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Why integrated (quantum) photonics?



▶ „Invention“ of Integrated Optics by S.E. Miller [1]

▶ Roadmap from conventional integrated optics to „Integrated Quantum Optics“ ?

Quantum

[1] S.E. Milller, Bell System Technical Journal, 48, 2059 (1969)

quantum

photon source

quantum

Keep ideas, but adapt them to quantum optics!

History



▶ Common structure to all quantum experiments

▶ One objective of the Integrated Quantum Optics group:

Integrate as many components as possible

(onto a single platform?)

Create

Photons

Detect

Photons

Manipulate

Photons

Quantum optics “on chip”



Photonic quantum simulator

Alán Aspuru-Guzik and Philip Walther, Nature Physics  8, 285–291 (2012)

Integrated quantum photonics



Advantages:

• Many spatial modes available / controllable

• Interferometric stability of large optical system

• Compact devices; miniaturaization

• „Simple“ operation

• High efficiency (?)

Integrated quantum photonics

Alán Aspuru-Guzik and Philip Walther, Nature Physics  8, 285–291 (2012)

Photonic quantum simulator



Alán Aspuru-Guzik and Philip Walther, Nature Physics  8, 285–291 (2012)

Photonic quantum simulator

Integrated quantum photonics



Integrated quantum photonics

Alán Aspuru-Guzik and Philip Walther, Nature Physics  8, 285–291 (2012)

Photonic quantum simulator



• minimized decoherence
✓ low-loss waveguides

• stability and scalability
✓ integrated devices

• photon-pair generation
✓ χ(2) nonlinearity

• fast photon routing
✓ fast electro-optic switches

Photon-pair

generation

Single-photon

conversion

Phase-

shifter

Polarization

control

Superconducting

detectors

We chose: lithium niobate

Implementation of complex quantum circuits in LN
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Every single of these components has already been developed and optimized for classical 

optical applications (telecomms, sensing), but

Re-design / optimization for quantum applications is required.

Components for integrated quantum circuits



Example applications:
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Power splitter
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splitter
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inter-
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E2

Interference

coupler

Passive routing – directional couplers





▶ Wavelength division demultiplexer to separate

890 nm from 1320 nm (TM-polarization):

▶ Weak coupling structure with large separation 

provides cross-coupling at the longer wavelength 

and (almost) no coupling at short wavelength

central
section

Lc

S

bendings

radius R

bendings

▶ Splitting ratios > 15 dB can be obtained for 

couplers with Lc  9000 … 11000 µm

λ1, λ 2 λ 1

λ 2

Example 1 – wavelength demultiplexer



▶ Zero-gap directional coupler acting as

polarization splitter at 1550 nm

▶ Low coupling order provides robust and

wavelength independent operation
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▶ Experimental results:

splitting ratios  20 dB achieved

for central section length Lc=480 µm

excess loss typically below 0.5 dB

Example 2 – polarization splitter



Active manipulation – electro-optic modulators



▶ Nonlinear polarization is the driving source for 

the generation of waves at new frequencies

▶ Taylor expansion of nonlinear polarization
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non centrosymmetric crystal required

▶ Nonlinearity in the dielectric polarization

electro-optic manipulation: optical & electric fields

Nonlinear optical polarization
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▶ Phase modulation via an externally applied voltage

▶ local change of the refractive index

▶ “Averaging“ via integration over cross section:

▶ Low driving voltages and high bandwidth

field component

parallel to c - axis

Electro-optic modulation



▶ Mach-Zehnder modulator for high-

data rate transmission systems [1]

▶ Sophicated electrode design optimized

for impedance and velocity matching

▶ RF-operation up to 40 GHz

▶ 5 V drive voltage (@ 40 GHz)

[1] M.M. Howertone et al., IEEE Photon. Technol. Lett.  12 , 792 (2000)

Electro-optic modulation



Commercial products
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▶ Electro-optic wavelength selective polarisation

conversion

▶ „Integrated optical Solc-Filter“

▶ Electro-optic coupling via non-diagonal 

coefficient r51 in a periodically poled waveguide

▶ Poling period:
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Polarization converter



Generation and storage



▶ Nonlinear polarization is the driving source for 

the generation of waves at new frequencies

▶ Taylor expansion of nonlinear polarization
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non centrosymmetric crystal required

▶ Nonlinearity in the dielectric polarization

nonlinear optics: optical & optical fields

Nonlinear optical polarization
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Selected second-order processes



A few words on parametric down-conversion

▶ energy and momentum conservation (quasi-phase-matching):

▶ strong confinement of optical waves to small cross sections over long

interaction length  high efficiency

▶ interaction length up to about 90 mm can be possible
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[1] B. Hampel, W. Sohler, SPIE Proc. 651 „Integrated Optical Circuit Engineering III“, pp. 229-234 (1986)

[2] P. Baldi et al., Electron. Lett. 29, 1539 (1993)

First demonstrations of guided-wave PDC



Photonic state transfer

requires

telecommunication

wavelengths (IR)

Stationary qubit-systems

e.g. cold atoms/ions,

solid state systems 

UV-/Visible/NIR

Bridging the gap by 

frequency conversion

Frequency converters



Telecombands

1310nm

1550nm

Ionic

transitions
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Recent quantum frequency converters

UPB

E
n
e
rgy
[2]

Nature Photon 4, 786 (2010)

[1]

Phys. Rev. Lett. 109, 147404 (2012)

[3]

Opt. Exp. 22, 11205 (2014)

