advantage
of making the operators involved bounded:!

i(3: —D it —iD A —ib 5. LS.
ez(w; Pk) — @ig~Wkg 305k —e Zpkemaez‘sﬂc. (19)

IThe equivalence between this expression and Eq. (1.1) is a straightforward consequence
of the following well known corollary of the Baker-Campbell-Hausdorff formula:

A+B A_B_—[A,B]/2
b

€ =e e e

which holds whenever [A, B] is central, that is commutes with both A and B. In this case,
which is clearly the CCR one, A, B and their commutator form a closed algebra.



1.2. QUADRATIC HAMILTONIANS AND GAUSSIAN STATES 3

The final phase factors in the previous equation imply the non-commutativity
of position and momentum shifts, and are a typical signature of quantum me-
chanics. Eq. (1.9) may be generalised to consider arbitrary shift operators, also
known as Weyl operators in the case of the CCR algebra:

ei(r1+r2)TQf- _ eir{meir;m«e[r{m,rgm]/2 _ eirIQfeirngef[r{Qf',i‘TQrz]ﬂ
_ T Gir]QF (—r]QFETIQry /2 _ (ir]QF (ir}QF o —ir]Q°r2/2 (1.10)
— eirIQf'eir;Qf‘eirIQr2/2 _ eirngeirIQf‘efirIQrg/Z , v ri,ry € R2n )
So that, in terms of the Weyl operators D, = eirTm, one has
Dy, 4r, = Dy, Dy e™i9m2/2 (1.11)

Inspection reveals that the CCR algebra does not allow for a representation
through finite dimensional matrices. For instance, by taking the trace of the
left and right hand side of equation [#1,p1] = 41 and assuming that the trace
of a commutator vanishes, as is always the case in finite dimension, one would
get trl = 0, which is clearly impossible to satisfy. However, infinite dimensional
representations of the CCR algebra do exist. As well known from basic quantum
mechanics, one can consider the space of square-integrable functions on the real
line L2(IR™), and define:

Elf) = wif(x), (1.12)
Blf) = i S, VIS ER®Y, (L1
with x = (21,...,2p).

The eigenstates of #; (and p;) are not part of L?(R"), although we shall still
indicate them in the Dirac notation as |x;) and |p;), by which we shall denote
linear forms on L?(IR™) such that

<$3‘f> = <f|l';>* = f(l']_ . 7xj717x;‘7$j+17 e 7-1"1'7,) € LQ(RH_l) B (114>

Y |f) = f(x) € L2(R™). For a trace-class operator O, one can then write

Tr [OA} = /+Oo(x0|x> dz . (1.15)

— 0o

1.2 Quadratic Hamiltonians and Gaussian states

we will refer, somewhat loosely, to a quadratic Hamiltonian as a Hamiltonian
which can be expressed as a polynomial of order two in the canonical operators.
In terms of the vector of operators r defined above, the most general quadratic
Hamiltonian operator H reads, up to an irrelevant additive constant:

. 1
H= §fTHf +i'r, (1.16)
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where r is a 2n-dimensional real vector and H a symmetric matrix, known as
the Hamiltonian matrix and not to be confused with the Hamiltonian operator
H. The matrix H can be assumed to be symmetric because any anti-symmetric
component in it would just add a term proportional to the identity operator,
because of the CCR, and would thus amount to adding a constant to the Hamil-
tonian.

The modelling of quantum dynamics through quadratic Hamiltonians is very
common when higher order terms are inconspicuous and negligible, as is often
the case for quantum light fields. Besides, quadratic Hamiltonians represent a
consistent approximation in other situations of great interest for experiments,
such as ion traps, opto-mechanical systems, nano-mechanical oscillators, and a
number of other systems. Up to interactions, the ‘free’; local Hamiltonian of a
quantum oscillator, £2 + p? in rescaled units, is obviously quadratic.

The diagonalisation of any quadratic Hamiltonian is a rather straightforward
mathematical routine. Because, as we shall see, such a diagonalisation rests on
identifying degrees of freedom that are decoupled from each other, systems gov-
erned by quadratic Hamiltonians are referred to as “quasi-free” in the quantum
field theory literature. Notwithstanding the ease with which their dynamics is
solved, such systems still offer a very rich scenario for quantum information the-
ory, where the standard methods used for the analysis of quadratic Hamiltonians
become powerful allies.

1.2.1 Gaussian states

Let us define the set of Gaussian states as all the the ground and thermal states
of quadratic Hamiltonians with positive definite Hamiltonian matriz H > 0. The
restriction to positive definite Hamiltonian matrices corresponds to considering
‘stable’ systems — i.e., Hamiltonian operators bounded from below — and make
the definition above consistent.

Any Gaussian state og may hence be written as

e_'BH

= [efﬁff} , (1.17)

el

with 8 € RT and H defined by r and H as in Eq. (1.16), including the limiting

instance .
e~ PH
og = lim (1.18)

B—o0 T {e—ﬁﬁ} '

Clearly, all states of the form (1.17) for finite 8 are by construction mixed states,
while all pure Gaussian states are described by Eq. (1.18).

By the definition above, Gaussian states have been parametrized through the
Hamiltonian matrix H, the vector r, whose meaning will become clear shortly,
and the parameter 8, which is intended to mimic a notation well established
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in thermodynamics where it would indicate the inverse temperature (up to the
Boltzmann constant).

Let us now obtain the diagonal form of states (1.17) and (1.18). First off,
notice that, upon redefining r’ = —H ~!r (always possible, as any positive def-
inite H is invertible), and up to an irrelevant constant, the Hamiltonian H is

equivalent to

H = %(A ~YTHE 1), (1.19)

which is an alternative form of the most general quadratic Hamiltonian with
positive definite H, where the real vector r’ merely shifts the vector of operators
r. We can prove that this shift is equivalent to the action of a unitary operator
by considering the action of a Weyl operator, introduced in Eq. (1.11), on the
vector of operators .

We intend to prove that

-1 Toa -1 Toa
e I Wpeit O _j (1.20)

where it is understood that the same Weyl operator acts on all entries of the vec-
—ir'TQf poir' TQR

tor T. To this aim, let us define the vector of operators f(r') = e

for which one has f£(0) = r, as well as

Oy fk = ((%, e~ Xt T 1Qm P fjei et Tlsﬂst“)
J J

r/=0 ¥’/ =0

= —iZQjm[TA‘m,fk] = ZQJQOk = _5]'16 )

while all the higher order derivatives of fj are obviously zero. Hence, all the
derivatives in zero of the smooth operator valued function f(r’) coincide with the
derivatives of the function #—r’, which proves Eq. (1.20).2 Because of Eq. (1.20),
the Weyl operators are also known as shift or displacement operators, typically
in the quantum optics literature.
Inserting Eq. (1.20) into (1.19) yields
5 1

H = (k- )TH(E-1') =

%e—”’TfoTerir'Tm . (1.21)
Up to first order displacement operators, one can hence set the vector r’ in
the quadratic Hamiltonian H’ to zero. The effect of the purely quadratic part
%f"TH t can be understood by considering the transformations it induces on the
vector of operators T in the Heisenberg picture, which will be the focus of the
next section.

2The same conclusion could have been reached by applying the well known Baker-
Campbell-Hausdorff relationship

Ve X =V +1X,V] + %[X (X, V] + %[x XX,V +... .
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1.2.2 The symplectic group of linear canonical transformations

Let us now consider the Heisenberg evolution of the vector of operators r under
the dynamics governed by the Hamiltonian H = 1#T Hf. One has

PO S i . A
7, =i[H, 7] = 3 Z[rkalrl,rj]
Kl

{ fora A s .
= 3 ZHM (rk[rl,rj] + [7";9, Tj]?“l) = Z ijHlel , (1.22)
kl kl

which can be recast in vector form as
t=QHF . (1.23)

The solution to the differential equation (1.23) is straightforward and given
by #(t) = e*#*#(0). Since it represents the action of a unitary operation, the
transformation e®** must preserve the CCR when applied to the vector ¥, that
is
i0 = [f-7f-T} _ [eQHtf‘, f,T(eQHt)T] _ eQHt[f,,f,T](eQHt)T _ Z-eQHtQ(eQHt)T )
(1.24)
The transformation e must therefore preserve the canonical anti-symmetric
form Q when acting by congruence.® This can be restated by claiming that
et helongs to the group of linear canonical transformations, well known from
classical Hamiltonian mechanics. This group is also known as the real symplec-
tic group in dimension 2n, denoted by Spa, m (let us remind the reader that
H and Q are 2n x 2n matrices). The quadratic form €, which encodes the
commutation relations in our formalism, is also known as the symplectic form,
and the symplectic group is defined as the set of transformations that preserve
Q) under congruence:

QHt

S € Spar & SQUST=Q. (1.25)

The group character of such a set is ascertained by noting that its elements must
be invertible because their determinant cannot be zero by Binet’s theorem, and
that S71QS~!T = Q (the inclusion of the identity matrix and of any product of
two elements are obvious).

It is expedient to introduce the shorthand notation Sy for operators with
purely quadratic generators:

Sy = et HE (1.26)
such that our argument above allows one to write

SpSl = Syt (1.27)

3We will refer to the matrix A acting “by congruence” on the quadratic form B to indicate
the transformation B — ABAT. The invertible matrix A will instead be said to act “by
similarity” on B when it transforms it according to B~ ABA™L.
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where Sy = ¢ ¢ Span r. Notice that, with respect to the treatment above,
the time variable ¢t has been absorbed in the symmetric matrix H. The rela-
tionship (1.27) will be used extensively throughout the notes.

1.2.3 Normal modes

The normal mode decomposition, whereby a positive definite quadratic form
is split into ‘decoupled’ degrees of freedom, is instrumental in diagonalising
quadratic Hamiltonians, and represents one of the methodological cornerstones
of quantum continuous variables. This technique, well established since the early
days of classical mechanics, can be summarised in the following statement:

Normal mode decomposition. Given a 2n x 2n positive definite real matrix
M, there exists a symplectic transformation S € Spa, r such that

SMS" =D with D =diag(dy,ds,...,dn,d,), (1.28)

withd; e RTVjel,...,n].

Proof. Since M is invertible and with strictly positive eigenvalues, a set of real
matrices S satisfying Eq. (1.28) may be constructed as S = DY20M~1/2 for
all O € O(2n). We have to show that a choice of the orthogonal transformation
O exists such that this matrix is symplectic, which is equivalent to

DY2oM~Y2QM 20T DY = (1.29)
where we have made use of the symmetry of M and D. Now, the matrix
QO = M~Y2QM~1/? is clearly anti-symmetric, and for any 2n x 2n real anti-
symmetric matrix there exists an orthogonal transformation O € O(2n) which
puts it in a decoupled canonical form, as per:

020" =Pd; 'w, (1.30)
j=1

where w is the 2 x 2 antisymmetric block defined in Eq. (1.2) and d; € RV

3Equation (1.27) expresses the fact that unitary operators generated by purely second-
order Hamiltonians form a projective representation of Spa, R, that is a representation up to
transformation-dependent phase factors. It turns out that a mapping can be defined where
such phase factors are always either —1 or +1: Technically, one thus achieves a faithful
representation of the metaplectic group, a double cover of the symplectic group whose exact
definition would go beyond the scope of these lectures. It may however be useful to add that
this construction is, somewhat loosely, also referred to as the “metaplectic” representation in
the literature.
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j €[1,...,n].* Hence, one has:
DY2OM~?QM 20T DY? = DV20Q'0TDY? = P d;d; 'w = Q, (1.31)
j=1

where D has been set to diag(dy,ds,...,d,,d,), as anticipated in Eq. (1.28),
thus proving the theorem. Note that the quantities d; must be strictly positive
because M is strictly positive.

