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Fabrication of QD single-photon sources
The devices were fabricated from a planar λ cavity embedding an
InGaAs QD layer and surrounded by GaAs/Al0.9Ga0.1As distributed
Bragg reflectors. The sample was doped to obtain an effective n–i–p
diode structure and optimized to define the Fermi level around the
QD while minimizing the free carrier losses in the mirrors. The
cavity design for applying an electric field is similar to the one pre-
sented in ref. 27, with a single micropillar connected to a surround-
ing circular frame by four one-dimensional 1.5-µm-wide wires. This
frame overlapped a large mesa where the top p-contact was defined.
A standard n-contact was deposited on the back of the sample.
Figure 1a presents a schematic of a single device. To achieve full
control of the QD–cavity coupling, we used an advanced in situ
lithography technique that allowed the QD to be positioned
within 50 nm of the pillar centre and enabled the cavity resonance
to be spectrally adjusted to the QD transition with a spectral accu-
racy of 0.5 nm (ref. 26). Figure 1b shows an optical microscope
image of a diode, where 18 sources were fabricated during the
same in situ lithography process. A photoluminescence map of
one device is shown in Fig. 1c. In this, the bright QD emission in

the pillar centre is evidence of efficient photon extraction. The
fine electrical tuning of the QD exciton transition through the
Stark effect is shown in Fig. 1d. In resonance with the cavity
mode at −0.6 V, a strong enhancement of the signal is observed.

Performance under non-resonant excitation
Here, we study the main characteristics that define the quality of the
sources, namely their purity and brightness, and the indistinguish-
ability of the successively emitted photons.

The devices were first studied at 4 K under a single 3 ps pulsed non-
resonant excitation around 890 nm. We present the properties of
two different QD–pillar devices (named QD1 and QD2) with a
cavity quality factor of Q≈ 12,000, as summarized in Fig. 2 and
Supplementary Fig. 2 for pillar 1 and 2, respectively. On tuning the
QDresonance to the cavitymode through the applicationof an electrical
bias, a shortening of the radiative lifetime down to 150 ps is observed.
This corresponds to a Purcell factor of Fp = 7.6, considering a lifetime
of ∼1.3 ns for a QD exciton in bulk. Under these conditions, the
single photon purity is characterized in a standard Hanbury Brown
and Twiss set-up. Figure 2a presents a typical curve, which shows a
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Figure 1 | Electrically controlled single-photon sources. a, Schematic of the devices under study: a micropillar coupled to a QD is connected to a
surrounding circular frame by four one-dimensional wires. The top p-contact is defined on a large mesa adjacent to the frame. The n-contact is deposited on
the back of the sample. b, Optical microscope image showing 18 connected pillar sources electrically controlled through the metallic contact defined on the
300 × 300 µm2 diode. c, Photoluminescence map of a connected device: the bright emission at the centre of the device arises from the deterministically
coupled QD. d, Emission intensity as a function of bias and energy, showing the Stark tuning of the exciton transition (X) within the cavity mode (CM)
resonance (dashed line).
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number) does not measure optical power. Furthermore, NEP does 
not take into account the timing performance of the detector, nor 
does it relate D and η in a meaningful way for QI experiments. For 
example, in a QKD experiment, the detector contribution to the 
quantum-bit error rate (QBER) is the ratio of the dark count rate 
to the sifted detected photon rate (the detected rate after compari-
son of the transmission and receiving bases). Furthermore, D can be 
reduced by setting the timing window as small as possible. Unless 
some other factor (the jitter of a single-photon source, for example) 
has a dominant role, the minimum timing interval is usually lim-
ited by the timing jitter of the detector. We can therefore formulate 
a dimensionless figure of merit that takes all of these factors into 
consideration, giving

�����������

This is a useful figure not only for QKD but also for a range of 
TCSPC measurements, both in QI applications and beyond. Better 
detectors have a higher value of H at the wavelength of interest.

This section has rigorously considered the characterization of 
single-photon detectors and devised an appropriate figure of merit 
for optical QI applications. It is crucial to understand these charac-
teristics when selecting the best detector for a given experiment or 
application. Established and emerging single-photon detectors are 
compared through these metrics in Table 1.

Established single-photon detector technologies
This section reviews the current performance and future prospects 
of established single-photon detector technologies. In each case, the 
operating principle, performance, advantages and disadvantages of 
each detector type are discussed. Performance characteristics are 
shown in Table 1. New developments and the potential for further 
improvements in performance are also noted. Short reviews have 
been given previously elsewhere10,17,18, and recent special issues 
devoted to the topic of photon-counting technologies are also rec-
ommended reading4,25.

Photomultiplier tubes. The most long-established photon-count-
ing technology is the photomultiplier tube (PMT). Single-photon 
counting in PMTs was demonstrated in 194926, and this develop-
ment heralded the birth of the field of TCSPC3,27. Commercial PMT 
units are now widely available28,29, and there are continued efforts 
to improve these devices. Photomultiplier tubes offer large active-
areas (diameters of >10 mm) and cover the spectral range of 115–
1,700 nm, but with large variations in performance.

A basic PMT consists of a vacuum tube with a photocathode for 
light absorption, from which electrons are liberated through the 
photoelectric effect (the energy of the incident photon must exceed 
the work function of the photocathode material). This single- or few-
electron photocurrent is then multiplied by a cascade of secondary 
electron-emissions from dynodes — a series of electrodes, each one 
biased at a greater positive voltage than the one before — produc-
ing a macroscopic current pulse of >106 electrons. Traditional PMTs 
require large operating voltages around the kilovolt-level, and are 
fragile and expensive. In certain types of PMT, the excess noise of the 
multiplication process is sufficiently low to allow some discrimina-
tion between one or multiple photons. An alternative configuration 
is the microchannel plate photomultiplier tube, where glass capil-
laries are fused in parallel and coated with a secondary electron-
emitting material to achieve a single continuous dynode under a bias 
voltage30. Microchannel plate PMTs offer improved timing jitter over 
basic PMTs, down to ~20 ps at FWHM30.

Photomultiplier tubes have a maximum efficiency of around 40% 
at a wavelength of 500 nm in GaAsP photocathodes, and have dark 
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Figure 2 | Photon number resolution. Conventional single-photon detectors 
give a digital response — an output pulse or ‘click’ indicates the arrival of one 
or more photons. Determining the number of photons in a pulse requires 
a photon-number-resolving detector. a, True photon number resolution. 
Detectors with true photon number resolution give an output that depends 
on the number of photons absorbed. The superconducting TES is essentially 
a microcalorimeter — the height of the pulse is proportional to the number 
of photons at a given wavelength. The figure shows a TES measurement 
of Poissonian statistics with a mean photon number per pulse of 2.45 
at 1,550 nm. The line shows a plot of best-fit to the data, convolving the 
Poissonian distribution with the energy resolution of the TES. Shown inset 
is the TES pulse heights for zero to four photons. b,c, Conventional single-
photon detectors can be combined through spatial or temporal multiplexing 
to achieve photon number resolution. In spatial multiplexing (b), an array of 
detector pixels (in this case SNSPDs) are broadly illuminated and read-out 
in parallel. When several pixels are triggered simultaneously, the output 
pulses are summed. In temporal multiplexing (c), The input optical pulse is 
split via a network of delayed paths such that each photon can be picked out 
within the dead time interval of the detector pair. Image in b reproduced with 
permission from ref. 22, © 2008 NPG.
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the back of the sample. b, Optical microscope image showing 18 connected pillar sources electrically controlled through the metallic contact defined on the
300 × 300 µm2 diode. c, Photoluminescence map of a connected device: the bright emission at the centre of the device arises from the deterministically
coupled QD. d, Emission intensity as a function of bias and energy, showing the Stark tuning of the exciton transition (X) within the cavity mode (CM)
resonance (dashed line).
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number) does not measure optical power. Furthermore, NEP does 
not take into account the timing performance of the detector, nor 
does it relate D and η in a meaningful way for QI experiments. For 
example, in a QKD experiment, the detector contribution to the 
quantum-bit error rate (QBER) is the ratio of the dark count rate 
to the sifted detected photon rate (the detected rate after compari-
son of the transmission and receiving bases). Furthermore, D can be 
reduced by setting the timing window as small as possible. Unless 
some other factor (the jitter of a single-photon source, for example) 
has a dominant role, the minimum timing interval is usually lim-
ited by the timing jitter of the detector. We can therefore formulate 
a dimensionless figure of merit that takes all of these factors into 
consideration, giving

�����������

This is a useful figure not only for QKD but also for a range of 
TCSPC measurements, both in QI applications and beyond. Better 
detectors have a higher value of H at the wavelength of interest.

This section has rigorously considered the characterization of 
single-photon detectors and devised an appropriate figure of merit 
for optical QI applications. It is crucial to understand these charac-
teristics when selecting the best detector for a given experiment or 
application. Established and emerging single-photon detectors are 
compared through these metrics in Table 1.

Established single-photon detector technologies
This section reviews the current performance and future prospects 
of established single-photon detector technologies. In each case, the 
operating principle, performance, advantages and disadvantages of 
each detector type are discussed. Performance characteristics are 
shown in Table 1. New developments and the potential for further 
improvements in performance are also noted. Short reviews have 
been given previously elsewhere10,17,18, and recent special issues 
devoted to the topic of photon-counting technologies are also rec-
ommended reading4,25.

Photomultiplier tubes. The most long-established photon-count-
ing technology is the photomultiplier tube (PMT). Single-photon 
counting in PMTs was demonstrated in 194926, and this develop-
ment heralded the birth of the field of TCSPC3,27. Commercial PMT 
units are now widely available28,29, and there are continued efforts 
to improve these devices. Photomultiplier tubes offer large active-
areas (diameters of >10 mm) and cover the spectral range of 115–
1,700 nm, but with large variations in performance.

A basic PMT consists of a vacuum tube with a photocathode for 
light absorption, from which electrons are liberated through the 
photoelectric effect (the energy of the incident photon must exceed 
the work function of the photocathode material). This single- or few-
electron photocurrent is then multiplied by a cascade of secondary 
electron-emissions from dynodes — a series of electrodes, each one 
biased at a greater positive voltage than the one before — produc-
ing a macroscopic current pulse of >106 electrons. Traditional PMTs 
require large operating voltages around the kilovolt-level, and are 
fragile and expensive. In certain types of PMT, the excess noise of the 
multiplication process is sufficiently low to allow some discrimina-
tion between one or multiple photons. An alternative configuration 
is the microchannel plate photomultiplier tube, where glass capil-
laries are fused in parallel and coated with a secondary electron-
emitting material to achieve a single continuous dynode under a bias 
voltage30. Microchannel plate PMTs offer improved timing jitter over 
basic PMTs, down to ~20 ps at FWHM30.

Photomultiplier tubes have a maximum efficiency of around 40% 
at a wavelength of 500 nm in GaAsP photocathodes, and have dark 
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Figure 2 | Photon number resolution. Conventional single-photon detectors 
give a digital response — an output pulse or ‘click’ indicates the arrival of one 
or more photons. Determining the number of photons in a pulse requires 
a photon-number-resolving detector. a, True photon number resolution. 
Detectors with true photon number resolution give an output that depends 
on the number of photons absorbed. The superconducting TES is essentially 
a microcalorimeter — the height of the pulse is proportional to the number 
of photons at a given wavelength. The figure shows a TES measurement 
of Poissonian statistics with a mean photon number per pulse of 2.45 
at 1,550 nm. The line shows a plot of best-fit to the data, convolving the 
Poissonian distribution with the energy resolution of the TES. Shown inset 
is the TES pulse heights for zero to four photons. b,c, Conventional single-
photon detectors can be combined through spatial or temporal multiplexing 
to achieve photon number resolution. In spatial multiplexing (b), an array of 
detector pixels (in this case SNSPDs) are broadly illuminated and read-out 
in parallel. When several pixels are triggered simultaneously, the output 
pulses are summed. In temporal multiplexing (c), The input optical pulse is 
split via a network of delayed paths such that each photon can be picked out 
within the dead time interval of the detector pair. Image in b reproduced with 
permission from ref. 22, © 2008 NPG.
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and entanglement in the degree of freedom in which the quantum information is
encoded. The single photons comprising each of these entangled pairs are sent to
Alice and Bob via free-space communication links (quantum links) established
between the satellites and an optical ground station. The photons are collected via
telescopes at the receiver terminals, where Alice and Bob each perform quantum
measurements on their respective photons. Before initializing the transfer of
information, the transmitter must establish a separate standard communication
channel with Alice and Bob. This classical communications channel is subse-
quently used to send information about which basis state the measurements
were performed on a given pair. The detection time of every arriving photon is
recorded using fast single-photon detectors, and detection events that comprise an
entangled pair are identified by means of their temporal correlations. The identifi-
cation of photon pairs by their detection times requires the transmitter and
receiver modules to establish and maintain a synchronized time basis, which can
be achieved using an external reference, or autonomously via the classical com-
munication link. Once the pair-detection events have been identified, Alice and
Bob can reveal their stronger-than-classical correlations by communicating the
bases of the quantum measurements performed on each photon pair via the
classical communication channel.