[4]

New J. Phys. 16, 113021 (2014)

[5]

Phys. Rev. Applied 10, 044012 (2018)

Recent examples from the literature



Interfacing



Ti:PPLN

waveguide
Coatings

Dielectric endfacet coatings



▶ Coupling loss < 1 dB possible without any specific 

tailoring of waveguide modes

▶ Optimization of waveguide fabrication parameter can 

further minimize coupling losses

▶ Coupling between waveguide modes and single-

mode fibers

▶ Good mode overlap of waveguide modes with 

standard single mode fibers:

Pigtailing (waveguide-fibre coupling)

© Paderborn University: Besim Mazhiqi
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Waveguide fabrication



Titanium-indiffused 

waveguide fabrication

Titanium deposition and

photoresist spin coating

Photolithographic

patterning

Ti-etching and

photoresist removal

Ti-indiffusion

Waveguide fabrication



▶ Diffusion furnance: Centrotherm

▶ Waveguide NIR

1060ºC for 8h in O2

▶ Waveguide MIR

1060ºC for 31h in O2 and Ar

Diffusion in Pt-Box

avoid of out-diffusion

protection against particles

Waveguide indiffusion



He-Ne laser

EDFA

CCD camera

Polariser
M2

L2

L1

M1

BPF

Pinhole

M3

FWHM: wg = 6.8µm, hg = 4.8µm

FWHM: wg,hg = 6.1µm

Mode size measurements



He-Ne 

laser
ECDL

Pinhole

InGaAs

Detector

Polariser
M2
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Fabry-Perot loss measurement

R. Regener, W. Sohler, Appl. Phys. B 36, 143-147 (1985)



Periodic poling



external

electric

field

O

Li

Nb

Ps

Ferroelectric Phase:

➢ stacking of Li+ and Nb5+ relative to O2- leads

to spontaneous polarization (PS)

➢ EC=21 kV/mm

➢ periodic PS-inversion            domain grating

➢ domain grating -grating

(compare V. Gopalan et al.)

( )2

PS

Periodic poling of lithium niobate



Periodic domain inversion

Photoresist coating

Photolithographic

patterning

Domain growth under

pulsed HV application

Periodically inverted

domains

Periodic poling of lithium niobate



▶ Both polarizations guided

▶ Low propagation losses:

~ 0.02 dB/cm

▶ Coupling to single-mode fibre: 

efficiency >85%

▶ Linear and nonlinear characterization

(losses, modes, SHG/SFG/PDC)

6.0 x 4.2 µm2

TE-mode

4.3 x 2.9 µm2

TM-mode

Mode profiles @ 1550nm

(z-cut Ti:LiNbO3) 

20 µm

Lithium niobate waveguide with 4.5µm poling

Example waveguide



Dielectric coatings



Ion Assisted Deposition 

(IAD)

Dielectric coating technique



Quarter wave stack

A quarter wave stack consisting of 

layers with equal optical thickness

[P.W. Baumeister “Optical coating technology”, SPIE press monograph, PM 137, Washington 2004]

Reflectivity spectra of quarter wave 

stacks consisting of 15 pairs of 

Ta2O5/SiO2 and TiO2/SiO2

Mirrors and partial reflectors



AR/HR coatings



View inside the coating machine

e-gun I e-gun II

TiO2 SiO2

calotte

quartz oscillators

neutralizer

ion source

Sample holder

Our coating machine
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Plug & Play single photon source

Integrated N00N source

using a non-linear coupler 

Photon triplet generation

Polarization entanglement source

N. Montaut et al, Phys. Rev. Applied 8,

024021 (2017)

R. Kruse et al, Phys. Rev. A 92, 053841 (2015)

S. Krapick et al, Opt. Exp. 24, 2836 (2016)

L. Sansoni et al, Quant. Inf. 3, 5 (2017)

HOM on a chip

K.-H. Luo et al, Sci. Adv. 5, eaat1451 (2019)

Some quantum devices



HOM interference

= two-photon interference at balanced (50/50) beamsplitters

destructive

interference

time delay Dt

t

C. K. Hong, Z. Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)



Typical bulk optics setup Our HOM chip

How do we implement a time-delay on chip?



0 𝜏 ∆𝜏

Birefringence is a friend, not a foe…

K.-H. Luo et al, Sci. Adv. 5, eaat1451 (2019)



• Additional PC for swapping polarizations to 

synchronize both photons

0 ∆𝜏

Birefringence is a friend, not a foe…

K.-H. Luo et al, Sci. Adv. 5, eaat1451 (2019)



• Segmented polarization converters

• Additional PC for swapping polarizations to 

synchronize both photons

Tuneable on-chip delay

K.-H. Luo et al, Sci. Adv. 5, eaat1451 (2019)



HOM on a chip

➢ Tuneable time delay

−𝟏 ~ 𝟏𝟐 𝐩𝐬 𝟗𝟑 ± 𝟐 %

➢ Dip visibility

K.-H. Luo et al, Sci. Adv. 5, eaat1451 (2019)



Where to in the future?

Ti:PPLN circuits have a limited 

number of components due to the 

low integration density.

Silicon photonics has a huge 

integration density but no second-

order nonlinearity.

N. C. Harris et al., Optica 5, 1623-1631 (2018)

+ = LNOI
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number of components due to the 

low integration density.

Silicon photonics has a huge 

integration density but no second-

order nonlinearity.

N. C. Harris et al., Optica 5, 1623-1631 (2018)
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20 µm
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