The symplectic transformation S that turns a matrix M into its normal form
is determined by the linear transformation L that diagonalises the matrix iQ2M
(where the conventional factor ¢ is included because the eigenvalues of QM are
purely imaginary). This can be seen by taking the converse of the normal mode
decomposition (1.28): M = S~1DST~! and noticing that

iOM =iQS™'DST ' =iSTADST = iSTU | Pdjo. | UTSTH, (1.32)
j=1

7= ( 1 _ZZ ) (1.33)

is the transformation that diagonalises w: uwi! = o, (note that this is the
very same unitary transformation that appeared in Eq. (1.7) to relate ladder
and canonical operators). Eq. (1.32) shows that iQM is always diagonalisable
for positive definite M and that, if L is the matrix that diagonalises iQ2M by
similarity (such that LOM L~ is diagonal), then one has S = UL (where we
accounted for the fact that transposing a real matrix is the same as conjugating
it) for the symplectic transformation S that decomposes M in normal modes
by congruence.

Eq. (1.32) also implies that the n quantities {d;,j € [1,...,n]} are the
absolute values of the eigenvalues of iQQM (which come in pairs of equal modulus
and opposite sign). The d;’s are referred to as the symplectic eigenvalues of the
positive definite matrix M, while the normal mode decomposition is also known
as “symplectic diagonalisation”.

where U = @], 4, and

4The canonical decomposition of anti-symmetric matrices follows from the diagonalisability
of symmetric ones: let A be a real, anti-symmetric, 2n X 2n matrix (even dimension is just
imposed to fix ideas and because it applies to our case), then A? is symmetric and can be
diagonalised as per OA20T = B, with B diagonal and O € O(2n). Consider then a generic
eigenvector e; of A2, with eigenvalue d; € R. The vector €’ = Ae; is clearly orthogonal to
e1, because A is antisymmetric: eIAel = 0. Let v be a generic vector in the linear subspace
orthogonal to the space spanned by e; and €1, then one has

vide; =v'e} =0 and v'Aej =v'A%e1 =0,

as e is an eigenvalue of A2 by hypothesis. The equation above shows that any choice of
orthogonal basis including e; and e’; would result in A acting as a diagonal block djw in the
subspace spanned by e and e’1. Iterating this argument leads to the canonical decomposition
of Eq. (1.30).
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Note that, since it preserves the CCR, a symplectic transformation acting on
the vector of canonical operators corresponds to defining new canonical degrees
of freedom which are linearly related to the original ones. As we shall see in
detail in the next section, the normal mode decomposition of a 2n x 2n positive
definite quadratic Hamiltonian defines a new set of degrees of freedom which
are dynamically decoupled under such a Hamiltonian, and oscillate like free
harmonic oscillators. In this instance, the n symplectic eigenvalues correspond
to the frequencies of the normal modes (also known as “eigenfrequencies” or
“normal” frequencies). Let us emphasise that the normal mode decomposition
only holds for positive definite matrices, in that a real symplectic S doing the
job could only be constructed as above for such matrices.?

1.3 Normal mode decomposition of a Gaussian state

Let us now go back to our definition of the set of a Gaussian state given by
Egs. (1.16), (1.17) and (1.18), in terms of a positive definite Hamiltonian matrix
H, a vector of displacements r and an inverse temperature 3. We have already
seen how to reduce the vector parameter r to the action of a unitary Weyl
operator. The normal mode decomposition puts us in a position to analyse the
role of H as well. In fact, because of the theorem proven in the previous section,
one can write

H = S,TJ @wj]lg Su for Su € Spanm, (1.34)

j=1

where Sy is the transpose and inverse of the (not necessarily unique) symplectic
transformation that puts H in normal form acting by congruence, which always
exists because H > 0 by hypothesis, and the w;’s are the symplectic eigenvalues
of H (the frequencies of its normal modes). Eq. (1.34) leads to

tTHE =175y | Puwils | Sut. (1.35)
j=1

But our introduction of the symplectic group was based upon the equivalence
between the action of a symplectic transformation on the vector of canonical
operators, as in SU#, and the action of a unitary operator generated by a
second-order Hamiltonian. In point of fact, any symplectic transformation S
may be decomposed into the product of two matrix exponentials.® Therefore, a

5Trivially, the decomposition extends to negative definite matrices too, which are equivalent
to positive definite up to a minus sign.

6 Any element of a compact Lie group — like, e.g., the unitary group in any finite dimension
— may be written as a single matrix exponential. This is equivalent to stating that the
exponential map from the algebra of generators into the group is surjective for such groups.
However, the symplectic group Spa, r is not compact, and it turns out that some of its
elements may only be obtained as the product of two exponentials of generators. We will not
elaborate further on this issue, which is rather technical and would call for an extensive and
detailed mathematical analysis of the properties of Spa;, R.-
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pair of symmetric matrices A and B must exist such that
SH = §,8585L51 (1.36)

where the operators S4 and Sp, defined as per Eq. (1.26), act by similarity on
each entry of r. The matrices A and B are not necessarily unique, and satisfy
the equality St = 24?8 where SU1) was defined above as the inverse and
transpose of the symplectic transformation that brings H into normal form.
Although in practice it may not be easy to determine A and B analytically, such
matrices always exist for any given Hamiltonian matrix H. Notice that, in the
interest of rigour, we were forced to introduce two symplectic generators, QA and
Q) B, because there exist symplectic transformations which require the product
of two matrix exponentials to be expressed. However, we can now simplify our
notation by defining the unitary transformation S = $,45p. Inserting Eq. (1.36)
into (1.35) yields

iTHi = SfT<EBwj12>f§T (1.37)
j=1

S(iwj (;%§+]3§)>S*. (1.38)
j=1

We have thus shown that every second-order Hamiltonian with zero displacement
and positive definite Hamiltonian matrixz is unitarily equivalent to the Hamilto-
nian of a set of free, non-interacting harmonic oscillators. From now on, let
us denote the free Hamiltonian of mode j with frequency w; by the shorthand

notation H'w]. :

Ho, =5 (&3 +53) - (1.39)

Putting together Egs. (1.21) and (1.38), the most general second-order Hamil-

tonian H of Eq. (1.19) with positive definite Hamiltonian matrix H may be
recast in the form:

1 Py L At o
H = 5(1‘ —0)TH({ —1) = Dr5<;ij>STDr7 (1.40)

H = 498 D), wjlye PP 42 where {w;,j € [1,...,n]} is the set of
(doubly-degenerate) eigenvalues of |iQ2H|.”

"Note that the 2n2 + n real parameters contained in the 2n x 2n real, positive definite
matrix H, have been transferred into the symplectic matrix S, which symplectically diago-
nalises H, plus the set of n symplectic eigenvalues w;’s. The number of free parameters has
not changed though, as the transformation performing the symplectic diagonalisation of any
positive definite matrix is in general ambiguous due to the invariance of the Hamiltonian ma-
trix 1o under local rotations, which are symplectic. Hence, the number of parameters is still
2n2 +n (a generic symmetric matrix) minus n (due to the invariance that was just mentioned)
plus n (the number of symplectic eigenvalues), which is consistent with the previous counting.
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The same unitary equivalence carries over to Gaussian states, whose operator
form og, as defined in Egs. (1.17) and (1.18), only depends on the second-order
Hamiltonian H. Hence, we have derived the most general expression for a
Gaussian state og as:

(e
oG = DifSH}Ll - [e—ﬁ%] STDy, B>0. (1.41)

One then just needs to put the free Hamiltonian H’w]. in diagonal form in order
to obtain the spectrum of any Gaussian state.

Notice how the direct sum of Hamiltonians Eq. (1.37), in the ‘phase space’
picture set by the vector of canonical operators r, turned into a tensor product
in the Hilbert space representation. This trait, due to the linearity of the oper-
ations acting on r, will be an important ingredient in much of our treatment of
Gaussian states and their information properties.

1.4 The Fock basis

As we just saw, the diagonal form of the free oscillator’s Hamiltonian fij of
Eq. (1.39) determines the spectrum of any Gaussian state. Obtaining such a
diagonal form is one of the very first notions dealt with in most basic quan-
tum mechanics courses. Nonetheless, it is such a cornerstone of our theoretical
framework that we will take the opportunity to concisely recall it here.

The Hamiltonian f[wj may be recast as ffwj = wj (a;a]— + %) in terms of the
annihilation and creation operators defined in Eq. (1.5). Because of the CCR, it
can be easily shown that, if |A); is an eigenstate of ﬁwj with generic eigenvalue
w;A, then al\); is an eigenvector too, with eigenvalue w;(A — 1). But since the
spectrum of ﬁwj must be bounded from below, this implies that a state |0);
must exist such that a|0); = 0. Such a state is referred to as the vacuum state,
and it is the ground state of lfle, with eigenvalue 1/2. Tt is then easy to show

that all other eigenvectors of H,, may be obtained by m repeated applications

;
J
with m € N. The normalised eigenstates of H,, are known as Fock, or number

of the creation operator a} on |0);, and that they have eigenvalues w; (m + %),

states, and will be denoted with {|m);,m € N}. The operator a;aj is known as
the number operator. Let us summarise the action of creation and annihilation
operators in the Fock basis:

ajlm); = vmlm —1); , (1.42)
allm); = Vm+1jm+1); , (1.43)
ajajm); = m|m); . (1.44)

For a bosonic quantum field, in the second quantization picture, the number
state |m); represents the presence of m particles (excitations of the field) in
mode j.
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We can now make use of Eq. (1.41) to determine the spectrum of a generic
Gaussian state o and express it in the Fock basis. The normalisation factor is
promptly evaluated:

1 1 Bwj Bw;
— —e T —e¢ T, (1.45)

Ty [efﬁﬁw]} eij Efno o€ —Bw;m

so that

n

n 0o
oc (B H 1 — e_ﬁwj D SJH ® (Z e_ﬂ“’-"mm>jj(m|> SEHDI" .
7j=1 m=0

(1.46)
The limit of pure states, 8 — o0, is particularly simple and instructive in this
representation:

Jim 06 (8) = D18, |0)(0155, D (1.47)
where the shorthand notation |0) = ®;’:1 |0),; has been introduced to represent
the vacuum of the whole field. All pure Gaussian states are obtained by applying
unitary operations generated by quadratic Hamiltonians on the vacuum state.