Distributing entangled photon pairs over long-distance links and revealing
their quantum correlations is an immensely challenging task from a technological
point of view, in particular due to the fact that, as a result of unavoidable losses in
the quantum link, only a fraction of the photons emitted by the transmitter
actually arrive at the receiver modules. The main sources contributing to losses
along the optical transmission channel are atmospheric absorption and scattering,
on the one hand, and diffraction, telescope pointing errors, and atmospheric
turbulence, which all lead to beam broadening and thus limit the fraction of
photons collected by the receiver aperture, on the other. Typical losses in such
scenarios are in the order of ! 30 to ! 40 dB.

Nevertheless, in order to achieve feasible pair-detection rates at such huge link
losses requires a very bright source of entangled photon pairs as well as minimizing
losses in the transmission channel and the receivers. Note that since correlated

. Fig. 18.14 A vision: Global Quantum Communication via satellites connecting any point on
ground requiring optical ground station (taken from [77])
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Fabrication of QD single-photon sources
The devices were fabricated from a planar λ cavity embedding an
InGaAs QD layer and surrounded by GaAs/Al0.9Ga0.1As distributed
Bragg reflectors. The sample was doped to obtain an effective n–i–p
diode structure and optimized to define the Fermi level around the
QD while minimizing the free carrier losses in the mirrors. The
cavity design for applying an electric field is similar to the one pre-
sented in ref. 27, with a single micropillar connected to a surround-
ing circular frame by four one-dimensional 1.5-µm-wide wires. This
frame overlapped a large mesa where the top p-contact was defined.
A standard n-contact was deposited on the back of the sample.
Figure 1a presents a schematic of a single device. To achieve full
control of the QD–cavity coupling, we used an advanced in situ
lithography technique that allowed the QD to be positioned
within 50 nm of the pillar centre and enabled the cavity resonance
to be spectrally adjusted to the QD transition with a spectral accu-
racy of 0.5 nm (ref. 26). Figure 1b shows an optical microscope
image of a diode, where 18 sources were fabricated during the
same in situ lithography process. A photoluminescence map of
one device is shown in Fig. 1c. In this, the bright QD emission in

the pillar centre is evidence of efficient photon extraction. The
fine electrical tuning of the QD exciton transition through the
Stark effect is shown in Fig. 1d. In resonance with the cavity
mode at −0.6 V, a strong enhancement of the signal is observed.

Performance under non-resonant excitation
Here, we study the main characteristics that define the quality of the
sources, namely their purity and brightness, and the indistinguish-
ability of the successively emitted photons.

The devices were first studied at 4 K under a single 3 ps pulsed non-
resonant excitation around 890 nm. We present the properties of
two different QD–pillar devices (named QD1 and QD2) with a
cavity quality factor of Q≈ 12,000, as summarized in Fig. 2 and
Supplementary Fig. 2 for pillar 1 and 2, respectively. On tuning the
QDresonance to the cavitymode through the applicationof an electrical
bias, a shortening of the radiative lifetime down to 150 ps is observed.
This corresponds to a Purcell factor of Fp = 7.6, considering a lifetime
of ∼1.3 ns for a QD exciton in bulk. Under these conditions, the
single photon purity is characterized in a standard Hanbury Brown
and Twiss set-up. Figure 2a presents a typical curve, which shows a
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Figure 1 | Electrically controlled single-photon sources. a, Schematic of the devices under study: a micropillar coupled to a QD is connected to a
surrounding circular frame by four one-dimensional wires. The top p-contact is defined on a large mesa adjacent to the frame. The n-contact is deposited on
the back of the sample. b, Optical microscope image showing 18 connected pillar sources electrically controlled through the metallic contact defined on the
300 × 300 µm2 diode. c, Photoluminescence map of a connected device: the bright emission at the centre of the device arises from the deterministically
coupled QD. d, Emission intensity as a function of bias and energy, showing the Stark tuning of the exciton transition (X) within the cavity mode (CM)
resonance (dashed line).
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number) does not measure optical power. Furthermore, NEP does 
not take into account the timing performance of the detector, nor 
does it relate D and η in a meaningful way for QI experiments. For 
example, in a QKD experiment, the detector contribution to the 
quantum-bit error rate (QBER) is the ratio of the dark count rate 
to the sifted detected photon rate (the detected rate after compari-
son of the transmission and receiving bases). Furthermore, D can be 
reduced by setting the timing window as small as possible. Unless 
some other factor (the jitter of a single-photon source, for example) 
has a dominant role, the minimum timing interval is usually lim-
ited by the timing jitter of the detector. We can therefore formulate 
a dimensionless figure of merit that takes all of these factors into 
consideration, giving
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This is a useful figure not only for QKD but also for a range of 
TCSPC measurements, both in QI applications and beyond. Better 
detectors have a higher value of H at the wavelength of interest.

This section has rigorously considered the characterization of 
single-photon detectors and devised an appropriate figure of merit 
for optical QI applications. It is crucial to understand these charac-
teristics when selecting the best detector for a given experiment or 
application. Established and emerging single-photon detectors are 
compared through these metrics in Table 1.

Established single-photon detector technologies
This section reviews the current performance and future prospects 
of established single-photon detector technologies. In each case, the 
operating principle, performance, advantages and disadvantages of 
each detector type are discussed. Performance characteristics are 
shown in Table 1. New developments and the potential for further 
improvements in performance are also noted. Short reviews have 
been given previously elsewhere10,17,18, and recent special issues 
devoted to the topic of photon-counting technologies are also rec-
ommended reading4,25.

Photomultiplier tubes. The most long-established photon-count-
ing technology is the photomultiplier tube (PMT). Single-photon 
counting in PMTs was demonstrated in 194926, and this develop-
ment heralded the birth of the field of TCSPC3,27. Commercial PMT 
units are now widely available28,29, and there are continued efforts 
to improve these devices. Photomultiplier tubes offer large active-
areas (diameters of >10 mm) and cover the spectral range of 115–
1,700 nm, but with large variations in performance.

A basic PMT consists of a vacuum tube with a photocathode for 
light absorption, from which electrons are liberated through the 
photoelectric effect (the energy of the incident photon must exceed 
the work function of the photocathode material). This single- or few-
electron photocurrent is then multiplied by a cascade of secondary 
electron-emissions from dynodes — a series of electrodes, each one 
biased at a greater positive voltage than the one before — produc-
ing a macroscopic current pulse of >106 electrons. Traditional PMTs 
require large operating voltages around the kilovolt-level, and are 
fragile and expensive. In certain types of PMT, the excess noise of the 
multiplication process is sufficiently low to allow some discrimina-
tion between one or multiple photons. An alternative configuration 
is the microchannel plate photomultiplier tube, where glass capil-
laries are fused in parallel and coated with a secondary electron-
emitting material to achieve a single continuous dynode under a bias 
voltage30. Microchannel plate PMTs offer improved timing jitter over 
basic PMTs, down to ~20 ps at FWHM30.

Photomultiplier tubes have a maximum efficiency of around 40% 
at a wavelength of 500 nm in GaAsP photocathodes, and have dark 
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Figure 2 | Photon number resolution. Conventional single-photon detectors 
give a digital response — an output pulse or ‘click’ indicates the arrival of one 
or more photons. Determining the number of photons in a pulse requires 
a photon-number-resolving detector. a, True photon number resolution. 
Detectors with true photon number resolution give an output that depends 
on the number of photons absorbed. The superconducting TES is essentially 
a microcalorimeter — the height of the pulse is proportional to the number 
of photons at a given wavelength. The figure shows a TES measurement 
of Poissonian statistics with a mean photon number per pulse of 2.45 
at 1,550 nm. The line shows a plot of best-fit to the data, convolving the 
Poissonian distribution with the energy resolution of the TES. Shown inset 
is the TES pulse heights for zero to four photons. b,c, Conventional single-
photon detectors can be combined through spatial or temporal multiplexing 
to achieve photon number resolution. In spatial multiplexing (b), an array of 
detector pixels (in this case SNSPDs) are broadly illuminated and read-out 
in parallel. When several pixels are triggered simultaneously, the output 
pulses are summed. In temporal multiplexing (c), The input optical pulse is 
split via a network of delayed paths such that each photon can be picked out 
within the dead time interval of the detector pair. Image in b reproduced with 
permission from ref. 22, © 2008 NPG.
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momenta remain well overlapped spatially during the pulse
sequence (clouds with LM difference 2@k separate in
1 ms). Figure 2(b) is an image of one of the interfering
clouds after the three pulses, and corresponds to the super-
position of two clouds with OAM !@ [Fig. 2(d)], which
has average OAM of zero. Since each diffracted atom has
absorbed or been stimulated to emit one LG1

0 photon, the
interference pattern confirms that each LG1

0 photon trans-
fers @ OAM to each atom. Although interference has
previously been used to observe vortex states [17,28,29],
this is the first interference between independently gener-
ated, overlapping counter-rotating vortex states [30].

A stimulated Raman process is coherent. The phase
difference of the laser beams determines the phase of the
diffracted, rotating cloud. To confirm this we perform a
two-pulse experiment. The first pulse is a 30 !s LG1

0=G
pulse with "# " 4#r, which diffracts atoms into the 2@k
LM state with @ OAM. The second pulse is a G=G pulse

with "# " 4#r, which also couples the same two LM states
(0 and 2@k) but without changing the OAM. Figure 2(c) is
an image of the 2@k cloud from the two-pulse sequence.
The off-centered hole results from the interference be-
tween a state rotating with OAM @ and a nonrotating state.
The direction in which the hole is displaced is determined
by the phase between the two states [17], which is deter-
mined by the relative phase differences of the two Raman
pulses. We directly measure this relative phase difference
by imaging the interference pattern of the LG1

0 and the
copropagating G beams, since both Raman pulses use the
same counter-propagating G beam [31]. This measures the
relative position of the corkscrew and sinusoidal diffractive
structures generating the two interfering clouds. In
Fig. 2(f) the measured phase of the atomic interference is
plotted as a function of the measured relative phase differ-
ence of the Raman beams, for 18 consecutive realizations
of the experiment. They are correlated, as expected. Hence
atoms can be put into any desired coherent superposition of
rotational states by controlling the relative phases of the
Raman beams.

We generate vortices of higher charge by transferring to
each atom the angular momentum from several LG1

0 pho-
tons [see Fig. 1(c)]. A 30 !s LG1

0=G pulse with "# " 4#r
first transfers 18% of the atoms into the singly charged
vortex state with LM 2@k. A second LG1

0=G pulse, 70 !s
long with "# " 12#r, transfers 80% of the atoms in the
2@k state into a doubly charged vortex state with LM 4@k.
Figure 3(a) is an image of this state. (A doubly charged
vortex has previously been created in a BEC using ‘‘phase
engineering’’ [32] and phase imprinting [20], respectively.)
To verify that this is a doubly charged vortex, we apply a
third G=G pulse, 40 !s long with "# " 8#r, which cou-
ples states with momentum 0 and 4@k via a second order
Raman process [21]. Figure 3(b) is an image of the 4@k
cloud generated by the three pulses, taken after 6 ms TOF.
It corresponds to the interference between a nonrotating
cloud and a cloud with OAM 2@ [see Fig. 3(c)], as ex-
pected. Our experiments directly demonstrate that the
OAM of a photon is transferred coherently to an atom in
quantized units of @. Although we transferred LM in

FIG. 3. (a) Absorption image of the doubly charged (# 2@)
vortex cloud. The core is seen to be larger than for the single
charged state of Fig. 2(a). (b) Absorption image of the cloud
resulting from the interference between a doubly charged state
and a nonrotating state. (c) Calculated interference pattern
between nonrotating and doubly charged rotating state.

FIG. 2. (a) Absorption image of a cloud that has undergone the
Raman transition, taken along the axis of the LG1

0 beam. The
vortex core is seen as a hole in the cloud. (b) Interference
between left and right rotating clouds. (c) Interference pattern
between a nonrotating and a rotating cloud, showing a displaced
hole. (d) Calculated interference pattern between left and right
rotating states. (e) Calculated interference pattern between a
nonrotating and a rotating state. (f) Angle of the hole in the
interference pattern between rotating and nonrotating atomic
states as a function of the rotation angle of the optical interfer-
ence pattern between the LG1

0 and copropagating Gaussian
beams. The straight line (to guide the eye) has slope $1.
Inset: image of the atomic interference between a rotating and
nonrotating cloud. The hole is displaced from the center and its
angular position $ depends on the relative phase between the
interfering states.
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momenta remain well overlapped spatially during the pulse
sequence (clouds with LM difference 2@k separate in
1 ms). Figure 2(b) is an image of one of the interfering
clouds after the three pulses, and corresponds to the super-
position of two clouds with OAM !@ [Fig. 2(d)], which
has average OAM of zero. Since each diffracted atom has
absorbed or been stimulated to emit one LG1

0 photon, the
interference pattern confirms that each LG1

0 photon trans-
fers @ OAM to each atom. Although interference has
previously been used to observe vortex states [17,28,29],
this is the first interference between independently gener-
ated, overlapping counter-rotating vortex states [30].

A stimulated Raman process is coherent. The phase
difference of the laser beams determines the phase of the
diffracted, rotating cloud. To confirm this we perform a
two-pulse experiment. The first pulse is a 30 !s LG1

0=G
pulse with "# " 4#r, which diffracts atoms into the 2@k
LM state with @ OAM. The second pulse is a G=G pulse

with "# " 4#r, which also couples the same two LM states
(0 and 2@k) but without changing the OAM. Figure 2(c) is
an image of the 2@k cloud from the two-pulse sequence.
The off-centered hole results from the interference be-
tween a state rotating with OAM @ and a nonrotating state.
The direction in which the hole is displaced is determined
by the phase between the two states [17], which is deter-
mined by the relative phase differences of the two Raman
pulses. We directly measure this relative phase difference
by imaging the interference pattern of the LG1

0 and the
copropagating G beams, since both Raman pulses use the
same counter-propagating G beam [31]. This measures the
relative position of the corkscrew and sinusoidal diffractive
structures generating the two interfering clouds. In
Fig. 2(f) the measured phase of the atomic interference is
plotted as a function of the measured relative phase differ-
ence of the Raman beams, for 18 consecutive realizations
of the experiment. They are correlated, as expected. Hence
atoms can be put into any desired coherent superposition of
rotational states by controlling the relative phases of the
Raman beams.

We generate vortices of higher charge by transferring to
each atom the angular momentum from several LG1

0 pho-
tons [see Fig. 1(c)]. A 30 !s LG1

0=G pulse with "# " 4#r
first transfers 18% of the atoms into the singly charged
vortex state with LM 2@k. A second LG1

0=G pulse, 70 !s
long with "# " 12#r, transfers 80% of the atoms in the
2@k state into a doubly charged vortex state with LM 4@k.
Figure 3(a) is an image of this state. (A doubly charged
vortex has previously been created in a BEC using ‘‘phase
engineering’’ [32] and phase imprinting [20], respectively.)
To verify that this is a doubly charged vortex, we apply a
third G=G pulse, 40 !s long with "# " 8#r, which cou-
ples states with momentum 0 and 4@k via a second order
Raman process [21]. Figure 3(b) is an image of the 4@k
cloud generated by the three pulses, taken after 6 ms TOF.
It corresponds to the interference between a nonrotating
cloud and a cloud with OAM 2@ [see Fig. 3(c)], as ex-
pected. Our experiments directly demonstrate that the
OAM of a photon is transferred coherently to an atom in
quantized units of @. Although we transferred LM in

FIG. 3. (a) Absorption image of the doubly charged (# 2@)
vortex cloud. The core is seen to be larger than for the single
charged state of Fig. 2(a). (b) Absorption image of the cloud
resulting from the interference between a doubly charged state
and a nonrotating state. (c) Calculated interference pattern
between nonrotating and doubly charged rotating state.

FIG. 2. (a) Absorption image of a cloud that has undergone the
Raman transition, taken along the axis of the LG1

0 beam. The
vortex core is seen as a hole in the cloud. (b) Interference
between left and right rotating clouds. (c) Interference pattern
between a nonrotating and a rotating cloud, showing a displaced
hole. (d) Calculated interference pattern between left and right
rotating states. (e) Calculated interference pattern between a
nonrotating and a rotating state. (f) Angle of the hole in the
interference pattern between rotating and nonrotating atomic
states as a function of the rotation angle of the optical interfer-
ence pattern between the LG1

0 and copropagating Gaussian
beams. The straight line (to guide the eye) has slope $1.
Inset: image of the atomic interference between a rotating and
nonrotating cloud. The hole is displaced from the center and its
angular position $ depends on the relative phase between the
interfering states.
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• Helical phase profile on SLM

mode whose wave fronts resemble an ℓ-fold corkscrew, as shown in figure (8). In prac-
tise, the phase distribution of the desired optical component is typically added to a
linear phase ramp and the sum expressed as modulo 2π , as shown in figure (9). The
result is a diffraction grating which produces the desired beam in the first diffraction
order. The components are effectively holograms of the desired optical element and are
thus often referred to as “computer generated holograms”. To produce helical beams
these holograms can be either the “forked-diffraction gratings” discussed in the intro-
duction [25, 43, 44] or spiral fresnel lenses [45]. The technique can be easily extended
to cover both the ℓ and the p of the generated beams [46]. What makes the holographic
approach particularly appealing is the commercial availability of spatial light modu-
lators (SLMs). These are pixellated liquid crystal devices which can be programmed
through the video interface of a computer to act as holograms. Changing their design
is as simple as changing the image displayed by the computer interfacing the device.

FIGURE 8. A helical phase profile exp(iℓφ) converts a Gaussian laser beam into a
helical mode whose wave fronts resemble an ℓ-fold corkscrew. In this case ℓ= 3.
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FIGURE 9. A combination of the phase distribution of the desired optical compo-
nent (left) plus a linear phase ramp (middle) creates a forked diffraction grating
(right) which can produce a helically phased beam. In this case ℓ= 3.

Computer generation of holograms and their implementation for the generation of
exotic beams is obviously not restricted to pure helical modes, it is a general technique
which can be applied to all complex beam types or their superpositions. However, in
general, the hologram design is more complicated than simply that of a phase mask
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Arrizón et al., J. Opt. Soc. Am. A 29, 3500 (2007)
MM and R. Boyd, Riv Nuovo Cimento 37, 273 (2014)
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MEASURING SPATIAL MODES
by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.
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holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.
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Bouchard, Herrera, Brandt, Fickler, Huber, and MM, Opt. Exp. 26, 31924 (2018)



MEASURING SPATIAL MODES
by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

SMF

Bouchard, Herrera, Brandt, Fickler, Huber, and MM, Opt. Exp. 26, 31924 (2018)



MEASURING SPATIAL MODES
by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

SMF

Bouchard, Herrera, Brandt, Fickler, Huber, and MM, Opt. Exp. 26, 31924 (2018)



MEASURING SPATIAL MODES
by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

SMF

Bouchard, Herrera, Brandt, Fickler, Huber, and MM, Opt. Exp. 26, 31924 (2018)



MEASURING SPATIAL MODES
by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

SLM

SMF

Bouchard, Herrera, Brandt, Fickler, Huber, and MM, Opt. Exp. 26, 31924 (2018)

a

b

f1
f2

f3
f4

SLM-A

SLM-B
10 X

Fig. 2. Experimental details. (a) An attenuated laser diode is enlarged using a telescope
with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6. The beam is then made incident
on a first spatial light modulator (SLM-A) which reflects the incoming beam (shown in
transmission here for simplicity). The output beam has the desired intensity and phase profile
after passing through a 4 � f system that filters out the first order of di�raction (not shown
here). (b) The beam that is to be measured is made incident on SLM-B. By considering a
virtually backward-propagating beam from the 10X object, the set of lenses f3 = 200 mm
and f4 = 50 mm magnifies the backward-propagating by a factor of 4, making its beam
waist much larger than the beam waist of the detection mode on the SLM-B.

modifications to standard experimental setups measuring optical spatial modes, and allows one to
select the appropriate trade-o� between mode visibility and losses by tuning the beam waist, see
Fig. 1. In order to demonstrate this powerful idea experimentally, we build a simple experimental
setup allowing us to test our intensity-flattening method in several scenarios – measuring radial
modes, key rates in QKD, and quantum state tomography. We also investigate and compare the
performance of the intensity-flattening technique when considering beams other than Gaussian,
such as flat-top and exponential, which can be seen in the appendix-a.

3. Experimental setup

An attenuated diode laser at a wavelength of 810 nm is coupled to an SMF to clean its spatial
profile to the fundamental Gaussian mode. The beam is coupled out of the SMF using a
collimator resulting in a beam with a 1/e2 beam waist of 1.1 mm, which is then enlarged
using a telescope with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6, where f1 and f2
are the focal length of the first and the second lens in the telescope, respectively. The large
collimated beam is made incident on SLM-A where the desired spatial mode is generated using
an amplitude-masking technique [23]. The beam waist of the mode displayed on SLM-A is given
by w0 = 500 µm. A 4 f -system is then used in order to filter out the first order of di�raction
and to image SLM-A onto SLM-B. The beam is then sent through a second telescope with
a magnification of f4/ f3 = (50 mm)/(200 mm) = 0.25 and then coupled to an SMF using a
10-X microscope objective. The choice of f3 and f4 becomes clearer when considering the
backward-propagating beam, (Fig. 1), where the e�ect of the telescope is to enlarge the size of
the backward-propagating beam on SLM-B to 4.2 mm, hence increasing the beam waist of the
Gaussian factor in Eq. (2). A more detailed experimental setup is shown in Fig. 2.
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and f4 = 50 mm magnifies the backward-propagating by a factor of 4, making its beam
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modifications to standard experimental setups measuring optical spatial modes, and allows one to
select the appropriate trade-o� between mode visibility and losses by tuning the beam waist, see
Fig. 1. In order to demonstrate this powerful idea experimentally, we build a simple experimental
setup allowing us to test our intensity-flattening method in several scenarios – measuring radial
modes, key rates in QKD, and quantum state tomography. We also investigate and compare the
performance of the intensity-flattening technique when considering beams other than Gaussian,
such as flat-top and exponential, which can be seen in the appendix-a.