Note that the positive parameter § is technically redundant, as it might have
been absorbed in the Hamiltonian matrix H and, in particular, in its normal
frequencies w;, as apparent from Eq. (1.46). We have preferred to render it
explicit in our treatment because it allows for a very clear definition of the
set of pure Gaussian states, and because it relates our formalism to a physical
interpretation: the Gaussian state with parameters H, r and 3 is the equilibrium
state of a system with local quadratic Hamiltonian H after thermalisation with
a reservoir at rescaled temperature 1/8. In the next section, we will move on
to yet another equivalent parametrisation of a generic Gaussian state.

1.5 Statistical moments of a Gaussian state and the
covariance matrix

Before proceeding, let us drop the dependence on the quadratic Hamiltonian H
and assume instead the parametrisation of the most general n-mode Gaussian
state, given by Eq. (1.46), in terms of a generic symplectic transformation S,
represented in the Hilbert space by S , of an arbitrary displacement operator ﬁr,
and of a set of n strictly positive real numbers §; (each replacing Sw, above).
The limit of pure states may still be taken by sending all the &; to infinity. Then
one has, for the most general Gaussian state og:

ﬁ(l—e_fj) Dist é(ie—fjm|m>jj<m|> SD,. (1.48)
j=1

Jj=1 \m=0
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Also note that, by virtue of Egs. (1.20) and (1.36), one has

which express the fact that Weyl operators and unitary operators generated by
Hamiltonians of order two projectively represent, respectively, the abelian group
of translations in dimension 2d and the real symplectic group.

Let us now evaluate the expectation value of t for the Gaussian state og:

Tr [oct]

I
B

(1 _ e*ij) Tr ( <Z efjmm>jj<m|> SﬁrfDIST

BN
Il
—

(1—e9)Tr

I

(1-e9)Tr

I

~

ﬂl

~

ﬂl

o 3/—\

Il

=)

| |

~
Il
-

~
Il
-

where we used the fact that the expectation value of any linear combination of
canonical operators vanishes when calculated on a state which is diagonal in the
Fock basis. This can be understood by inspecting Eqs. (1.42) and (1.43), and
keeping in mind that a linear combination of £;’s and p;’s is a linear combination
of a;’s and a;’s. The vector parameter r is then just the vector of expectation
values of the canonical operators on the state o5, which could be determined by
performing measurements of positions and momenta on non-relativistic particles
described by such operators. This will also be referred to as the vector of first
(statistical) moments.

Let us then move on to consider second statistical moments of canonical
operators on our state. In particular, let us consider the second moments in
their symmetrised version, which we shall group together in the ‘covariance
matrix’ o (below, we will understand the anti-commutator between vectors to
form a matrix, per the outer product compact notation introduced to express
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the canonical commutation relations at the beginning of the chapter):

o=Tr[{(i-1), (1)} eq]

3

= H (1- e_fj) Tr (Z e 5™ |m) J<m> SD, {#-1),(#-1)"} D
Jj=1 | \7=1 \m=0
T | (@ (S et ) |y
Jj=1 L 7=1 \m=0 i
=[[0-e)m (Z egjmlmhj(m) {st,278T}
j=1 j=1 =0

I

(1—e %) STy -” (i egjm|m>jj<m|> {#,#7}| ST. (1.52)

<
I

—
<
I

—

Thanks to the use we made of group representations, we were able to bring the
unitary operators outside the evaluation of the expectation value, which is now
reduced to determining the trace in the last expression above. That is a rather
straightforward task. First of all, notice that any expectation value involving
two canonical operators pertaining to different modes is zero, because the state
left inside the trace is diagonal in the Fock basis (this is the same argument
by which we showed that the expectation values of linear functions of canonical
operators are zero for such states). We are left with the task of evaluating the
expectation values of the operators

247 = 2ala; + 1+ a3 +al? (1.53)
2p? = 2ala; +1—a? —al’, (1.54)
iy + by =i(al’ —a?), (1.55)

which have been expressed as functions of creation and annihilation operators,
o0

for the local state >_o_,e~%"™|m);;(m|. Only terms with the same number of
a; and a; contribute to the expectation value, because the state we are con-
sidering is diagonal in the Fock basis. The only operator that does contribute,

besides the identity, is the number operator a;{ a;, for which one finds

<a;-aj> =(1- e_fj) Tr Z e_fjm\m>jj<m|a;aj (1.56)
m=0
—& = —&;m e
:(1—e J)ZOe i m=T—e (1.57)

so that
_ 2e~% 1+ e &
_l—e*§j+ T l—e 5

(1.58)
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Hence, for the expectation values of the anti-commutators entering Eq. (1.52),
one has
H(l—e*fj)Tr ® (Z efjm|m>jj<m|> {f-,f-T} :@%ﬁlg .
j=1 7j=1 \m=0 j=1
(1.59)
Upon defining
1+ e &

Vj

the covariance matrix (CM) of the most general Gaussian state can be written
as

oc=5|Pri.| ST, (1.61)
j=1

with v; > 1 [see Eq. (1.60)] and S € Spay, R.-

Eq. (1.61), formally analogous to (1.28), is the normal mode decomposition of
the CM o, with v; as its symplectic eigenvalues.

The spectrum of the state og is given in terms of the symplectic eigenvalues
alone, as per

o n ] vi—1 m o
og = DIST ® (Z 2 (V’_ - 1) |m>jj<m> SD, . (1.62)
J

j=1 \m=0

Eq. (1.61), along with (1.51), shows that all the parameters of a Gaussian
state, r, S and {v;}, are completely determined by first and second statistical
moments, which can then be adopted as a way to parametrise the state. This is
in obvious analogy with a Gaussian distribution, which is also completely deter-
mined by first and second order moments. In the following, we will let covariance
matrices represent Gaussian states, when first moments will be irrelevant, as is
often the case.

1.6 The uncertainty principle

Not all symmetric matrices belong to the set of covariances of a quantum state.
The non-commutativity of the canonical operators, along with the probabilistic
interpretation of the quantum state, impose specific constraints on the variances
and covariances of such observables that go under the name of uncertainty
principles. We will derive here a geometric uncertainty relation which turns out
to be necessary and sufficient for o to be a the CM of a Gaussian state.

Given a — not necessarily Gaussian — quantum state g on a system of n
modes, let us define the matrix 7 as

T =2Tr [pftT] | (1.63)
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where ##7 is to be taken in the outer product sense. One has
7 ="Tr [oft, 27} + o[t, £]] = o +i€2. (1.64)

Now, define the operator O = v2y't for a generic y € C?". Because of the
positivity of the density matrix o, one has

0<Tr [QOOT} =ylry=yl(c +iQ)y, VyeC™. (1.65)

That is (Robertson Schréodinger uncertainty relation)

o+i>0. (1.66)

This relationship is manifestly invariant under symplectic transformations, since
Q = SQST. It can therefore be expressed in terms of the symplectic eigenval-
ues, which are the n independent symplectic invariant quantities of a 2n-mode
covariance matrix. By writing (1.66) for the normal mode form of o one gets

u+m:@(fﬂ’l :4>20, (1.67)
i=1 !

which is equivalent to

vi>1, jell,...,n]. (1.68)

It may be shown that (1.66) directly implies that o > 0, and hence that any o
pertaining to a quantum state can be symplectically diagonalised, so that (1.68)
is completely equivalent to (1.66).

In our constructive definition of the set of Gaussian states, the relationship
(1.68) arose naturally as a sufficient condition on the symplectic eigenvalues.
Hence, we can claim that the uncertainty relation (1.66), which is equivalent to
(1.68), is necessary and sufficient for o to represent the covariance matrix of a
Gaussian state.

1.7 Manipulation of Gaussian states

The tensor product of two Gaussian states is clearly still a Gaussian state,
characterised as follows.
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Tensor products of Gaussian states. By definition of r and o, one has that
the global vector of first moments r and CM o of the tensor product of two
Gaussian states 04 and o, with first moments r4 and rg and CMs o4 and
o, are given by

r= (rA) =ra®drp, (1.69)

a:(aA 0 ):UAEBO'B. (1.70)

Symplectic transformations on Gaussian states. In view of the above, a
symplectic transformation S acts on the first moments r and second moments
o of a Gaussian state according to
r— Sr, (1.71)
o SoST. (1.72)

Any symplectic transformation S can be decomposed into compact and non-
compact symplectic transformations, as per

Singular value decomposition of symplectic transformations (aka “Eu-
ler” or “Bloch-Messiah” decomposition). Any symplectic matrix S € Spap g
can be decomposed as

S=01Z0,, (1.73)

with O1, Oz € Spa, g NSO(2n) and

Z7l<g 91>. (1.74)

j=1

The transformations O; and Os, belonging to SO(2n) (as well as Spay, i)
preserve the identity, which represents the free Hamiltonian of the bosonic field.
Hence, they are also referred to as “energy-preserving” or “passive” transforma-
tions. In turn, they can be decomposed into beam-splitters and phase-shifters,
following the terminology in use in quantum optics.

More precisely, a beam splitter (a semi-reflectant mirror that mix two modes
up) is described by an orthogonal on two modes mixing z’s and p’s in the same
way:

cosf 0 sin 0 0
0 cosf 0 sin 6
—sinf 0 cosf 0 ’
0 —sinf 0  cosf

Sps = (1.75)
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where cos? @ is the transmittivity of the semi-reflectant mirror, while a phase
shifter (a dielectric plate that rotate the polarisation of a travelling electromag-
netic wave with respect to a given reference) is simply a local rotation:

. cosp sine
Sps = ( —singp cosg ) ’ (1.76)

where ¢ represents the phase shift of the polarisation vector.

Note that, if one switches to complex variables «, a phase shifter just multi-
plies o by a phase e’ while a beam splitter rotates o; and asy. It may be shown
that orthogonal symplectic transformations are isomorphic to unitary matrices
in dimension n which, since any unitary can be decomposed into a product of
diagonal local phase multiplication and 2 x 2 real rotations, allows one to prove
that any passive symplectic operation is the product of beam splitter and phase
shifters, given above.

Going back to the Euler decomposition, it is clear that it can be interpreted
to state that any symplectic operation, and hence any purely quadratic oper-
ation at the Hilbert space level, can be decomposed as the product of passive
operations and local squeezing operations, where by a local squeezing Ssg we
intend a symplectic acting on a single mode by contracting a canonical variable
and expanding the conjugate one:

Zj

Sso = ( Zoj 91 > . (1.77)

In quantum optics, a squeezing operation is obtained by employing nonlinear
crystals pumped by an accessory laser field, in set-ups which are referred to as
parametric oscillators or parametric amplifiers (depending on whether the light
field is in a cavity, or a travelling wave). Such operations require energy, in the
sense that they do not commute with the free Hamiltonian.



Chapter 2

Phase Space methods

The language of statistical moments and covariance matrices we introduced
in the previous chapter offers a compact and efficient formalism to deal with
Gaussian states. A much more general approach may be taken to describe any
quantum state in a setting which is reminiscent of classical phase space. This
is the framework of characteristic functions and quasi-probability distributions,
which goes back to seminal work by Wigner on quantum corrections to classical
statistical mechanics, and bloomed in the sixties with the rise of theoretical
quantum optics and the emergence of a general unifying picture.