3. Experimental setup

An attenuated diode laser at a wavelength of 810 nm is coupled to an SMF to clean its spatial
profile to the fundamental Gaussian mode. The beam is coupled out of the SMF using a
collimator resulting in a beam with a 1/e2 beam waist of 1.1 mm, which is then enlarged
using a telescope with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6, where f1 and f2
are the focal length of the first and the second lens in the telescope, respectively. The large
collimated beam is made incident on SLM-A where the desired spatial mode is generated using
an amplitude-masking technique [23]. The beam waist of the mode displayed on SLM-A is given
by w0 = 500 µm. A 4 f -system is then used in order to filter out the first order of di�raction
and to image SLM-A onto SLM-B. The beam is then sent through a second telescope with
a magnification of f4/ f3 = (50 mm)/(200 mm) = 0.25 and then coupled to an SMF using a
10-X microscope objective. The choice of f3 and f4 becomes clearer when considering the
backward-propagating beam, (Fig. 1), where the e�ect of the telescope is to enlarge the size of
the backward-propagating beam on SLM-B to 4.2 mm, hence increasing the beam waist of the
Gaussian factor in Eq. (2). A more detailed experimental setup is shown in Fig. 2.
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with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6. The beam is then made incident
on a first spatial light modulator (SLM-A) which reflects the incoming beam (shown in
transmission here for simplicity). The output beam has the desired intensity and phase profile
after passing through a 4 � f system that filters out the first order of di�raction (not shown
here). (b) The beam that is to be measured is made incident on SLM-B. By considering a
virtually backward-propagating beam from the 10X object, the set of lenses f3 = 200 mm
and f4 = 50 mm magnifies the backward-propagating by a factor of 4, making its beam
waist much larger than the beam waist of the detection mode on the SLM-B.

modifications to standard experimental setups measuring optical spatial modes, and allows one to
select the appropriate trade-o� between mode visibility and losses by tuning the beam waist, see
Fig. 1. In order to demonstrate this powerful idea experimentally, we build a simple experimental
setup allowing us to test our intensity-flattening method in several scenarios – measuring radial
modes, key rates in QKD, and quantum state tomography. We also investigate and compare the
performance of the intensity-flattening technique when considering beams other than Gaussian,
such as flat-top and exponential, which can be seen in the appendix-a.

3. Experimental setup

An attenuated diode laser at a wavelength of 810 nm is coupled to an SMF to clean its spatial
profile to the fundamental Gaussian mode. The beam is coupled out of the SMF using a
collimator resulting in a beam with a 1/e2 beam waist of 1.1 mm, which is then enlarged
using a telescope with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6, where f1 and f2
are the focal length of the first and the second lens in the telescope, respectively. The large
collimated beam is made incident on SLM-A where the desired spatial mode is generated using
an amplitude-masking technique [23]. The beam waist of the mode displayed on SLM-A is given
by w0 = 500 µm. A 4 f -system is then used in order to filter out the first order of di�raction
and to image SLM-A onto SLM-B. The beam is then sent through a second telescope with
a magnification of f4/ f3 = (50 mm)/(200 mm) = 0.25 and then coupled to an SMF using a
10-X microscope objective. The choice of f3 and f4 becomes clearer when considering the
backward-propagating beam, (Fig. 1), where the e�ect of the telescope is to enlarge the size of
the backward-propagating beam on SLM-B to 4.2 mm, hence increasing the beam waist of the
Gaussian factor in Eq. (2). A more detailed experimental setup is shown in Fig. 2.
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modifications to standard experimental setups measuring optical spatial modes, and allows one to
select the appropriate trade-o� between mode visibility and losses by tuning the beam waist, see
Fig. 1. In order to demonstrate this powerful idea experimentally, we build a simple experimental
setup allowing us to test our intensity-flattening method in several scenarios – measuring radial
modes, key rates in QKD, and quantum state tomography. We also investigate and compare the
performance of the intensity-flattening technique when considering beams other than Gaussian,
such as flat-top and exponential, which can be seen in the appendix-a.
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An attenuated diode laser at a wavelength of 810 nm is coupled to an SMF to clean its spatial
profile to the fundamental Gaussian mode. The beam is coupled out of the SMF using a
collimator resulting in a beam with a 1/e2 beam waist of 1.1 mm, which is then enlarged
using a telescope with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6, where f1 and f2
are the focal length of the first and the second lens in the telescope, respectively. The large
collimated beam is made incident on SLM-A where the desired spatial mode is generated using
an amplitude-masking technique [23]. The beam waist of the mode displayed on SLM-A is given
by w0 = 500 µm. A 4 f -system is then used in order to filter out the first order of di�raction
and to image SLM-A onto SLM-B. The beam is then sent through a second telescope with
a magnification of f4/ f3 = (50 mm)/(200 mm) = 0.25 and then coupled to an SMF using a
10-X microscope objective. The choice of f3 and f4 becomes clearer when considering the
backward-propagating beam, (Fig. 1), where the e�ect of the telescope is to enlarge the size of
the backward-propagating beam on SLM-B to 4.2 mm, hence increasing the beam waist of the
Gaussian factor in Eq. (2). A more detailed experimental setup is shown in Fig. 2.
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Fig. 4. Performance of phase-flattening in measuring radial modes. Simulated cross-talk
matrix of radial modes measurement with (a) a phase-flattening measurement scheme and
(b) a phase-flattening with amplitude mask measurement scheme.

We note that we may observe a mode-dependent e�ciency in our measurements, which is
attributed to the overall transmission of the amplitude mask due to the geometry of the imprinted
modes, as well as the coupling to the SMF. This e�ect is also seen from the theory, see Fig. 3-(b),
and can be straightforwardly compensated for. In order to achieve a visibility of 98.3 %, the
beam waist of the virtually backward propagating beam has been chosen to be 8.4 times larger
than the beam waist of the generation and measurement holograms. We experimentally measured
the average e�ciency of detection to be 3.2 %, for radial modes ranging from p = 0 to 7, where
losses due to the amplitude mask and coupling to the single mode fibre are taken into account. In
theory, for an 8-dimensional radial mode subspace, a visibility in excess of 99 % is achieved by
enlarging the backward-propagating beam by a factor of 5.4.

By varying the size of the back-propagating beam on SLM-B we may achieve, in theory,
arbitrarily high visibility values at the cost of an increase in loss. However, we demonstrate that
high visibility may still be achieved with reasonable losses, rendering this technique useful for a
broad range of experiments. In general, when considering higher-order modes and thus larger
dimensional states, enlarged beam waists w0 must be considered for a similar visibility value.
In order to show this e�ect, we calculate the detection e�ciency resulting from increasing the
beam waist of the back-propagating beam for obtaining visibility values that are larger than 90 %,
95 % and 99 %, for several dimensions of radial subspaces, see Fig. 3-(c). We note that in the
case of a 10-dimensional subspace, i.e. p = 0 to 9, a visibility larger than 99 % is achieved with
an e�ciency of 2.5 %, which is often tolerable in quantum information processing as well as
classical application tasks. For the case of spontaneous parametric downconversion, coincidence
count rates, summed over all modes, on the order of 105 Hz may be expected for a typical
implementation [12]. If one were to use the intensity-flattening technique to measure pairs of
entangled photons, coincidence count rates on the order of 102 to 103 Hz can be expected. We
further note that our technique has the advantage of allowing the user to vary w0 at will in order
to obtain a certain visibility for a tolerable e�ciency.

In order to compare our intensity-flattening with a previously established measurement
technique, we investigate the performance of phase-flattening in measuring radial modes. In
particular, we consider two strategies where the beam waist of the backward-propagating beam is
fixed to w0, where w0 is the beam waist of the generated and detected modes on the holograms of
the spatial light modulators (SLM). In the first case, a phase-only hologram is employed at the
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FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.
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Fig. 2. Experimental details. (a) An attenuated laser diode is enlarged using a telescope
with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6. The beam is then made incident
on a first spatial light modulator (SLM-A) which reflects the incoming beam (shown in
transmission here for simplicity). The output beam has the desired intensity and phase profile
after passing through a 4 � f system that filters out the first order of di�raction (not shown
here). (b) The beam that is to be measured is made incident on SLM-B. By considering a
virtually backward-propagating beam from the 10X object, the set of lenses f3 = 200 mm
and f4 = 50 mm magnifies the backward-propagating by a factor of 4, making its beam
waist much larger than the beam waist of the detection mode on the SLM-B.

modifications to standard experimental setups measuring optical spatial modes, and allows one to
select the appropriate trade-o� between mode visibility and losses by tuning the beam waist, see
Fig. 1. In order to demonstrate this powerful idea experimentally, we build a simple experimental
setup allowing us to test our intensity-flattening method in several scenarios – measuring radial
modes, key rates in QKD, and quantum state tomography. We also investigate and compare the
performance of the intensity-flattening technique when considering beams other than Gaussian,
such as flat-top and exponential, which can be seen in the appendix-a.

3. Experimental setup

An attenuated diode laser at a wavelength of 810 nm is coupled to an SMF to clean its spatial
profile to the fundamental Gaussian mode. The beam is coupled out of the SMF using a
collimator resulting in a beam with a 1/e2 beam waist of 1.1 mm, which is then enlarged
using a telescope with a magnification of f2/ f1 = (300 mm)/(50 mm) = 6, where f1 and f2
are the focal length of the first and the second lens in the telescope, respectively. The large
collimated beam is made incident on SLM-A where the desired spatial mode is generated using
an amplitude-masking technique [23]. The beam waist of the mode displayed on SLM-A is given
by w0 = 500 µm. A 4 f -system is then used in order to filter out the first order of di�raction
and to image SLM-A onto SLM-B. The beam is then sent through a second telescope with
a magnification of f4/ f3 = (50 mm)/(200 mm) = 0.25 and then coupled to an SMF using a
10-X microscope objective. The choice of f3 and f4 becomes clearer when considering the
backward-propagating beam, (Fig. 1), where the e�ect of the telescope is to enlarge the size of
the backward-propagating beam on SLM-B to 4.2 mm, hence increasing the beam waist of the
Gaussian factor in Eq. (2). A more detailed experimental setup is shown in Fig. 2.

                                                                                              Vol. 26, No. 24 | 26 Nov 2018 | OPTICS EXPRESS 31928 

k
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

�pB |

|p
A
�

�pB |

|p
A
�

Phase-flattening Phase-flattening 
with amplitude maska

Visibility = 46.6 % Visibility = 51.0 %

d = 8d = 8
0

0.2

0.4

0.6

0.8

1.0

0

1
b

Fig. 4. Performance of phase-flattening in measuring radial modes. Simulated cross-talk
matrix of radial modes measurement with (a) a phase-flattening measurement scheme and
(b) a phase-flattening with amplitude mask measurement scheme.

We note that we may observe a mode-dependent e�ciency in our measurements, which is
attributed to the overall transmission of the amplitude mask due to the geometry of the imprinted
modes, as well as the coupling to the SMF. This e�ect is also seen from the theory, see Fig. 3-(b),
and can be straightforwardly compensated for. In order to achieve a visibility of 98.3 %, the
beam waist of the virtually backward propagating beam has been chosen to be 8.4 times larger
than the beam waist of the generation and measurement holograms. We experimentally measured
the average e�ciency of detection to be 3.2 %, for radial modes ranging from p = 0 to 7, where
losses due to the amplitude mask and coupling to the single mode fibre are taken into account. In
theory, for an 8-dimensional radial mode subspace, a visibility in excess of 99 % is achieved by
enlarging the backward-propagating beam by a factor of 5.4.

By varying the size of the back-propagating beam on SLM-B we may achieve, in theory,
arbitrarily high visibility values at the cost of an increase in loss. However, we demonstrate that
high visibility may still be achieved with reasonable losses, rendering this technique useful for a
broad range of experiments. In general, when considering higher-order modes and thus larger
dimensional states, enlarged beam waists w0 must be considered for a similar visibility value.
In order to show this e�ect, we calculate the detection e�ciency resulting from increasing the
beam waist of the back-propagating beam for obtaining visibility values that are larger than 90 %,
95 % and 99 %, for several dimensions of radial subspaces, see Fig. 3-(c). We note that in the
case of a 10-dimensional subspace, i.e. p = 0 to 9, a visibility larger than 99 % is achieved with
an e�ciency of 2.5 %, which is often tolerable in quantum information processing as well as
classical application tasks. For the case of spontaneous parametric downconversion, coincidence
count rates, summed over all modes, on the order of 105 Hz may be expected for a typical
implementation [12]. If one were to use the intensity-flattening technique to measure pairs of
entangled photons, coincidence count rates on the order of 102 to 103 Hz can be expected. We
further note that our technique has the advantage of allowing the user to vary w0 at will in order
to obtain a certain visibility for a tolerable e�ciency.

In order to compare our intensity-flattening with a previously established measurement
technique, we investigate the performance of phase-flattening in measuring radial modes. In
particular, we consider two strategies where the beam waist of the backward-propagating beam is
fixed to w0, where w0 is the beam waist of the generated and detected modes on the holograms of
the spatial light modulators (SLM). In the first case, a phase-only hologram is employed at the
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Fig. 3. Measurement of radial modes. (a) Experimentally measured and (b) simulated
cross-talk matrix of radial modes ranging from p = 0 to p = 7 in a prepare-and-measure
setting. The cross-talk matrix is normalized to unity by dividing each elements by the
element with maximum counts. The rows and the columns correspond to the states, |pAi
and |pBi, prepared and measured by Alice and Bob, respectively. A visibility of V = 98.3 %
is obtained from the experimentally measured cross-talk matrix. In theory, a visibility in
excess of 99 % is achieved by considering a back-propagating with a beam waist 5.4 times
larger than that of the beam waist of the detection mode of the holograms. (c) The e�ciency
of the intensity-flattening measurement technique is shown as a function of dimensionality
of radial modes. For a dimension of d, radial modes ranging from p = 0 to p = d � 1 are
considered. For each dimensions, the reported e�ciencies are obtained by increasing the
beam waist of the back-propagating up to the point where visibilities are in excess of 99 %
(dark blue), 95 % (red) and 90 % (green).

4. Radial modes

As a first experimental demonstration of our technique, let us consider the radial modes of the
LG beams. These modes have recently been investigated both theoretically and experimentally in
the context of quantum information [31–35] and play a key role in fully utlizing the information-
carrying capacity of a photon. Since then, several experimental techniques have been proposed
to measure radial modes in a sorter configuration, i.e. using a scattering medium [36] or taking
advantage of the p-dependent Gouy phase in an interferometric configuration [37, 38]. Such
schemes have the advantage of having a higher detection e�ciency in principle compared to
a filter-type measurement as we propose. Nevertheless, in the first case, low transmission
e�ciencies prohibit its use in a realistic quantum experiment and in the second case, the stability
and interferometric nature of the implementation makes these techniques challenging. In contrast,
our method has the advantage of being simple, compact and stable for measuring radial modes.
In order to demonstrate the quality of measurements achievable with our method, we measure the
cross-talk among radial modes ranging from p = 0 to 7 using our intensity-flattening technique,
see Fig. 3. The modal cross-talk is characterized by considering the visibility of the cross-talk
matrix, which we define as V =

Õ
i Cii/

Õ
i j Ci j , where Ci j corresponds to the cross-talk matrix.

For an 8-dimensional radial mode subspace, we experimentally obtain a visibility value of
V = 98.3 %, which is the highest experimentally achieved value so far reported (to the best of
our knowledge).
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Fig. 3. Measurement of radial modes. (a) Experimentally measured and (b) simulated
cross-talk matrix of radial modes ranging from p = 0 to p = 7 in a prepare-and-measure
setting. The cross-talk matrix is normalized to unity by dividing each elements by the
element with maximum counts. The rows and the columns correspond to the states, |pAi
and |pBi, prepared and measured by Alice and Bob, respectively. A visibility of V = 98.3 %
is obtained from the experimentally measured cross-talk matrix. In theory, a visibility in
excess of 99 % is achieved by considering a back-propagating with a beam waist 5.4 times
larger than that of the beam waist of the detection mode of the holograms. (c) The e�ciency
of the intensity-flattening measurement technique is shown as a function of dimensionality
of radial modes. For a dimension of d, radial modes ranging from p = 0 to p = d � 1 are
considered. For each dimensions, the reported e�ciencies are obtained by increasing the
beam waist of the back-propagating up to the point where visibilities are in excess of 99 %
(dark blue), 95 % (red) and 90 % (green).

4. Radial modes

As a first experimental demonstration of our technique, let us consider the radial modes of the
LG beams. These modes have recently been investigated both theoretically and experimentally in
the context of quantum information [31–35] and play a key role in fully utlizing the information-
carrying capacity of a photon. Since then, several experimental techniques have been proposed
to measure radial modes in a sorter configuration, i.e. using a scattering medium [36] or taking
advantage of the p-dependent Gouy phase in an interferometric configuration [37, 38]. Such
schemes have the advantage of having a higher detection e�ciency in principle compared to
a filter-type measurement as we propose. Nevertheless, in the first case, low transmission
e�ciencies prohibit its use in a realistic quantum experiment and in the second case, the stability
and interferometric nature of the implementation makes these techniques challenging. In contrast,
our method has the advantage of being simple, compact and stable for measuring radial modes.
In order to demonstrate the quality of measurements achievable with our method, we measure the
cross-talk among radial modes ranging from p = 0 to 7 using our intensity-flattening technique,
see Fig. 3. The modal cross-talk is characterized by considering the visibility of the cross-talk
matrix, which we define as V =

Õ
i Cii/

Õ
i j Ci j , where Ci j corresponds to the cross-talk matrix.

For an 8-dimensional radial mode subspace, we experimentally obtain a visibility value of
V = 98.3 %, which is the highest experimentally achieved value so far reported (to the best of
our knowledge).
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• Twist!

• Opening box in the daytime tells you 
whether cats are dead or alive

• Opening box at night tells you if the 
cats are ZOMBIES or VAMPIRES 😱

• Magical connection exists no matter 
when (how) you open the box!

Trieste Edinburgh
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will be perfectly correlated

• Measurements in the DA basis also 
show perfect correlations!

• Created using type II nonlinear crystals
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FIG. 1. Schematic view of the experiment for creating and
quantifying high-dimensional entanglement using limited mea-
surement data. The time-bin entangled two-photon state is
produced by spontaneous parametric down conversion process
(SPDC) using a �(2) nonlinear crystal. The crystal is pumped
by a mode-locked laser with high repetition rate producing
a photon pair in well defined temporal modes |j, ji. A Fran-
son type setup [5] consisting of two interferometers is used to
analyse the resulting state and reveal its entanglement.

where |j, ji denotes the states where both photons are
in the pulse j, which has amplitude cj , and phase �j .
The mode-locked laser preserves the amplitude and phase
relation over a large number of pulses, n. This means
that cj and �j can be consider constant for n� smaller
than the coherence time of the laser. In our configuration
based on a laser with a coherence time greater than 1 ms
and a repetition rate of 430 MHz, the coherence of this
state can be preserved for n  400. Moreover, the pump
power is set in such a way that the probability to generate
two photon pairs in a n-pulse train is negligible.

The created time-bin entangled two-photon state is
then analyzed. First, the two photons (of each pair) are
separated by a dichroic mirror and each photon is sent to
a bulk unbalanced interferometer. The delay between the
short and long arms of the interferometers can be set to
� and 2� in order to analyse the coherence between two
neighbor (j and j + 1) and next-neighbor (j and j + 2)
temporal modes. These delays are much larger than the
pulse duration of the laser ⌧p ⇡ 10 ps and the coherence
time of the down-converted photons ⌧c ⇡ 1 ps (the coher-
ence time of the photons is estimated from the bandwidth
of the photon at 1550 nm which is around 3 nm). In this
case, only second order interference can be measured by
analysing the coincidence rate at the output of the inter-
ferometers, which correspond to the local projections onto
the state hj + i, j + i| e�i(�a+�b) + hj, j| (with i = 1, 2),
where �a and �b correspond to the relative phase between
the two arms of the interferometers. These phases can
be adjusted by piezo actuators. To extract the visibility,
the phase of one of the two interferometers is scanned to
find the maximum and minimum coincidence rates, which
correspond to constructive and destructive interference,
respectively. At the output of each interferometer, the
photons are detected via a single photon detector (SPD),
based on an silicon (resp. InGaAs) avalanche photodiode
for the photon at 810 nm (resp. 1550 nm). To asso-
ciate the detections with the correct temporal modes, the

detection events are sent to a time-to-digital converter
where the clock is set on the laser frequency divided by
212. More precisely, the temporal mode j corresponding
to each detection is defined from the time delay between
the clock trigger and the detection event.

Entanglement certification.— Our goal here is to char-
acterize the entanglement of the time-bin entangled state
we create. This is however a nontrivial problem, due to
the very limited data available from the experiment. In
particular, we cannot reconstruct the full density matrix ⇢
of the state, due to the fact that we are not able to exper-
imentally measure each element hj, k|⇢|j0, k0i. This would
require having basically n unbalanced interferometers,
which is clearly unpractical.

Specifically, our setup allows us to measure only the
following quantities. First, we can measure coincidence
events in the time-of-arrival basis, which gives access to
the diagonal density matrix elements hj, k|⇢|j, ki. Sec-
ond, we can measure the interference visibility between
two neighboring temporal modes (j and j + 1), and sim-
ilarly for two next-neighboring temporal modes (j and
j + 2). Hence we can estimate the off-diagonal elements
hj, j|⇢|j + i, j + ii for i = 1, 2 (FIG. 1). Apart from these
quantities, we cannot get access to any further elements
of ⇢.

Although this data is rather limited, it turns out that we
can nevertheless efficiently characterize the entanglement
produced by the source. In particular we obtain strong
lower bounds on the amount of entanglement contained
in the state. To do so we build upon recent theoretical
methods presented in Ref. [28]. More specifically, this
approach will allow us to lower-bound the entanglement
of formation of ⇢, EoF . This measure represents the
minimal number of "ebits" (i.e. the number of maximally
entangled two-qubit states) required in order to produce
⇢ via an arbitrary LOCC procedure [29]. This measure
thus has a clear operational meaning. Specifically, we
have that

EoF > � log2(1�
B2

2
) (2)

where the quantity B is defined as:

B =
2p
|C|

0

BB@
X

(j,k)2C
j<k

|hj, j|⇢|k, ki|

�
p
hj, k|⇢|j, ki hk, j|⇢|k, ji

⌘
. (3)

Here |C| denotes the cardinality of the set C, i.e. the
number of pairs of indices (j, k) to be considered in the
sum. By taking more and more elements in C, one ob-
tains typically better bounds on EoF . How many pairs
of indices can be considered depends on how many off-
diagonal elements of ⇢ are known. Note that B provides
a lower-bound on the concurrence of ⇢ [30].

While the data available in our experiment does not al-
low us to reconstruct the complete density matrix, we can
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where |j, ji denotes the states where both photons are
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The mode-locked laser preserves the amplitude and phase
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that cj and �j can be consider constant for n� smaller
than the coherence time of the laser. In our configuration
based on a laser with a coherence time greater than 1 ms
and a repetition rate of 430 MHz, the coherence of this
state can be preserved for n  400. Moreover, the pump
power is set in such a way that the probability to generate
two photon pairs in a n-pulse train is negligible.

The created time-bin entangled two-photon state is
then analyzed. First, the two photons (of each pair) are
separated by a dichroic mirror and each photon is sent to
a bulk unbalanced interferometer. The delay between the
short and long arms of the interferometers can be set to
� and 2� in order to analyse the coherence between two
neighbor (j and j + 1) and next-neighbor (j and j + 2)
temporal modes. These delays are much larger than the
pulse duration of the laser ⌧p ⇡ 10 ps and the coherence
time of the down-converted photons ⌧c ⇡ 1 ps (the coher-
ence time of the photons is estimated from the bandwidth
of the photon at 1550 nm which is around 3 nm). In this
case, only second order interference can be measured by
analysing the coincidence rate at the output of the inter-
ferometers, which correspond to the local projections onto
the state hj + i, j + i| e�i(�a+�b) + hj, j| (with i = 1, 2),
where �a and �b correspond to the relative phase between
the two arms of the interferometers. These phases can
be adjusted by piezo actuators. To extract the visibility,
the phase of one of the two interferometers is scanned to
find the maximum and minimum coincidence rates, which
correspond to constructive and destructive interference,
respectively. At the output of each interferometer, the
photons are detected via a single photon detector (SPD),
based on an silicon (resp. InGaAs) avalanche photodiode
for the photon at 810 nm (resp. 1550 nm). To asso-
ciate the detections with the correct temporal modes, the
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acterize the entanglement of the time-bin entangled state
we create. This is however a nontrivial problem, due to
the very limited data available from the experiment. In
particular, we cannot reconstruct the full density matrix ⇢
of the state, due to the fact that we are not able to exper-
imentally measure each element hj, k|⇢|j0, k0i. This would
require having basically n unbalanced interferometers,
which is clearly unpractical.