Conceptually, the phase space description of quantum states hinges on the
completeness of the set of displacement operators, which we shall prove in the
form a Fourier-Weyl relation between density matrices and characteristic func-
tions. This relationship will constitute the bridge between phase space and
Hilbert space descriptions, which will be useful in several applications to quan-
tum technologies. It will be convenient to handle most of the proofs and math-
ematical arguments concerning characteristic functions and quasi-probability
distributions on a single mode of the system. Because displacement operators
of multimode systems are just tensor products of local displacement operators,
the extension of the formalism to systems with many degrees of freedom will be
straightforward. Nevertheless, we shall always take care of explicitly linking the
single-mode formulae which will appear in this chapter to the general multimode
description adopted in the previous one.

2.1 Coherent states

The coherent state |«) is the eigenvector of the operator a with eigenvalue . If

one defines a = w\‘;%”, r = (z,p)" and the operator D, as

-Da = ﬁ*r = eiirTQi‘ = eaaffa*a’ (21)

in keeping with the convention adopted in the previous chapter, one finds
DiaD, =a+ a.

19
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The eigenstate |a) is then easily determined as

D, |0) . (2.2)

In fact, one has

aD,|0) = Do Dl aDy|0) = Do (a + @)]0) = aDy|0) . (2.3)

The expression of |a) in Fock basis is also readily established, and reads

o) = o mZ::O \j%hn) . (2.4)

Two further relationships we will use throughout the chapter are the expres-
sion of the CCR for Weyl operators with complex variables

DoDg = 2P =D, (2.5)

and the overlap between two coherent states:

(Bla) = (0|D_3D4|0) = (0| Do—p|0) 2@ ="
= (0]a — B)e2(@B"—a"B) — g=3la=bB g3 (af”—a"p) (2.6)

While not orthogonal, the coherent states form a complete set, in that the
identity operator can be represented as a weighted integral of projectors on
coherent states:

l ) 201:
F/@|>< |a=1. (2.7)

This can be seen by using the Fock basis decomposition (2.4):

~ [ #alaital = 1 S [ o S

mnO

27 e —p pm+n+1
_1 Z/ dp/ el e S —im)n| (28)
2

mn 0
00 oo e P p2m+1 el

=32 [ ap L = 3 )| = 1.
m 0 me m=0

where we used f ! m=m® dp = 278, and [T e PprmAlgp = m!

Since they are not orthogonal and yet they resolve the 1dent1ty as an integral
of one-dimensional projectors, the coherent states form actually an overcom-
plete set, that is a set which is still complete after removal of any one element.
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Eq. (2.8) implies that the trace of any trace-class operator O can be determined
as an integral over coherent states:

Tr [O} - i(m|@\m> - %/@d%z i<m|a><a|(§|m>
m=0 m=0

_1 2OlooO[A'I'I/L'I’I’LCV:l 2OZOZACE
=~ [ @Y talOmimia) = £ [ @atalOl). (29

™
m=0

In terms of the language we developed in the previous chapter, it is immediately
clear from the definition (2.2) that a coherent state |a) is a Gaussian state with
covariance matrix ¢ = 1 and first moments 2 = Re(a)/v/2 and p = Im(a)/v/2
(recall that D, = D} with the definitions above for z and p).

2.2 A Fourier Weyl relation

We shall now establish a direct connection between density matrices on L?(IR™)
and functions of 2n variables, which stems from the fact that the displacement
operators D, form an orthogonal complete set on the space of operators on
L?(R™) with respect to the Hilbert—Schmidt scalar product. To this aim, we
shall essentially follow the classical treatment due to Glauber. For simplicity,
we will prove the statement explicitly for a single mode, adopting the complex
single-mode notation D7 for the Weyl operators. As anticipated above, the
extension of such a result to the multimode case is straightforward.

Fourier-Weyl relation. Given bounded operator O on the Hilbert space of
one bosonic mode, one has

0= %/@dza’ﬁ [[)aé] D, . (2.10)

Proof.  First note that, due to the decomposition of the identity (2.8), any
bounded operator O for which («|O|3) is well defined may be decomposed as
follows in terms of coherent states:

0= [ dads(al0l)la)(], (211)
CZ

2
so that one just needs to prove that the operator |a)(8| can be expanded in

terms of displacement operators to extend the proof to all bounded operators.
We intend to show that

@)(81 = | T [lay(s15] B} (212)



22 CHAPTER 2. PHASE SPACE METHODS

Eq. (2.12) is equivalent to

10){0|

1 ~ ~ ~ A~
= / 4%y Tr [|a> <B\DV} D_oD_.Dg
™ Jo

1 L% way A
;/ @y T [la)(B ~ ) F D DDy

1 1 (4B =7 B) 1 . R
:;/ v (B —7|a)e (8 ,Y'B)D—(XD—WDQ

1

~ 1
:,/ d2fye*%\ﬂfa*v\2Dﬁ_a_7:,/ A2y ezl D, ,
™ J© ™ J¢

where we used Egs. (2.5) and (2.6). We are thus left with having to prove the
following relationship:

1 ~
|0)<0|=;/®d2fye_%"”2D7. (2.13)

In order to do that, let us apply the operator on the right hand side on the Fock
basis vector |m):

= [t D ) = - [ aeg et )
/d2 -1 C”Tr) )

5 T_ *)m n

B AFETO e At a0 M

7T/@ 7;) vm! n! n)

= ZZ l/ d2ye 1l <m>( 1)/ " atm=9 )
n=0j=0 " /T J min!
Ui m

=3 (") -1 = 8,010 (214
=0 \J

where we inserted the following integral, already employed in (2.8):
1 )
f/ d2’ye_|7|2'y*37” =nldjn . (2.15)
C

™

Eq. (2.14) is equivalent to (2.13) and hence to (2.12).

Characteristic function Given a state g, we are thus led to define x(a) =
Tr[D,0] such that

1 9 -
= ;/@d ax(a)D_, . (2.16)

As we will see in the next section, the function x(«) is known as the symmetri-
cally ordered characteristic function associated to the quantum state o. Clearly,
complete knowledge of x(«) provides one with complete information about g.
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For a system of n modes, in the notation of the previous chapter, the Fourier
Weyl relation we just derived reads

1 .
0= G /]R (D (2.17)

with d?"r = dz1dp; ... dz,dp, and
x(r) =Tr [ﬁ,r‘g} . (2.18)

Notice the change of sign due to the convention in defining D, set by Eq. (2.1).
The additional factor (1/2)" is due to the change of measure associated with
the change of variables o = ZL2,

Note also the orthogonality of the Weyl operators with respect to the Hilbert
Schmidt norm:

Tr [DO,D_B} — n6(a—f), (2.19)

or, with 2n real variables,

Tr [D,D_S] = (21)"82"(r — ) . (2.20)

2.3 Characteristic functions and quasi-probability dis-
tributions

Given a quantum state g of a single mode, the corresponding s-ordered charac-
teristic function ys(a) may be defined as

Xs(@) = Tt [Dag| €12 (2.21)

The significance of the exponential factor becomes manifest if one considers the
evaluation of expectation values of ordered products of ladder operators. By
recalling that D, = eoa'g—aTag—3lal? — g—a’agaa’otilal® apq inserting such
expressions in the definition of the s-ordered characteristic function, one obtains

a\" a\"
(@™a™); = Tr [a"™a"™p] = (304) <_8oz*> Xl(a)h:o , (2.22)
a\" o \"
tm n _ [ = _
{a™a")o (8@) < 8a*) XO(Q)h:o’ (2.23)
a\" a\"
im n — notm 1 _ [ 2 _ _
(a'™a™)_y = Tr [a"a"™ ] (804) ( 8@*) X,l(a)|a:0. (2.24)
Differentiating the s-ordered characteristic function in @ = 0 allows one to

retrieve the expectation value of s-ordered products of creation and annihilation
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operators, with s = 1, s = 0 and s = —1 corresponding to normal, symmetric
and anti-normal ordering respectively.!
Notice that the following relationship holds for all values of p:

Xe(0) = Tr[o] = 1. (2.25)

By taking the complex Fourier transform of x(a) one may define the s-
ordered “quasi-probability” distribution W («):

]‘ —«
Wi(a) = = / P2Bele "Dy (5) | (2.26)
™ Jc
which is normalised:
d*aW,(a) = xs(0) =1 (2.27)

and has the property that

/@dQQa*ma”Ws(a):—/ 2a /d2 (< )m<ag*)ne<“5*“*m) Xs(B)
- [ ((-2) (5%) 50) o)

where we applied the representation of the derivative of the delta function given
by the integral over . Egs. (2.27) and (2.28) justify the terminology ‘quasi-
probability’ distributions, with the “quasi-” there to remind one that the quan-
tity Ws(a) is in general not positive, and in fact it may not even be a proper
function at all, as we shall see in what follows.

Although they allow for a simple, unified treatment, the quasi-probability
distributions for different values of s emerged historically at different times in
different contexts, responding to different demands.

For s = 1, the quantity Wj(a) is the celebrated Glauber-Sudarshan P-
representation, and is commonly denoted with P(a). One has the remarkable

property:

Glauber-Sudarshan P-representation of a quantum state:

0= /@ o P(a)|a)al | (2.20)

'In Eq. (2.23), we have implicitly defined the symmetric ordering of a product of a’™ and
a™ as the normalised sum of products of m af and n a in all possible orders. For instance,

1
(at?a)g = Tr |:§(aT2a +afaat + aafz)g .
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which may be easily proven by applying the operator D, by similarity on both
sides of Eq. (2.13), getting

1 b ey oA
la){al = Wl/mdzve Bhleler e p_ (2.30)
C

and then by inserting this expression in the right hand side of Eq. (2.29), to
obtain

1
/anP(a)|a><a|: /d2 /d%P a)e the@r e Np_ (231)
C
/d2v><1 ez p_ Z*/dQWXO(’Y)D—vzgv
T J¢

where we solved the integral over « through the inverse Fourier transform rela-
tion

mm:/h%&“ﬂwmm, (2.32)
C

and applied the Fourier-Weyl relation (2.12) in the last identity.

Due to their over-completeness, coherent states allow for a diagonal decom-
position of any density matrix. However, this decomposition is given in terms
of the quasi-probability P(a) = Wi(«), which may be a distribution but not a
proper function. For instance, the P-representation of a coherent state |a) (] is
the delta function §(y — ), while the P-representation of a number state may
only be expressed in term of derivatives of the delta function.

States with a P-representation “not more singular” than a delta function,
including coherent states, are often referred to as ‘classical’ states. Within the
subset of Gaussian states, it is easy to see that such states are those for which
the smallest eigenvalue of the covariance matrix o is greater than or equal to
1. We shall not discuss this notion further but we will employ it later on for
a remarkable consequence it has when studying the separability of Gaussian
states.