Specifically, our setup allows us to measure only the
following quantities. First, we can measure coincidence
events in the time-of-arrival basis, which gives access to
the diagonal density matrix elements hj, k|⇢|j, ki. Sec-
ond, we can measure the interference visibility between
two neighboring temporal modes (j and j + 1), and sim-
ilarly for two next-neighboring temporal modes (j and
j + 2). Hence we can estimate the off-diagonal elements
hj, j|⇢|j + i, j + ii for i = 1, 2 (FIG. 1). Apart from these
quantities, we cannot get access to any further elements
of ⇢.

Although this data is rather limited, it turns out that we
can nevertheless efficiently characterize the entanglement
produced by the source. In particular we obtain strong
lower bounds on the amount of entanglement contained
in the state. To do so we build upon recent theoretical
methods presented in Ref. [28]. More specifically, this
approach will allow us to lower-bound the entanglement
of formation of ⇢, EoF . This measure represents the
minimal number of "ebits" (i.e. the number of maximally
entangled two-qubit states) required in order to produce
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number of pairs of indices (j, k) to be considered in the
sum. By taking more and more elements in C, one ob-
tains typically better bounds on EoF . How many pairs
of indices can be considered depends on how many off-
diagonal elements of ⇢ are known. Note that B provides
a lower-bound on the concurrence of ⇢ [30].

While the data available in our experiment does not al-
low us to reconstruct the complete density matrix, we can

lations for the state !!spa were close to maximal (S "
2
!!!
2
p
# 2:83), also in agreement with predictions from

the measured state density matrix. In addition, we tested
Bell inequalities for nonmaximally entangled states in the
OAM subspace: !jggi! jrli and !jggi! jlri; the mea-
sured Bell parameters in this case were slightly smaller
(5%, maximum) than predictions from tomographic recon-
struction [31], yet still 20" above the classical limit.
Finally, our measured Bell violation for the energy-time
DOF using particular phase settings is in good agreement
with the prediction (S " 2

!!!
2
p
V) from the measured 2-

photon interference visibility V " 0:985$2%.
The polarization and spatial-mode state was fully char-

acterized via tomography [27]. We performed the 1296
linearly independent state projections required for a full
reconstruction in the $2 & 3% & $2 & 3% Hilbert space con-
sisting of two polarization and three OAM modes for each
photon. The measured state (Fig. 2) overlaps the antici-
pated state [polarization and spatial DOFs of Eq. (1)] with
a fidelity of 0.69(1) for ! " 1:88e0:16i# (numerically fit-
ted), and SL " 0:46$1%, suggesting the difference arises
mostly from mixture. Treating the photon pairs as a six-
level two-particle system, we can quantify the entangle-
ment using the negativity N [32]. In this 6 & 6 Hilbert
space, N ranges from 0 (for separable states) to 5 (for
maximally entangled states), and the fitted state above
hasN # 4:44. Our measured partially mixed state hasN "
2:96$4%, indicating strong entanglement. The spatial mode
alone hasN " 1:14$2%, greater than the maximum (N " 1)

of any two-qubit system. Thus, our large state possesses 2-
qubit and 2-qutrit entanglement.

We also selected a state [neglecting the jggi component,
Fig. 3(a)] maximally entangled in both polarization and
spatial mode that had F " 0:974$1% with the target !!poln &

FIG. 2 (color online). Measured density matrix ($) and close
pure state [j"pi ' !!poln & $jlri! !jggi! jrli% with ! "
1:88e0:16i#] of a (2 ( 2 ( 3 ( 3)-dimensional state of 2-photon
polarization and spatial mode [35].

FIG. 3 (color online). Measured density matrices (real parts) of
(2 ( 2 ( 2 ( 2)-dimensional states of 2-photon polarization and
(! 1; ) 1)-qubit OAM [35]. For each state, we list the target
state $t, the fidelity F$$;$t% of the measured state $ with the
target $t, their negativities and linear entropies, and the tangle
and linear entropy for each subspace. The negativity for two-
qubit states is the square root of the tangle. The magnitudes of all
imaginary elements, not shown, are less than 0.03.

PRL 95, 260501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005

260501-3

• Hyper-entanglement
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FIG. 3. (Color online) The density matrices for even dimensions
2–8. The axes for dimension 2 are labeled, and the higher dimensions
follow the same convention. For example, the labels for the d =
4 case would read ⟨2,2|,⟨2,1|,⟨2, − 1|, . . . and |− 2, − 2⟩,|− 2, − 1⟩,
|− 2,1⟩, etc., where we use the convention |ℓs ,ℓi⟩ to be equivalent to
|ℓ⟩s |ℓ⟩i .

of the density matrices arise because of coefficients in the
entangled states that have a small but measurable phase shift
between them. This phase shift occurs because some modes
have a larger Gouy phase than others. In our experiment, this
phase is detected because the facets of the optical fibers that
detect the signal and idler modes may not be in the same
optical plane and thus do not image the exact same plane of
the nonlinear crystal.
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FIG. 4. (Color online) (a) Linear entropy and (b) fidelity as a
function of dimension. The error for both of these measurements
is ± 0.01, which is too small to be seen clearly on the graphs. In
each case, the squares represent the measured data, while the circles
represent the threshold states in Eq. (13). The shaded area represents
the set of states that will not violate the appropriate high-dimensional
Bell inequality.

The density matrix completely characterizes the quantum
state; thus once it has been determined, it is simple to make
predictions with regards to quantum information protocols. For
example, it is possible to determine the degree of entanglement
and test whether the states reach the criteria required for
violation of the generalized Bell inequalities [16,18].

The linear entropy S = 1 − Tr(ρ2
d ) is a measure of the

purity of the reconstructed state [7]. A pure state has a
linear entropy of zero [11]. We find the linear entropy is
low for lower dimensions (S2 = 0.05 ± 0.01), indicating close
to pure states. The linear entropy increases with dimension
(S8 = 0.50 ± 0.01), indicating increasingly mixed states [see
Fig. 4(a)]. The fidelity is a measure of how close the
reconstructed state is to a chosen state and is given by
F = [Tr(

√√
ρT ρd

√
ρT )]2, where ρT is the target density

matrix [30]. A perfectly entangled state will have a fidelity
of unity with the maximally entangled state in Eq. (8). For low
dimensions, we find good fidelity F2 = 0.96 ± 0.01; however,
the fidelity decreases with dimension and becomes as low as
F8 = 0.64 ± 0.01 [see Fig. 4(b)]. The average error for both
the entropy and the fidelity is ± 0.01, which is calculated by
generating additional data sets by adding

√
Ci fluctuations to

the measured coincidence counts Ci and then repeating the
calculations described above.

The generalized Bell inequalities [16,18] test whether or
not the observed correlations, which are predicted by quantum
mechanics, can be explained by local hidden variable theories.
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I. INTRODUCTION

Tomographic reconstruction techniques have found ap-
plications in a wide range of disciplines. The concept of
tomography is that properties of an unknown system that
cannot be measured directly are established from a sequence
of measurements on different parts of the system. Knowledge
about the different measurements and their outcomes are
combined to give a best fit to the system that would produce
the outcomes of the measurements. An example of tomography
in image science is the reconstruction of a three-dimensional
object or scene from a number of two-dimensional projections.

Quantum state reconstruction or quantum tomography is the
process in which precise knowledge of an unknown quantum
state is established [1]. As any measurement on a quantum
system will alter the state, the tomographic process requires
measurements to be performed on identical copies of the initial
state. After a set of measurements is performed, which must
form a complete basis in the chosen Hilbert space, the density
matrix or quantum state can be uniquely recovered.

The process of reconstruction of a quantum state was
proposed by Fano in 1957 [1,2]. Since then, many experiments
have been reported, and quantum tomography is an established
field of research [3– 11]. Recently, quantum tomography using
compressive sensing was reported [12]. In that work, it
was shown that the number of required measurements to
reconstruct the density matrix can be made to scale favorably
with the dimension of the quantum system. For specific cases
where the density matrix is sparse in a particular basis, there
is a significant reduction in the number of measurements
required.

We use quantum tomography to reconstruct the state of two
entangled photons. Entanglement gives rise to nonclassical
correlations of variables in quantum systems; see Ref. [13]
for a comprehensive review. These correlations are central to
EPR’s paradox [14] and tests of nonlocality through violations
of Bell inequalities [15,16]. Due in part to its importance
for quantum cryptography [17], entanglement has become
an important field of study. High-dimensional entanglement

has been reported up to dimension d = 12 [18]. The state
of hyperentangled photons, which are entangled in several
degrees of freedom, has been characterized via quantum state
tomography [19]. Tomography of entangled states up to dimen-
sion d = 3 has also been reported [7]. Higher-dimensionally
entangled states have not yet been characterized due to the
inherent time demands for the large sets of measurements
required.

In this work we determine the precise quantum state of high-
dimensionally entangled photon pairs generated by parametric
down-conversion. In this process, orbital angular momentum
(OAM) is conserved, resulting in two photons with equal but
opposite OAMs and entangled in the OAM basis [20– 24].
We choose to measure in the OAM basis as the states in this
basis are discrete, although the Hilbert space they define is
infinite dimensional. It is therefore a simple process to restrict
the specific size of the state space while retaining the option
of high dimensionality. We see this as an important step in
the characterization of high-dimensionally entangled systems,
which have recently been proposed as a tool that could be used
for loophole-free tests of nonlocality [25].

II. THEORY

The density matrix of a pure quantum state is formed by
the outer product of the state vector with itself,

ρ = |ψ⟩⟨ψ |, (1)

where the state can be represented in a complete basis of
vectors |u⟩ as

|ψ⟩ =
∑

u

au|u⟩. (2)

However, constructing the density matrix from |ψ⟩ requires
knowledge of the complex coefficients au, which in general
cannot be measured directly. This expression also precludes
a mixed state, which cannot be expressed with a state vector.

062101-11050-2947/2011/84(6)/062101(6) ©2011 American Physical Society
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of the density matrices arise because of coefficients in the
entangled states that have a small but measurable phase shift
between them. This phase shift occurs because some modes
have a larger Gouy phase than others. In our experiment, this
phase is detected because the facets of the optical fibers that
detect the signal and idler modes may not be in the same
optical plane and thus do not image the exact same plane of
the nonlinear crystal.
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each case, the squares represent the measured data, while the circles
represent the threshold states in Eq. (13). The shaded area represents
the set of states that will not violate the appropriate high-dimensional
Bell inequality.

The density matrix completely characterizes the quantum
state; thus once it has been determined, it is simple to make
predictions with regards to quantum information protocols. For
example, it is possible to determine the degree of entanglement
and test whether the states reach the criteria required for
violation of the generalized Bell inequalities [16,18].

The linear entropy S = 1 − Tr(ρ2
d ) is a measure of the

purity of the reconstructed state [7]. A pure state has a
linear entropy of zero [11]. We find the linear entropy is
low for lower dimensions (S2 = 0.05 ± 0.01), indicating close
to pure states. The linear entropy increases with dimension
(S8 = 0.50 ± 0.01), indicating increasingly mixed states [see
Fig. 4(a)]. The fidelity is a measure of how close the
reconstructed state is to a chosen state and is given by
F = [Tr(

√√
ρT ρd

√
ρT )]2, where ρT is the target density

matrix [30]. A perfectly entangled state will have a fidelity
of unity with the maximally entangled state in Eq. (8). For low
dimensions, we find good fidelity F2 = 0.96 ± 0.01; however,
the fidelity decreases with dimension and becomes as low as
F8 = 0.64 ± 0.01 [see Fig. 4(b)]. The average error for both
the entropy and the fidelity is ± 0.01, which is calculated by
generating additional data sets by adding

√
Ci fluctuations to

the measured coincidence counts Ci and then repeating the
calculations described above.

The generalized Bell inequalities [16,18] test whether or
not the observed correlations, which are predicted by quantum
mechanics, can be explained by local hidden variable theories.
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I. INTRODUCTION

Tomographic reconstruction techniques have found ap-
plications in a wide range of disciplines. The concept of
tomography is that properties of an unknown system that
cannot be measured directly are established from a sequence
of measurements on different parts of the system. Knowledge
about the different measurements and their outcomes are
combined to give a best fit to the system that would produce
the outcomes of the measurements. An example of tomography
in image science is the reconstruction of a three-dimensional
object or scene from a number of two-dimensional projections.

Quantum state reconstruction or quantum tomography is the
process in which precise knowledge of an unknown quantum
state is established [1]. As any measurement on a quantum
system will alter the state, the tomographic process requires
measurements to be performed on identical copies of the initial
state. After a set of measurements is performed, which must
form a complete basis in the chosen Hilbert space, the density
matrix or quantum state can be uniquely recovered.

The process of reconstruction of a quantum state was
proposed by Fano in 1957 [1,2]. Since then, many experiments
have been reported, and quantum tomography is an established
field of research [3– 11]. Recently, quantum tomography using
compressive sensing was reported [12]. In that work, it
was shown that the number of required measurements to
reconstruct the density matrix can be made to scale favorably
with the dimension of the quantum system. For specific cases
where the density matrix is sparse in a particular basis, there
is a significant reduction in the number of measurements
required.

We use quantum tomography to reconstruct the state of two
entangled photons. Entanglement gives rise to nonclassical
correlations of variables in quantum systems; see Ref. [13]
for a comprehensive review. These correlations are central to
EPR’s paradox [14] and tests of nonlocality through violations
of Bell inequalities [15,16]. Due in part to its importance
for quantum cryptography [17], entanglement has become
an important field of study. High-dimensional entanglement

has been reported up to dimension d = 12 [18]. The state
of hyperentangled photons, which are entangled in several
degrees of freedom, has been characterized via quantum state
tomography [19]. Tomography of entangled states up to dimen-
sion d = 3 has also been reported [7]. Higher-dimensionally
entangled states have not yet been characterized due to the
inherent time demands for the large sets of measurements
required.

In this work we determine the precise quantum state of high-
dimensionally entangled photon pairs generated by parametric
down-conversion. In this process, orbital angular momentum
(OAM) is conserved, resulting in two photons with equal but
opposite OAMs and entangled in the OAM basis [20– 24].
We choose to measure in the OAM basis as the states in this
basis are discrete, although the Hilbert space they define is
infinite dimensional. It is therefore a simple process to restrict
the specific size of the state space while retaining the option
of high dimensionality. We see this as an important step in
the characterization of high-dimensionally entangled systems,
which have recently been proposed as a tool that could be used
for loophole-free tests of nonlocality [25].

II. THEORY

The density matrix of a pure quantum state is formed by
the outer product of the state vector with itself,

ρ = |ψ⟩⟨ψ |, (1)

where the state can be represented in a complete basis of
vectors |u⟩ as

|ψ⟩ =
∑

u

au|u⟩. (2)

However, constructing the density matrix from |ψ⟩ requires
knowledge of the complex coefficients au, which in general
cannot be measured directly. This expression also precludes
a mixed state, which cannot be expressed with a state vector.
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Experimental high-dimensional two-photon
entanglement and violations of generalized
Bell inequalities
Adetunmise C. Dada1*, Jonathan Leach2, Gerald S. Buller1, Miles J. Padgett2 and Erika Andersson1

Quantum entanglement1,2 plays a vital role in many
quantum-information and communication tasks3. Entangled
states of higher-dimensional systems are of great interest
owing to the extended possibilities they provide. For exam-
ple, they enable the realization of new types of quantum
information scheme that can offer higher-information-density
coding and greater resilience to errors than can be achieved
with entangled two-dimensional systems (see ref. 4 and
references therein). Closing the detection loophole in Bell
test experiments is also more experimentally feasible when
higher-dimensional entangled systems are used5. We have
measured previously untested correlations between two
photons to experimentally demonstrate high-dimensional
entangled states.We obtain violations of Bell-type inequalities
generalized to d-dimensional systems6 up to d = 12. Further-
more, the violations are strong enough to indicate genuine
11-dimensional entanglement. Our experiments use photons
entangled in orbital angular momentum7, generated through
spontaneous parametric down-conversion8,9, and manipulated
using computer-controlled holograms.

Quantum-information tasks requiring high-dimensional bipar-
tite entanglement include teleportation using qudits10,11, general-
ized dense coding (that is, with pairs of entangled d-level sys-
tems; ref. 12) and some quantum key distribution protocols13.
More generally, schemes such as quantum secret sharing14 and
measurement-based quantum computation15 apply multiparticle
entanglement. These are promising applications, especially in view
of recent progress in the development of quantum repeaters (see
ref. 16 and references therein). However, practical applications
of such protocols are only conceivable when it is possible to
experimentally prepare, and moreover detect, high-dimensional
entangled states. Therefore, the ability to verify high-dimensional
entanglement between physical qudits is of crucial importance.
Indeed, much progress has generally been made on the generation
and detection of high-dimensional entangled states (please see
ref. 17 and references within).

Here we report the experimental investigation of high-
dimensional, two-photon entangled states. We focus on photon
orbital angular momentum (OAM) entangled states generated by
spontaneous parametric down-conversion (SPDC), and demon-
strate genuine high-dimensional entanglement using violations
of generalized Bell-type inequalities6. Previously, qutrit Bell-type
tests have been carried out using photon OAM to verify three-
dimensional entanglement (see ref. 18 and references within). In
addition to testing whether correlations in nature can be explained

1SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK, 2Department of Physics and Astronomy, SUPA,
University of Glasgow, Glasgow G12 8QQ, UK. *e-mail: acd8@hw.ac.uk.

by local realist theories19, the violation of Bell-type inequalities may
be used to demonstrate the presence of entanglement. Bell-type
experiments have been carried out using two-dimensional sub-
spaces of the OAM state space of photons20,21 and experimentalists
have demonstrated two-dimensional entanglement using up to 20
different two-dimensional subspaces22. Careful studies have also
been carried out to describe how specific detector characteristics
bound the dimensionality of the measured OAM states in photons
generated by SPDC using Shannon dimensionality23.

Our experimental study of high-dimensional entanglement is
based on the theoretical work of Collins et al.6, which was applied in
experiments for qutrits encoded in the OAM states of photons18,24.
We encode qudits using theOAMstates of photons, with eigenstates
defined by the azimuthal index `. These states arise from the
solution of the paraxial wave equation in its cylindrical co-ordinate
representation, and are the Laguerre–Gaussian modes LGp,`, so
called because they are light beams with a Laguerre–Gaussian
amplitude distribution.

In our set-up (Fig. 1), OAM entangled photons are generated
through a frequency-degenerate type-I SPDC process, and the
OAM state is manipulated with computer-controlled spatial
light modulators (SLMs) acting as reconfigurable holograms.
Conservation of angular momentum ensures that, if the signal
photon is in the mode specified by |`i, the corresponding idler
photon can only be in the mode |�`i. Assuming that angular
momentum is conserved9, a pure state of the two-photon field
produced will have the form

|9i =
`=1X

`=�1
c`|`iA ⌦ |�`iB

where subscripts A and B label the signal and idler photons
respectively, |c`|2 is the probability to create a photon pair with
OAM±`h̄ and |`i is theOAMeigenmodewithmode number `.

It has been shown6 that, for correlations that can be described by
theories based on local realism1, a family of Bell-type parameters Sd
satisfies the inequalities

S
(local realism)
d

 2, for all d � 2 (1)

Alternatively, if quantum mechanics is assumed to hold, then the
violation of an inequality of type (1) indicates the presence of
entanglement. Sd can be expressed as the expectation value of
a quantum mechanical observable, which we denote as Ŝd . The
expressions for Sd , Ŝd and the operators Ŝ2 and Ŝ3 are provided in
Supplementary Section SI.
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Figure 3 | Experimental Bell-type parameter Sd versus number of
dimensions d. Sd > 2 violates local realism for any d � 2. The plot compares
the theoretically predicted violations by a maximally entangled state and
the LHV limit with the experiments. Violations are observed for up to
d = 12. Errors were estimated assuming Poisson statistics.

and S12 = 2.24 ± 0.08, which clearly violate Sd  2 (see also
Supplementary Table S4). In the corresponding experiment using
LGp,` modes with only p = 0, violations are obtained up to
d=11.Without entanglement concentration, we observe violations
only up to d = 9 (please see Supplementary Fig. S2 in Section
SIV). Above d ⇠ 11, the strength of the signal becomes so low
that noise begins to overshadow the quantum correlations. In
Fig. 2, the theoretical prediction in equation (5) for a state with
maximal 11-dimensional entanglement is fitted to the experimental
coincidence data obtained using the mode analyser settings defined
in equation (4) for d = 11, with only the vertical offset and
amplitude left as free parameters. The observed fringes are seen to
closely match those theoretically obtained for a state with maximal
11-dimensional entanglement.

The violation of a Bell inequality in d ⇥ d dimensions directly
indicates that the measured state was entangled. It remains to de-
termine how many dimensions were involved in the entanglement.
Measuring the coincidence probabilities, that is, of there being
the joint state |`si⌦ |`ii (Fig. 4), together with the parameters Sd
for different d , can be seen as a partial tomography of the SPDC
source state. Numerical investigations indicate that a state with the
experimentally observed coincidence probabilities and parameters
S2,S3,...,S11 must contain genuine 11-dimensional entanglement.
In other words, it is not possible to obtain the observed levels of
violation with a state that contains entanglement involving only 10
dimensions or less. Our analysis assumes a special form of the states,
based on the coincidence measurement results shown in Fig. 4.
Further details are given in Supplementary Section SII.

Our results holdmuch promise for applications requiring entan-
gled qudits in general. As mentioned earlier, progress in the devel-
opment of quantum repeaters (see ref. 16 and references therein)
would make quantum key distribution using high-dimensional
entangled states13 a possible application. Conventional quantum
communication will fail for sufficiently large transmission distances
because of loss, and quantum repeaters are one possible solution
to this problem. Although experimental quantum key distribution
has been demonstrated with OAM qutrits24, our findings provide
experimental evidence that such protocols could be implemented
using photons entangled in OAM in up to 11 dimensions, resulting
in a considerable increase in information coding density.

A possible extension to our work would be to investigate the
generation of multiphoton, high-dimensional OAM entanglement.
We can conceive of achieving this using a cascade of down-
conversion crystals for generating multipartite entangled photons,
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which has been done for polarization entangled photons17. It also
seems to be within reach to combine the high-dimensional photon
OAMentanglement with entanglement in the polarization and path
degrees of freedom, creating even larger hyper-entangled states (see
ref. 17 and references within).

On amore fundamental note, Bell test experiments carried out so
far have one or both of twomain loopholes, namely the locality and
detection loopholes. However, a recent theoretical work reveals that
even low-dimensional qudits can provide a significant advantage
over qubits for closing the detection loophole5. In fact, it was found
that as much as 38.2% loss can be tolerated using four-dimensional
entanglement. Our results raise interesting possibilities regarding
the role higher-dimensional entangled qudits could play in closing
this loophole. We emphasize that neither the detection nor the
locality loophole has been closed in our experiments, because the
overall efficiency of our experimental set-up is 1–2%, and the
switching time for our measurement devices (SLMs) is of the order
of tens of milliseconds. However, closing these loopholes was not
the immediate goal of our experiments. We are instead using the
violation of Bell inequalities, up to fair sampling assumptions, as a
means of verifying the presence of high-dimensional entanglement,
within the framework of quantummechanics.

In summary, we have been able to experimentally demonstrate
violations of Bell-type inequalities generalized to d-dimensional
systems6 with up to d = 12, enough to indicate genuine 11-
dimensional entanglement in the OAM of signal and idler photons
in parametric down-conversion. It seems that this could be
extended to even higher dimensions by using a brighter source
of entangled photons.