The Fourier-Weyl relation allows one to shed light on the nature of the anti-
symmetrically ordered quasi-probability function W_;(«) too. Such a function
is commonly referred to as the ‘Husimi’ Q-function, and denoted as Q(«a). One
has

~alelo) = = [ EBxo(B)(alD-sla) = =5 [ et Dy (B ala— )

*/?%wmﬂﬁxwr“L:W4®:Qm» (2.33)

The Q-function is therefore always positive and does not diverge. On account of
these properties, it found wide application in the study of quantum dynamical
systems, whenever a well defined probability distribution is desirable. The value
of the Q-function at a point « represents the probability that the ‘heterodyne’
measurement of the system yields the outcome a (heterodyne measurements
give complex outcomes).
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As for the symmetrically ordered Wy(«), it was historically the first quasi-
probability to be introduced, by Wigner, and goes under the name of Wigner
function. We shall denote it as W («), omitting the subscript. Likewise, x will
represent the symmetrically ordered characteristic function yg. It is instructive
to express the integral (2.26), that defines the Wigner function, in terms of real

variables through the identifications o = % and f = £ j}”’ obtaining

1 dl'/dpl i(pz —xp’
W(xap) = 72/ / 76 (p P )XO(xlvp/)

_ 7 i(px'—xp’) D oD
27T2/ / da’ dp' €' /RdQ<q|D_%9D_%I(J>

/

/
- ! i’ oip (q=x) 10 £ r 2.34
53 /qud:c dp’e {a—lola+3) (2.34)

= /dx' ' x——\g\x—i— /dx’ 202’ (0 — ol ol + ')

where we expressed the trace, as well as the final result, in terms of the improper

quadrature eigenvalues |¢), as per Eq. (1.15), and D, = e i hei Pl Y —
2

el Pe=igPe—its- (after ordering via Baker-Campbell-Hausdorff). We also ap-
plied the representation of the delta function as an integral of complex expo-
nentials.

Operation interpretation of the Wigner function. Eq. (2.34) implies that

1

+oo
. / AW (ap) = (alela). (2.35)

Up to a factor %, the integral of the Wigner function over a certain phase space
quadrature, gives the probability of measuring the conjugate quadrature. This
statement is clearly phase invariant, in the specific sense that, if one defines the
generalised canonical operators £y = cosfZ — sinf p and associated canonical
variables zg, one has

1 [T
5 [ o Wiap) = Gaolelen) (2.36)
—00

since [Zg, Zg_z] = i.

The marginal of the Wigner function along any phase space direction is hence,
up to a factor , a positive probability distribution which describes the statistics
of quadrature measurements Such measurements, corresponding to posmon or
momentum measurements for a material particle in the cases § = 0,—%, is
implemented thorugh ‘homodyne’ detection in quantum optics.

27
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2.4 Homodyne detection

Homodyne detection. A homodyne detection scheme consists in the mea-
surement of the quadrature operator g = cos 0% — sin 6p, with outcome proba-
bilities:

p(xo) = (zolo|zp) - (2.37)

Let us first notice that the operator Zy takes the following form in terms of

ladder operators

) e~ 0q 4 gt

fg=—-—"-——— " (2.38)

V2
Homodyne detection results from mixing the initial state of a single-mode o

with a strong coherent state |a) (with a = |ale?” and |a| > 1) at a balanced
(50:50) beam-splitter (given by Eq. (1.75) for § = w/4), and by subtracting
the detected intensities at the two outputs of the beam-splitter. If a is the
annihilation operator of the system mode and b is the annihilation operator of
the coherent state, the outputs are described, in the Heisenberg picture, by the
modes

a+b a—2>b
—_— d ———. 2.39
7 an 7 ( )

Subtraction of the two intensities then corresponds to measuring the operator

1 1
§(a+b)T(a+b)—§(a—b)T(a—b):aTb+abT ) (2.40)
with outcome probabilities p(x) which have to be evaluated on the initial state
(since we described the evolution in the Heisenberg picture). If |a| > 1, then
the state |a), besides being by definition an eigenstate of b, approximates an
eigenstate of bf too, as

bila) = bTDy|0) = Do (bf + a)[0) = a*|a) + Dy|1) ~ a*|a) for |a| > 1.
(2.41)
Hence, the operator being measured approximates the desired quadrature:

—i6 it
a'b+ ab' ~ |a\\/§w = |o|V2ip . (2.42)

V2

By varying the phase of the optical phase of the strong coherent state |«), all the
quadratures &9 may be scanned by the same apparatus (the pre-factor |a|v/2 is
irrelevant, as it may just be handled by rescaling the measurement results).

2.5 Characteristic function of a Gaussian state

In order to link the phase space approach back to the material we introduced in
the previous chapter, let us now determine the (symmetrically ordered) charac-
teristic function x¢g of the most general Gaussian state, which was parametrised
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in Eq. (1.48) in terms of a covariance matrix o = SvST (with normal form v)
and a vector of first moments which we will denote here with r’. We will start
off with the general case with any number of variables, as in Eq. (2.18), and then
reduce it to a single-mode problem, for which we will adopt more convenient
complex variables.

By inserting Eq. (1.48) into Eq. (2.18) one gets

n

xe@) = | [[(1-e®) | Tx ®<Ze‘5ﬂ"|m>jj<m|> $Dw D, DL, 51
j=1 | \/=1 \m=0

= H(l—e_ff) Tr ®<Ze_5fm|m>jj<m|> Dg-1, e”/TQr7
j=1 | \/=1 \m=0

(2.43)

where we applied Eq. (1.11) and the projective representation of the symplectic
group through the indentity

SDLSt = oSt _gi"STes (2.44)

Since the displacement operators are tensor products of local operators, the
problem of determining x¢ has been reduced to finding the characteristic func-
tion of the single mode operator Y -_ e~%™|m)(m|, where |m) is a Fock state.
In fact, the characteristic function of a tensor product of operators is the product
of their individual characteristic functions, so that the characteristic function
of the Gaussian state may be determined, up to normalisation, by taking the
product of such single-mode characteristic functions, multiplying it by the phase
factor we determined above, and applying the symplectic transformation S—!
on the variable r.

It is more expedient to evaluate the single-mode characteristic function of
S e %™|m)(m| by switching temporarily to complex variables:

oo
Tr Z e§-7m|m><m|[/\)a1
m=0

1 >~ _tm .
= [ 30 e omiyim) miDa )
m=0

l/ d27eié(w2+|°‘+7\2+a*wfa“/*) Z (7*((14-’7)6_{7)
C

™ m!
m=0

Lo

e” 2 —&_

A2y e (1= )eor"e ™~y (9 45)
a C

The latter is a standard Gaussian integral, which can be reduced to a particu-
larly simple form by setting v = (z + 4y)/v1 —e~%, and yields

lal? (14”5 5
‘| 2 - el
e l—e =7 e 2 Vi

S e 9™ m)m| Dy

m=0

Tr = (2.46)
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where we have inserted the symplectic eigenvalue of the covariance matrix o
according to Eq. (1.60). Combining Eqgs. (2.43) and (2.46) leads to the following
expression for the characteristic function of a multimode Gaussian state, after
the substitution a = (; + ip;)/+/2 for each different j:

-1 TS_lT(@" Vj]lz)S_lreirTQTr' — 67% TS_lT( i1 l/j]lz)S_lreirTQTr/

=1

xa(r)=e

_ e_i TsTTaT (@, uj12)95*1reirTszTr’ _ e—irTQTs(ea;:l uj]lz)STQreirTQTr’

efirTQTaQreirTQTr' , (247)
where we exploited the invariance of (@?:1 vj ]].2) under the action of €2 by con-

gruence (the latter represents a product of local rotations on 2 x 2 subspaces, and
thus preserves local identity matrices), and also repeatedly employed SQST = €.

Characteristic function of a Gaussian state. Summarising, we have found
that the characteristic function x¢g of a Gaussian state with covariance matrix
o and vector of first moments r’ is given by:

XG(I') _ e—%rTQTo‘Qr eirTQTr’ ) (248)

Notice how the vector variable r always enters this expression after multiplica-
tion by the symplectic form €.

We are thus led to yet another general characterisation of Gaussian states, as
the quantum states with a Gaussian characteristic function. The Wigner func-
tion Wg of a Gaussian state, obtained by taking the complex Fourier transform
of Eq. (2.48), is promptly evaluated, obtaining

1 1.//TAHT i T AT
WG(I‘) — S /]RZn d2nr//e i’ QloQr e'r Q' (r'—r)
I e a0 (2.49)
©"/Det o
2"1‘

The latter is, with respect to the measure 9, a Gaussian probability distri-
bution centred in r’ and with covariances described by o.

As we saw above, the marginal Wigner function along any phase space di-
rection describes the probability distribution of the quantum measurement of
the associated quadrature operator. Hence, as far as Gaussian states are con-
cerned, the Wigner function provides one with a local, ‘realistic’ model to de-
scribe quadrature measurements. If one restricts to quadrature measurements,
such systems may be mimicked by multivariate classical Gaussian distributions
and will never show any signature of quantum non locality, such as a violation
of Bell or CHSH inequalities. Clearly, quantum Gaussian states admit, besides
the phase space description akin to classical distributions, an underlying Hilbert
space description: general quantum measurements on the Hilbert space do allow
for quantum non locality to become manifest with Gaussian states. It is how-
ever clear from the analogy with classical distributions that, whilst Gaussian
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states are entirely described by first and second moments of their Wigner distri-
butions, any analysis regarding genuinely quantum features, such as quantum
entanglement, requires one to look beyond the phase space formalism.



Chapter 3

Entanglement of continuous
variable systems

The characterisation of quantum correlations, also known as entanglement, is
central to the study of quantum information. Entanglement turns out to be a
key resource for the implementation of a number of quantum communication
protocols, and also necessary to achieve computational speed-ups with quantum
hardware, in the sense that accessing regions of the Hilbert space with entangled
states allows one to shorten the computational depth of certain algorithms.

Not surprisingly, generating and maintaining entanglement is generally diffi-
cult in practice. Thanks to the techniques developed in quantum optical set-ups
to achieve squeezed light, entanglement is however relatively straightforward to
produce in optical quantum continuous variables. As we shall see, in fact, con-
tinuous variable entanglement is closely related to the notion of squeezing. It
is therefore of the utmost importance to be able to qualify and quantify en-
tanglement of continuous variables, which is the subject matter of the present
chapter.

We will present criteria to detect the entanglement of Gaussian states and
then proceed to describe a possible way to quantify such quantum correlations,
bearing in mind that the determination of entanglement monotones of clear
operational significance is still an open problem, even in the restricted arena of
Gaussian states.

3.1 Entangled states and partial transposition

A bipartite quantum state pap is said to be separable if and only if it can be
written as a mixture of product states:

04 =Y _pi(0a; ®0B;) (3.1)
j
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where 04,; and gp,; are local quantum states of subsystem A and B, respec-
tively. Notice that the sum could generalise to an integral over continuous, real
variables. A quantum state is entangled if and only if it is not separable.

A general sufficient criterion to detect entanglement, and one that, as we
shall see, works very well with two-mode Gaussian states, is the so called pos-
itivity of the partial transposition (PPT) criterion: If p4p is separable, and so
can be written as above, the partially transposed state pap, i.e., the state where
transposition is applied to only one of the subsystems, say B to fix ideas, reads

04 =Y _pil0a; ® 0p ;) (3.2)
J

and is still a quantum state. In particular, if psp is separable, then gap > 0
(the state is PPT). Therefore, if a state is such that pip # 0, then it must be
entangled (sufficient criterion for entanglement).

The PPT criterion is not necessary and sufficient as there exist entangled
states, termed “bound-entangled” because they cannot be distilled, which are
PPT. Note also that the transposition basis and subsystem are irrelevant to the
positivity of the partially transposed state.

3.2 Separability criteria for Gaussian states

Let us dive straight into the action with a very general sufficient criterion for
the separability of a Gaussian states:

Proposition. An (n)-mode Gaussian state with CM o > 1 is separable across
any bipartition of the modes.

Proof. As we saw in chapter 2, a Gaussian state pg with CM o > 1 is classical,
in the sense that its P-function P(r) is not more singular than a delta function.
Hence, such a state admits a P-representation as a convex sum of multimode
coherent states:

oc = / e P(r)D[0) (01D} (3.3)

Such a state is manifestly separable, as each ﬁr|0> is a product state since D,
is always a tensor product of unitary operators on the two local Hilbert spaces.
O

Besides providing an early hint as to the relationship between squeezing and
entanglement!, such a statement will serve as a powerful lemma in what follows
to establish stricter criteria for separability.

n that we just showed that the latter requires an eigenvalue of the covariance matrix
smaller than 1, which in turn implies the existence of a canonical quadrature with noise lower
than vacuum noise, i.e. “squeezing”.
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3.2.1 Separability of two-mode Gaussian states

The most basic, and arguably most relevant to experiments, separability prob-
lem in continuous variables concerns Gaussian states of 2 degrees of freedom. In
this instance, an easily tested necessary and sufficient condition for separability
can be derived, as we will see.

To lay the groundworks of our proof, let us introduce a decomposition of the
CM o of a 2-mode state into 2 x 2 sub-blocks, as per

U:< o4 Oap ) 7 (3.4)

T
O-AB UB

where o 4 and op are the local CMs of the single-mode subsystems A and B,
and o g p represents their correlations.

We can then move on to prove a reduction of a 2-mode CM o to what is
known as Simon’s standard form:
Proposition. Any two-mode covariance matriz o may be reduced, by local,
single-mode symplectic transformation into the standard form of

with ¢y >c_ . (3.5)

Proof. By Williamson theorem, local symplectic operations may be found to
bring o 4 and o p into their normal mode form, als and b1s respectively. Such
local submatrices are obviously invariant under local rotations, which are always
symplectic. Through such rotations the off-diagonal block o 4p may be diago-
nalised as per its singular value decomposition, which has also enough freedom
to ensure ¢4 > c_.

Notice that any quantity which may be affected by local unitary operations
cannot play any role in determining the separability of a quantum state. Hence,
as far Gaussian states are concerned, first moments, which can be arbitrar-
ily adjusted by tensor products of local, unitary, displacement operators, can
be safely disregarded. As for second moments of two-mode Gaussian states,
only the locally invariant quantities entering Simon’s standard form may have
a bearing on the quantum correlations.

Simon’s standard form may be adopted to obtain a more detailed condition
for the separability of two-mode Gaussian states:

Proposition. Two-mode Gaussian states with Detoap > 0 are separable.

Proof. Let us first take into account the case Deto ap > 0. As we just saw, the
initial CM o of any two-mode state can be turned by local unitary operations
to the standard form of of Eq. (3.7), whose covariances may be arranged to
have a > b and ¢y > c_ > 0 without loss of generality. Let us then consider the
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local symplectic transformation Sj,. = diag(\/zy, 1//Zy, Vy/z,\/x/y), made

up by the tensor product of local squeezings. With the choices

v cya+c_b
“Ncated’

_ [a/z+bx = [(a/x — br)? + 421/
= ax + bz — [(ax — b/x)2 + 42|12

it can be directly shown that o’ = S| oS, may be diagonalized by a sym-
plectic rotation Rpg of the form of Eq. (1.75), with a proper choice of the angle
0. This would not be possible if ¢y and c_ had different signs. Moreover, the
smallest eigenvalue of this diagonal form is degenerate:

T oT .
Ri5 051060 s Stoc 12,90 = g = diag (K1, ko, ki, k),

with k; > k_ for ¢ = 1,2. But then, for such a diagonal CM, the uncertainty
principle 44 4 Q2 > 0 straightforwardly implies k- > 1. The Gaussian state
with CM o 44 is thus classical and therefore separable. So it is the Gaussian state
with CM o’, related to o4, by a rotation, which cannot change the eigenvalues.
The initial state, with CM o, is then separable as well, being related to the
Gaussian state with CM o’ by local unitary operations. This completes the
proof in the instance Deto ap > 0.

For Deto 4p = 0, so that in o,¢ one has cy > c_ = 0, the proof is easier. In
this instance a local squeezing S; = diag (v/a, 1/v/a, Vb, 1/v/b) is needed to bring
osf into a form o” with diagonal entries {a?,1,b%,1} and only two nonzero off
diagonal entries with value abc,. The uncertainty principle o’ +iQ > 0 for a
matrix o’ with such a form implies o” > 1, thus establishing the separability
of the original Gaussian state with CM o and concludes our proof. [

Proposition. The quantity A = Deto o +Deto g+2Deto o is invariant under
symplectic transformations.

Proof. Notice first that A is invariant under local symplectic transformations
S4 ® Sp, because all such local transformations have determinant 1 and, acting
by congruence, just multiply the 2 x 2 blocks without mixing them. Now,
local operations may bring any initial o in the standard form (3.7), with A =
a? + b? + 2c, c_. By reordering the variables (namely, by swapping the second
and third one), any CM may be rewritten as

a’:( T Tap ) : (3.6)

Oup Op

where o, pertains to the variables £ 4 and g, o), pertains to p4 and pp, while
0 .p reports the £ — p correlations, with associated standard form

a cy 0 0

b 0 0

Tsf 0 0 a c_
0 c_ b

with cp >c_ . (3.7
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Under such a different convention, the quantity A can be rewritten as

A=ad>+ b +2c,c =Tr(o,0,). (3.8)

Notice also that the beam-splitting symplectic transformation of Eq. (1.75) cor-
responds, after reordering the variables, to two identical rotations acting on o,
and o, such rotations do not affect A, as apparent from the expression (3.8).
At the same time, such rotations, supplemented by local symplectic operations,
are enough to bring o, ¢ into normal form: to this aim one may in fact rotate
through a beam splitter to diagonalise, say, o, then apply a local squeezing
transformation S, ,, = diag(z1, 22,1/21,1/22) to make o, invariant under ro-
tations, and then apply a second beam splitter in order to diagonalise o, too.
Local squeezing transformations are then sufficient to achieve normal form.

We have hence shown that one can bring any given two-mode CM o to its
normal form by symplectic transformations that do not affect A. The quantity A
must then be completely determined by the symplectic eigenvalues vy and v_ of
o (withvy > v_)as A = v3 412 (this relation just follows from the definition of
A applied to the normal form vy 1o ®v_15), and is hence a symplectic invariant
itself. O

Notice that another symplectic invariant quantity must exist, since there
are as many independent symplectic invariants as the the number of symplectic
eigenvalues, that is of the number of modes (two, in the present case). Such an
invariant is simply Det(o) = vZv2 which, by Binet theorem, is not affected by
symplectic transformations S, whose determinant always equals 1. Note that,
for a two-mode system, one has then:

2 A F VA2 — 4Deto .

i 2

(3.9)

Let us now recall the reader that the positivity of a Gaussian state gg is
equivalent to the condition o + i€2 > 0 on its covariance matrix o, which can
in turn be recast as v+ > 1 for the symplectic eigenvalues of a two-mode o
(see Section 1.6). It is easy to show that the positivity condition is completely
equivalent to the following set of conditions on the CM o of a two-mode state:

Deto —A+1>0, (3.10)
Deto >1 (3.11)
o>0. (3.12)

The condition o > 0 must be specified because quadratic functions of the sym-
plectic eigenvalues such as Deto and A will never be able to distinguish their
sign. Also notice that o > 0, being sufficient for the existence of a normal form,
implies that the symplectic eigenvalues as determined by (3.9) must be real, and
thus subsumes A2 > 4Deto: no positive matrix violating this inequality exists.
The set of equations (3.10-3.12) form an explicit necessary and sufficient condi-
tion for a Gaussian operator, such as g¢, to be positive. Such a characterisation
of positivity will prove useful in the following.
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We are now in a position to derive a necessary and sufficient criterion for the
separability of two-mode Gaussian states. We already saw that the positivity
of the partial transposition ¢ > 0 is a necessary condition for the separability of
any quantum state g, regardless of the Hilbert space dimension (and hence its
violation is a sufficient condition for the entanglement). We are about to show
that such criterion is also sufficient for the separability of two-mode Gaussian
states. Before proving that, let us understand how partial transposition in the
Hilbert space may be represented at the level of a phase space description. We
are, in other words, interested in the effect of transposition on the canonical op-
erators & and p of a single canonical degree of freedom. This can be determined
by noticing that, in the Fock basis, the action of @ and a' can be written entirely
with real coeficients and, therefore, one has a7 = a' and a7 =« (bear in mind
that the positivity of the partial transposition is invariant under the choice of
the transposition basis, which amounts to applying a certain local unitary to
the quantum state). One is led to conclude:

T
4T — (atad)” -, (3.13)

1 (a— aT)T .
G D . (3.14)
Partial transposition can thus be represented, on the canonical operators of two
degrees of freedom, by the action of the linear operator T' = diag(1,1,1, —1),
which mirror reflects one of the four variables. At the level of covariance ma-
trices, this corresponds to the mapping o — ¢ = T'oT, where & stands for the
partially transposed CM.

PPT criterion for two-mode Gaussian states. The positivity of the par-
tially transposed state is necessary and sufficient for the separability of a two-
mode Gaussian state.

Proof. Consider a two-mode Gaussian state og with CM o decomposed ac-
cording to Eq. (3.4) and satisfying the physicality conditions (3.10-3.12). The
conditions (3.10-3.12) for the positivity of a Gaussian operator only depend
on Deto, A and the fact that & > 0. Partial transposition, acting on o
by congruence as per ¢ = ToT with DetT = 1, cannot affect the determi-
nant: Deto = Deta. Nor can it affect strict positivity: o > 0 implies & > 0.
Then, the only relevant quantity affected by partial transposition must be A =
Deto 4 +Deto g +2Deto 45, which turns into A= Deto s+ Deto g —2Deto a5,
because the effect of T is flipping the signs of both a column and a row, which
leaves Deto 4 and Deto g alone but flips the sign of Deto 45. The expression
of a necessary condition for separability in terms of second moments is hence

Deto —A+1>0. (3.15)

One has then only to run through three possible instances, depending on the
sign of Deto 45 and on whether (3.15) is satisfied or not.
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If Detoap > 0 then the state is separable according to a previous proposi-
tion, and (3.15) is necessarily satisfied since for Deto 45 > 0, A < A such that
Deto — A +1 > Deto — A + 1> 0.

If Deto ap < 0 and (3.15) is not satisfied, then the state is entangled, because
a violation of such a relationship is sufficient for the state to be entangled.

Finally, if Detoap < 0 and (3.15) is satisfied, then the partially transposed
state g¢ is a Gaussian operator that satisfies all three conditions (3.10-3.12)
and for which Deta 45 > 0. That is, 0¢ is a separable physical quantum state.
But then, the original state must be separable too, because partial transposition
preserves separability.

The criterion (3.15) is hence necessary and sufficient for the separability of
two-mode Gaussian states. [J

3.3 Quantifying entanglement: Logarithmic nega-
tivity of Gaussian states

The logarithmic negativity is an entanglement monotone that, while not amenable
to a clear operational interpretation, can often be evaluated exactly. This is the
case for Gaussian states too, as we will show in the present section.

The logarithmic negativity F s of a bipartite quantum state o is defined, in
terms of its partial transpose 0, as

B = logs |2l , (3.16)

where ||6]| denotes the trace norm of operator 6, i.e. the sum of the absolute
value of its eigenvalues of o, if diagonalisable. Note that partial transposition
cannot change the trace of an operator, so that the sum of the eigenvalues of a
partially transposed state g is still 1. The quantity || ¢||1 may hence be different
from — and in particular larger than — 1 if and only if ¢ has negative eigenvalues.
It follows that Ear is equal to 0 for all states with positive partial transpose, and
larger than 1 for all states which violate the PPT criterion. The adoption of the
logarithmic negativity is therefore somewhat unsatisfactory, in that there exist
entangled states, known as “bound entangled” states, that have positive partial
transpose, for which the logarithmic negativity is zero. Even so, the logarithmic
negativity is still a consistent entanglement monotone — a quantity that does
not increase under local operations and classical communication — and is related
to entanglement distillation in the sense that it provides an upper bound to the
asymptotic conversion rate between the state in question and entangled Bell
pairs. The log, occurring in Eq. (3.16) is needed for the logarithmic negativity
to provide one with such an upper bound.

The quantity | og|1Tr(|ge|) is promptly evaluated for Gaussian states of
m + n modes with CM o. Let & = ToT be the partially transposed covariance
matrix, where partial transposition with respect to the last n modes is described
by T'= @), La®@)_, 0-. Now, let {7;,5 € [0,...,m+n]} be the symplectic
eigenvalues of the partially transposed CM &. The constructive characterisation
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of Gaussian states we went through in Chapter 1, allows us to cast the Gaussian
operator gg in the form

so = D181 @ (X2 2y st} ) 800 (a0

j=1 \m=0

(where we just replaced v; in Eq. (1.62) with 7;) for some unitary operators S
and D,. As one should expect, only partially transposed normal modes with
v; < 1 contribute negative eigenvalues to the tensor product spectrum. The
operator |gg| is simply

~ o n [e'e] oo 1™ L
|c| = DLST ® <Z 2W|m>g‘j<m|> SDy . (3.18)
J

j=1 \m=0

Clearly, the unitary operations D, and S do not affect the trace of |oc|. Also,
the trace is multiplicative under tensor products (Tr(pa ® o) = Tr(0a)Tr(0B)
for trace class p4 and pp), so that each term in the central tensor product
contributes multiplicatively to Tr(|o¢|). The factors with #; > 1 are the same
as those of a physical Gaussian state, and hence normalised. It will therefore
suffice to consider the contribution of operators with ; < 1, which are straight-
forwardly evaluated as geometric sums:

2 = (1= \" 2 41 1
= = — . .].
ﬁj+1z<ﬁj+1) i+l 20 b (3.19)

m=0 J

Hence, one obtains

m—+n
- 1
gl = H max{l, ﬁ} (3.20)
Jj=1

J

and
m-+n

Ex (0c) = Y max{0,—log,(7)} . (3.21)
j=1
The situation is particularly simple for two-mode systems, where it can be
proven that, when partially transposing a physical state (i.e., one with o4 >
0) with respect to one mode, only one of the two partially transposed symplectic
eigenvalues can be smaller than 1. The two partially transposed eigenvalues are
obtained by transposing the invariant A in Eq. (3.9):

5 _ A F VA2 — 4Deto
2 b

2 (3.22)

and the logarithmic negativity of a two-mode state pg,14+1 reads

En(0G1+1) = max {0, —log,v_} . (3.23)
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Logarithmic negativity of two-mode states. Summing up, the systematic
recipe to verify and quantify the entanglement of a two-mode Gaussian state

0G,1+1 with CM
oA OaB
- , 3.24
o= () (3:24)

comprises the following steps:

1. Determine the two partially transposed symplectic invariants Deto and
4 = Deto 4 +Deto g —2Deto 4 (notice the minus sign that distinguishes
A from A).

2. Determine v_ according to Eq. (3.22) (74 is not needed). The state is
entangled if and only if 7_ < 1.

3. Determine the logarithmic negativity according to Eq. (3.23).
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Chapter 4

Quantum estimation with
Gaussian states

Imagine one has access to quantum means and wants to determine the value of
an unknown real parameter, say ¢, that characterises an operation ®y, whose
form is otherwise known. In practice, ¥ would typically be a temperature, or
a parameter that characterises a Hamiltonian operator (such as an interaction
time, or strength, or the product of the two). This is the vanilla version of the
problem of ‘parameter estimation’ in quantum metrology. Occasionally, a vari-
ation of this issue when one attempts to establish whether a certain parameter
is different from zero is referred to as ‘quantum sensing’.

A very natural approach to determining ¢ is to prepare a certain quantum
state g, let it undergo the unknown operation ®y, and finally measure the state
through some POVM Y u K;[f( u = 1. After several measurements, one would
like to reconstruct the value of ¥ as well as its standard deviation A¢, which
gives a reliable quantitative estimate of the determination’s precision. If the
POVM is fixed, this boils down to a classical problem, where the standard de-
viation A needs to be determined from sampling the conditional distribution
p(ul9) = Tr(K uggkl) of the correlated classical variable p (the measurement
outcome). The solution to this question is given by the classical Fisher infor-
mation [ [ (where we emphasise the dependence on the chosen POVM in the

context pictured above), given by

. 2§ 0 l)’
o = Do) D )] = 3 S (4.)

(where the prime denotes the partial derivative with respect to the parame-
ter ¥ and the summation might be replaced with an integral over a suitable
measurable set), and the associated Cramér-Rao bound is

AY> (4.2)
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where N is the number of measurements carried out. Notice that the lower
bound above will in general depend on the value of the parameter ¥.

The optimisation of the classical Fisher information over all possible POV Ms
gives rise to the quantum Fisher information I:

Iy =suply ), (4.3)
K, "

where, as above, the symbol K . stands for the whole POVM, and the associated
quantum Cramér—Rao bound:

1
AY > N,
Since this inequality may be shown to be achievable, it represents the ultimate
bound to quantum parameter estimation.

Here, and henceforth, let {gy} denote the set of states ®4(p), parameterised
by ¥, in terms of which the estimation problem could have been cast (without
reference to the operation ®y). Remarkably, the quantum Fisher information
of Eq. (4.3) is amenable to the following general characterisation:

(4.4)

Iy =Tr (gﬁ[:g) , (4.5)

where the ‘symmetric logarithmic derivative’ operator is defined implicitly as
the self-adjoint operator that satisfies the following equation:

205 = Lyos + 0oLy (4.6)

and thus characterises the sensitivity of the set oy to variations in the parameter
. Let us note in passing that an equivalent characterisation of the quantum
Fisher information may also be given in terms of the ‘Bures distance’ between
quantum states. We will not concern ourselves here with such a connection, but
just take the symmetric logarithmic derivative path.

Because of their ready availability, the pervasive nature of Gaussian op-
erations, and their ease of manipulation and description, Gaussian states are
obvious, major candidates as metrological probes. This provides a compelling
reason for investigating the quantum Fisher information of a set of Gaussian
states {0y}, which is the subject of the section to follow.

4.1 Gaussian quantum Fisher information

In order to determine the Fisher information, one has to obtain an expression
for the symmetric logarithmic derivative operator Ly, defined in Eq. (4.6). For
a set of n-mode Gaussian states gy, we shall put forward the ansatz that the
symmetric logarithmic derivative must be at most quadratic, and write (we
adopt here and in what follows Einstein’s convention of summation over repeated
indexes):

Lo=LO + LV + LS i (4.7)
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where the vector & = (21,01, .. ,;%n,;ﬁn)T is our standard vector of canonical
operators, L(® € R, L) € R?" and L is a symmetric, real 2n x 2n matrix
(whose symmetry ensures the overall Hermiticity of the operator).

The methods to determine the operator Ly will be provided by the charac-
teristic representation, developed in Chapter 2.

Consider in fact the notional operator 6 that admits a characteristic function
representation ys(f) = Trle iT'E 0], where we chose to write the Weyl operator
in terms of the variables T = wr. The Baker-Campbell-Hausdorff relation (1.9)
may be expressed, in this multivariate setting, as

Xo(F) = Tr[e' F6] = Tr[e™ XeiP' PesX Pg| = Ty[e'P'PeiX Xe—5% Py (4.8)
where we defined the n-dimensional vectors x (p) and X (p) as the vectors of odd

(even) entries of the parent vectors t and ¥, such that Xx@p =t and X®p =T.
Now, differentiating the last two equalities of (4.8) yields

- QFTE A A i - TR A i
05,x6 = 1 Tr[e™ "o p;] — 53@){5 =i Trle"™ "p;o] + 5TiXa (4.9)

- GFE A A iFTE A A 1 ~
Oz;x6 = i Tr[e™ Toa;] + 2p]Xo =i Tr[e "&;0] — 2PiXo, (4.10)

whence
) )

615])(6 = ) X(pjo+06p;) » 35ch6 = ) X(&j6+0625) » (4.11)
PiXo = X(2;6—02;) +  LjXo = —X(pjo—6p;) - (4.12)

Going back to the variables r, the general correspondence between differential or
multiplicative terms on the characteristic function and operators can be recast
as

Or;Xo «— 5(Pj0+07;),  Trxs > Qp(Fj0—07;) . (4.13)

The two relationships (4.13) allow one to bridge between the phase space
and the Hilbert space descriptions, and may be applied to the density operator
o to establish these correspondences, which will unlock the expression of the
quadratic symmetric logarithmic derivative:

—2i8,:jx “ Tj0+ ij , (414)

1 - - . P

§(ij’rj’ﬂkk’rk’ — 48,:1‘,6;‘].))( & TR0+ 0rTk - (415)
Since the variables 7; are defined as €);;:7;/, the characteristic function xg of
a generic Gaussian state with covariance matrix o and first moments d, that

both depend on ¥, can be written as

1l FF itrd
Xg =e 10jkT;TE+iT1d) ) (416)
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whence
) T
O xa = | idj = 50557y | XG » (4.17)
. 1 - . 1 . 1
(97:,€3,-jxg = de — iakk"rk/ Zd] - inj/Tj/ — 50’jk XG (418)
1
Xg = (ifpd; - 4o-l/mfl7:m> XG (4.19)

where a prime ’ stands for the derivative with respect to the estimation pa-

rameter 9. Eqgs. (4.7), (4.14) and (4.15) allow one to rephrase the symmetric
logarithmic derivative equation (4.6) as the following condition:

L Qi Tir Qs Tas
2ifpd,, — 012’" R =200 + LY (2d,, + i,y ) + ng(w
_ w + Ojk + Qd]dk + idjakk’fk’ + idko'jj’f_j’)

2
(4.20)

(we have divided by x¢, which is allowed since it is never zero). This must
hold for all r, so that we can equate the different orders of the last equation
independently. It is convenient to switch back to a geometric representation of
the matrices involved, without indexes, to find

o' =olPo+QL?q, (4.21)

LY =2071d' - 2124, (4.22)
1

LO = —iTr[aL(Q)] ~LWTd -d"L?d . (4.23)

Note that A;Bjr = Tr[AB], which is just the Hilbert-Schmidt inner product
if A and B are real and symmetric. Notice also that, in keeping with our
general notation, L(1) stands for the vector with components Lg»l). Once L) is
determined by Eq. (4.21), L™ and L) are given by Egs. (4.22) and (4.23).

In order to determine L(®), we need to analyse the linear functional Ay
that maps real matrices into matrices according to Ay (M) = oMo + QMQ.
Clearly, if A, were invertible, one would have A_!(o’). The inverse A, ! may
be obtained fairly easily by the symplectic diagonalisation of o. In fact, let
S~1 be the symplectic that turns ¢ in normal form such that, without loss of
generality, o = SvST with v = @?:1 v;12. Then, one has

Ag(M) =S (vSTMSv + QSTMSQ) ST = SA,(STMS)ST, (4.24)

where we used the symplectic conditions S7'Q = QST and QST-! = SQ. The
inverse of the map A,, which we are aiming for, may hence be written as

AN (M) = ST P AN (ST MSTH S, (4.25)

o
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Now, the maps Q-Q = —Q- QT and v - v, given by the congruence action of two
block matrices, one of which has all blocks proportional to the identity, clearly
commute: vQMQuv = QuMvS). A set 2 of common ‘eigenmatrices’ for such
maps is promptly seen to be the following:

1 ; . . )
= 72{9916)’ Ugjk)7 ]léjk)a a;g;jk)7 ]7k € [L 7”]}

f
—{AY% 1eo,...,3], jkel,...,n]}, (4.26)

2A

where the superscript /%) indicates that the matrix is zero everywhere except
for the 2 x 2 block in position jk, whose entries equal the indicated matrix
(recall that €, stands the single-mode symplectic form 2, while o, and o, are
standard Pauli matrices). It is easy to verify that Q - Q has eigenvalue —1 for
]léj k) and ng k) and +1 for 02] k) and ag(f k), whilst v has eigenvalue v;v;, for each
eigenmatrix with superscript /%), Besides, the eigenmatrices above have been
chosen so that they are orthonormal with respect to the Hilbert—Schmidt inner
product.

The eigenvalues of the map A, are hence v;v, F1 (each of the eigenmatrices

Ml(]k)7 ordered as per Eq. (4.26), has associated eigenvalue (v;v,—(—1)")). Such
a map is therefore invertible if and only if v; # 1 for all j, that is, if all the
local states of the normal modes of the global state with covariance matrix o
are mixed. If any such state is pure, with v; = 1, then the full inversion of the
map A,, and hence A, is generally not possible (notice that the inversions of
symplectic matrices that occur in the relationship between the two maps are
always possible since DetS = 1: no issue may arise there). Even then, the
matrix L) may still be determined, according to Eq. (4.21), if the argument
o’ is orthogonal to the singular eigenvalues. As we will see in detail in the next
section in the case of a single mode, this is equivalent to stating that a change in
the parameter ¥ is not able to turn the pure state with covariance matrix o into a
mixed state: if that is the case, the symmetric logarithmic derivative, and hence
the quantum Fisher information, are still well defined. At a more fundamental,
mathematical level, this is a reflection of the fact that turning a pure state into
a mixed one means suddenly changing the rank of the state (incidentally, in
the Gaussian case, the rank jumps from 1 to oo, as Gaussian states admit only
such two values for the rank): when that happens, the symmetric logarithmic
derivative operator may not exist. Although this clarification was in order, we
will now proceed assuming the inverse A_! exists: pathological cases related to
the singularity of A, will emerge at the end of our discussion as divergences
in the quantum Fisher information. Formally, our treatment will be equivalent
to perturbing slightly, by a quantity €, the incriminated symplectic eigenvalues,
and then determining the limit € — 0 at the end of the evaluation. Notice also
that the case v; + € is indistinguishable from v; for all practical purposes.
We can then proceed to invert Eq. (4.21) and write
L@ = A (o) . (4.27)

o
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In a practical calculation, given ¢’ and o = SvST, one would simply parametrise
the matrix S~1o’/ST~! as a superposition of eigenmatrices:

571g’ STt = qP A0R) (4.28)
and then explicitly have

k)
L®? — AN (o) = l

o

T-1 4(Uk) g—1
7%%_(_1)[5 AR g=1 (4.29)

Now that we have obtained a formula for the Gaussian symmetric logarithmic
derivative Ly, we can proceed to insert it into the expression for the quantum
Fisher information (4.5). This task is simplified by noticing that Eqs. (4.6)
and (4.5) may be combined to obtain the following expression for the quantum
Fisher information

Iy = Trlo)Lo] , (4.30)

and that we already know the characteristic function associated with ¢, which
is nothing but x; of Eq. (4.19). From Egs. (4.13) we know that the characteristic
function ys7; associated with operator 67; may be derived from the character-
istic function y; associated with operator 6 as xsr;, = (—i07, — %ij/fj/)xa. We
can then apply the powerful property of the characteristic function whereby the
expectation value of the associated operator is just the characteristic function
evaluated in 0, to obtain, recalling the quadratic form (4.7):

. 1 ) 1 .
Iy =TelgyLo] = LO) + LD (=i, = 5y77)
, N N L
n Lﬁ)(—laﬁ, . §Qkk/7”k')(—lafj _ 2ij,rj,)} (zrpd; — 4Uz/m7“zrm> XG i
1
-

which, going back to a geometric notation, without indexes, and replacing L)
with its expression (4.22), becomes

1
Iy = 5I&[U%’] +2dTe"1d’ . (4.32)

It is certainly worthwhile to summarise our findings as follows:
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Gaussian quantum Fisher information. Given a set of Gaussian states with
covariance matrix oy and first moments dy depending on one real parameter
¥, the quantum Fisher information Iy associated with the optimal estimation
of ¥ may be determined as follows:

1. Determine the normal mode decomposition oy = S (@?:1 v; ]].2) ST,

2. Evaluate the matrix S‘lo"S"-'-_l7 where o’ = Oyoy, and determine
the coefficients a\”" = Tr[AV" §-16/9T-1], where AY*) are the basis
matrices defined in Eq. (4.26), such that S~'¢’ST—! = al(jk)A;Jk).

(J )

vive—(—1)!

4. Evaluate Iy = %Tr[L@)a'] + 2d’To';1d'7 where d’ = 0ydy.

3. Evaluate the matrix L2 = ST-14, (k) g—1,

The optimal measurement to be carried out in order to attain the quantum
Cramér—Rao bound is the projective von Neumann measurement in the basis
which diagonalises the symmetric logarithmic derivative and may also be worked
out by determining the normal mode decomposition of the matrix L(?), associ-
ated with the quadratic operator Ly through Eq. (4.7). It will hence correspond
to a number measurement in the Fock basis that diagonalises Ly.

Note that we have not dealt with the possibility of multi-parameter estima-
tion, where the Cramér—Rao bound turns into a matrix inequality on the error
covariance matrix, nor have we discussed the problem of choosing input probe
states, on which the estimation of a partially unknown quantum operation will
in general strongly depend. In the following section, we will specialise our treat-
ment to the single-mode case and show some examples that should provide the
reader with some intuition as to how the findings above apply in practical cases.

4.2 Quantum estimation with single-mode Gaus-
sian states

The reduction of the general recipe above to single-mode states is both very in-
structive and extremely relevant to applications. Single-mode states enjoy the
specificity of possessing a single symplectic eigenvalue vy, so that o = SSTv;.!
Let us now expand the generic matrix S~*o”’ ST~ in the basis of Eq. (4.26), com-
prising the three matrices 1, o, and o, (€ is redundant here, since S~1o’/ST—1
is symmetric):

5710/5T71

+ ag (433)

f xf V2

Hn fact, the argument developed in this section could be generalised to ‘isotropic’ multi-
mode states — with fully degenerate symplectic spectrum — for which the same identity holds,
since the symplectic transformation can be carried through the normal mode form (which is
proportional to the identity for such states).
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in terms of the three generic real coefficients a;, as and a3. Notice that this

e o' = ( f + ag— \[ + a3 \/) ST (4.34)

The following expression for L(?) immediately ensues:

1 a o
L<2):ST1< @9, @ 2, ® “") 51, 4.35
vi+1v2 vi-1v2 i +142 (455)

The evaluation of Eq. (4.32) is now made straightforward by the fact that the
eigenmatrices we have chosen are orthonormal with respect to the Hilbert—
Schmidt scalar product, which is precisely what needs to be computed between
L®?) and ¢’. One then gets (note that similarity transformations preserve the
trace)

1( af a3 a3 T g
Iy = (V%+1+V%1+V12+1)+2d0' d. (4.36)
This equation may be recast in a more direct and appealing form, by singling out
the effect of the change in parameter on the purity u = Tr(o3) of the Gaussian
states under scrutiny. For Gaussian states of one mode, we know that u =
1/vDeto = 1/1_1. Furthermore, o~ ! = ST_lS_lz/l_l. By evaluating Det(o +
o’'dd) at first order in dd, it is easy to verify that (Deto)’ = Tr[o~1o/|Deto =
V2v1as, where we used Eq. (4.34) for ¢’. In terms of the purity u, one has

/1 (Deto)  _ asp®
H=—3 (Detor)3/2 V2
Notice now that

Ti[(0™'0")%] = p?(af + a3 + a3)

2 2 2 4.2
2 2 ay as as 2p ay
= 1 —
a +“><1+u2+1u2+1+u2) 1— p?

2 2 2 2
2 2 ay as as du

= 1 — 4.37
u(+u><1+u2+1_uz+1w2) T (43D

which can be inserted into Eq. (4.36), recalling that v; = p~!, to obtain the
following notable result:

Single-mode Gaussian quantum Fisher information. The quantum
Fisher information Iy of a set of single-mode Gaussian states with covariance
matrices oy and first moments dy is given by

1 Tr[(oc~to")?] 2u/?

I 2d' 7o d’ 4.38
R S +1—u4+ o : (4.38)

where = 1/4/Detoy is the purity of the quantum states and the prime '
denotes differentiation with respect to the parameter ¢.

Notice that this parametrisation clearly isolates the term that may lead
to diverging Fisher information as the one dependent on the derivative of the
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purity. As discussed in the previous section, this is related to the impossibility
of defining the symmetric logarithmic derivative and is due to the fact that such
a term would be responsible for a sudden change in the rank of the Gaussian
state, jumping from 1 to oco.