Methods
In our experiments, we use computer-controlled SLMs (Hamamatsu) operating
in reflection mode with a resolution of 600⇥600 pixels. In the detection, the
SLMs are prepared in the states defined in equation (4) respectively. An SLM
prepared in a given state transforms a photon in that state to the Gaussian |` = 0i
mode. The reflected photon is then coupled into a single-mode fibre which
feeds a single photon detector. As only the |` = 0i mode couples into the fibre,
a count in the detector indicates a detection of the state in which the SLM was
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Entangled quantum systems have properties that have fundamen-
tally overthrown the classical worldview. Increasing the complexity
of entangled states by expanding their dimensionality allows the
implementation of novel fundamental tests of nature, and more-
over also enables genuinely new protocols for quantum information
processing. Here we present the creation of a (100 × 100)-dimen-
sional entangled quantum system, using spatial modes of photons.
For its verification we develop a novel nonlinear criterion which
infers entanglement dimensionality of a global state by using only
information about its subspace correlations. This allows very prac-
tical experimental implementation as well as highly efficient extrac-
tion of entanglement dimensionality information. Applications in
quantum cryptography and other protocols are very promising.

photonic spatial modes | quantum optics | Schmidt rank |
entanglement witness

Quantum entanglement of distant particles leads to correla-
tions that cannot be explained in a local realistic way (1–3).

To obtain a deeper understanding of entanglement itself, as well as
its application in various quantum information tasks, increasing the
complexity of entangled systems is important. Essentially, this can
be done in two ways. The first method is to increase the number of
particles involved in the entanglement (4). The alternative method
is to increase the entanglement dimensionality of a system.
Here we focus on the latter one, namely on the dimension of the

entanglement. The text is structured as follows. After a short re-
view of properties and previous experiments, we present a unique
method to verify high-dimensional entanglement. Then we show
how we experimentally create our high-dimensional two-photon
entangled state. We analyze this state with our method and verify
a 100 × 100-dimensional entangled quantum system. We conclude
with a short outlook to potential future investigations.
High-dimensional entanglement provides a higher information

density than conventional two-dimensional (qubit) entangled states,
which has important advantages in quantum communication. First,
it can be used to increase the channel capacity via superdense
coding (5). Second, high-dimensional entanglement enables the
implementation of quantum communication tasks in regimes where
mere qubit entanglement does not suffice. This involves situations
with a high level of noise from the environment (6, 7), or quantum
cryptographic systems where an eavesdropper has manipulated the
random number generator involved (8). Moreover, the entangled
dimensions of the whole Hilbert space also play a very interesting
role in quantum computation: high-dimensional systems can be used
to simplify the implementation of quantum logic (9). Furthermore, it
has been found recently (10) that any continuous measure of en-
tanglement (such as concurrence, entanglement of formation, or
negativity) can be very small, while the quantum system still permits
an exponential computation speedup over classical machines. This is
not the case for the dimension of entanglement—for every quantum
computation, it needs to be high (11, 12), which is another hint at
the fundamental relevance of the concept.
So far, high-dimensional entanglement has been implemented

only in photonic systems. There, different multilevel degrees of

freedom, such as spatial modes (13), time-energy (14), path (15,
16), as well as continuous variables (17, 18), have been used.
Entanglement of spatial modes of photons has especially attracted
much attention in recent years (19–28), because it is readily avail-
able from optical nonlinear crystals and the number of involved
modes of the entanglement can be very high (29).
In a recent experiment the nonseparability of a two-photon state

was shown, by observing Einstein–Podolsky–Rosen correlations of
photon pairs in down-conversion (30) (for a similar experiment,
see ref. 31). The authors were able to observe entanglement of
∼2,500 spatial states with a camera. In our experiment we go a step
further and not only show nonseparability, but we can also extract
information about the dimensionality of the entanglement. Pre-
cisely, we experimentally verify 100-dimensional entanglement.
One main challenge that remains is the detection and verifica-

tion of high-dimensional entanglement. For reconstructing the full
quantum state via state tomography, the number of required mea-
surements is impractical even for relatively low dimensions because
it scales quadratically with the quantum system dimension (24, 27).
Even if one had reconstructed the full quantum state, the quanti-
fication of the entangled dimensions is a daunting task analytically
and even numerically (32). If the full density matrix of the state is
not known, it is only possible to give lower bounds of the entangled
dimensions. Such methods are usually referred to as a “Schmidt
number witness” (33–35).

Results
In our experiment we are in a regime where it is unfeasible to
reconstruct the full density matrix because of the required number

Significance

Quantum entanglement is one of the key features of quantum
mechanics. Quantum systems are the basis of new paradigms
in quantum computation, quantum cryptography, or quantum
teleportation. By increasing the size of the entangled quantum
system, a wider variety of fundamental tests as well as more
realistic applications can be performed. The size of the entan-
gled quantum state can increase with the number of particles
or, as in the present paper, with the number of involved dimen-
sions. We explore a quantum system that consists of two photons
which are 100-dimensionally entangled. The dimensions investi-
gated are the different spatial modes of photons. The result may
have potential applications in quantum cryptography and other
quantum information tasks.
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MUBs in every two-dimensional subspace. This is represented
by the first term on the right side. If the entanglement dimen-
sionality of the state is smaller than that of the observed Hilbert
space, the maximally reachable value decreases by D for each
nonentangled dimension (D − d), which is expressed by the
second term.
The quantity in Eq. 1 is remarkable because the number of

required measurements scales only linearly with the dimension
of the whole Hilbert space, in contrast to state tomography,
which scales quadratically. Furthermore, it only involves mea-
surements in two-dimensional subspaces, which are easier to im-
plement than general high-dimensional measurements. Moreover,
the quantity W in Eq. 1 is nonlinear, which makes it particularly
efficient for nonmaximally entangled quantum states (SI Text).
In our experiment, we apply this unique method to a two-

photon quantum system. The photon pair is created by pumping
a nonlinear crystal with a laser, where spontaneous parametric
down-conversion (SPDC) occurs. For the high-dimensional degree

of freedom we use spatial modes of light. Specifically, we use the
Laguerre–Gauss (LG) basis to analyze entanglement. LG modes
form a basis of solutions of the paraxial wave equation in the cy-
lindrical coordinate system. They are described by two quantum
numbers. One quantum number lcorresponds to the orbital an-
gular momentum (OAM, or equivalently, the topological charge)
of the photon (38, 39). The second quantum number n corre-
sponds to the radial nodes in the intensity profile. Only lately this
second degree of freedom has been analyzed theoretically in a
quantum mechanical framework (40–42).
In the down-conversion process the angular momentum of the

photons is conserved, therefore this degree of freedom is anti-
correlated. For the radial quantum number n the situation is more
complicated. The full down-conversion process concerning the
correlations for the radial quantum number has been analyzed in
detail (40) and quasiperfect correlations have been found for
specific situations. Recently, these quasiperfect correlations have
been demonstrated experimentally (43). The state we expect from
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where i and j stand for different two-photon modes, and N is a normalization constant. (Left) The correlation of modes with l = 2 is shown, and reveals good
correlation of modes with the same number of radial nodes. (Right) All correlations in the z basis are visualized.
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★ 2D Fidelity Witness → k=3 x 3 x 2, scales as d2(d+1)

Multi-photon entanglement in high dimensions
Mehul Malik1,2*, Manuel Erhard1,2, Marcus Huber3,4,5, Mario Krenn1,2, Robert Fickler1,2†

and Anton Zeilinger1,2

Forming the backbone of quantum technologies today, entan-
glement1,2 has been demonstrated in physical systems as
diverse as photons3, ions4 and superconducting circuits5.
Although steadily pushing the boundary of the number of
particles entangled, these experiments have remained in a
two-dimensional space for each particle. Here we show the
experimental generation of the first multi-photon entangled
state where both the number of particles and dimensions are
greater than two. Two photons in our state reside in a three-
dimensional space, whereas the third lives in two dimensions.
This asymmetric entanglement structure6 only appears in
multiparticle entangled states with d > 26. Our method relies
on combining two pairs of photons, high-dimensionally
entangled in their orbital angular momentum7. In addition, we
show how this state enables a new type of ‘layered’ quantum
communication protocol. Entangled states such as these serve
as a manifestation of the complex dance of correlations that
can exist within quantum mechanics.

In the recent past, big mysteries in quantum mechanics have
been illuminated by taking small steps in the right direction. The
phenomenon of quantum interference, for example, appeared
when one considered a single quantum particle with at least two dis-
crete levels. Moving to two particles gave us quantum entanglement
and Bell’s inequalities8, which allowed the conflict between
quantum mechanics and local realism to be tested in a statistical
manner9. Increasing the number of entangled particles to three,
although seemingly a simple step, provided the first ‘all-or-
nothing’ test of local realism10–12. Alongside this, increasing the
dimensions of a single quantum particle from two to three provided
a clear test of quantum contextuality13,14. History dictates that
increasing both the number and dimensions of quantum particles
in concert will lead to further interesting and fundamental phenomena.
In this Letter, we discuss one such phenomenon—namely, that of
asymmetric multiparticle entanglement6.

Two-dimensional entangled states are ubiquitous in quantum
information today. However, the amount of information carried
by a photon is potentially enormous, and harnessing this infor-
mation leads to quantum communication systems with record
capacities and unprecedented levels of security15,16. A natural
space for exploring large dimensions is a photon’s spatial degree
of freedom17. The orbital angular momentum (OAM) of a photon
is a spatial property that provides a discrete and unbounded state
space18. The dimension of an OAM-carrying photon is given by
the number of ‘twists’ in its wavefront. Recent experiments have
shown the entanglement of two photons in up to 100 × 100 dimen-
sions in their spatial modes19,20 and the teleportation of photons in
a four-dimensional OAM-polarization hybrid space21. However,

it is not yet known how to entangle three or more photons in a
high-dimensional state space.

The dimensionality of two-photon entangled states is given by
the Schmidt number22, which is the rank of the reduced single par-
ticle density matrix. This number represents the minimum number
of levels one needs to faithfully represent the state and its corre-
lations in any local basis. When one considers three entangled
photons of dimensionality greater than two, the question of how
many levels per photon are involved has three answers6,23.
Consider, for example, the state

Ψ| 〉332 =
1!!
3

√ [ 0| 〉A 0| 〉B 0| 〉C + 1| 〉A 1| 〉B 1| 〉C + 2| 〉A 2| 〉B 1| 〉C] (1)

Notice that the first two photons,A and B, live in a three-dimensional
space, whereas the third photon, C, lives in a two-dimensional space.
The state’s dimensionality is given by a vector of three numbers
(3,3,2), which are the ordered ranks of the single particle reductions
of the state density operator:

rank(ρA) = 3, rank(ρB) = 3, rank(ρC) = 2 (2)

where ρi = Tr!i Ψ| 〉332〈Ψ|332 is the state of system i ∈ (A, B, C). Only
certain combinations of these three ranks are allowed, leading to a
rich structure of asymmetric high-dimensional multipartite
entangled states24. In this Letter, we demonstrate the creation and
verification of one such entangled state, and discuss its application
in a novel layered quantum communication protocol.

The entanglement of three photons was first achieved by com-
bining two pairs of polarization-entangled photons in such a way
that it became impossible, even in principle, to know which pair
one of the detected photons belonged to7. The workhorse of such
experiments is the polarizing beam-splitter (PBS), which is used
to mix two photons from independent polarization-entangled
pairs in such a manner that information about their origin is
erased, producing a four-photon, two-dimensional GHZ state.
To manipulate the high-dimensional space of OAM, one would
need a device akin to the PBS, but operating on a photon’s spatial
wavefunction as opposed to its polarization.

The Mach–Zehnder interferometer depicted in Fig. 1 was
designed to sort a photon based on the parity of its OAM
quantum number25. The interferometer has dove prisms (DP1
and DP2) in each arm, rotated by 90° with respect to one another.
DP1 reflects an incoming photon, inverting its spiral phase front,
whereas DP2 both inverts and rotates it by 180°. Thus, each
photon interferes with a rotated version of itself, leading to con-
structive or destructive interference depending on its spatial mode
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OAMand transmits even ones. Thus, a coincidence detection between
its two outputs can only arise when photons B and C are both carry-
ing either odd or even OAM. This projects the state from equation
(3) onto a subspace spanned by the five terms (|1〉A|−1〉B|1〉C|−1〉D),
(|1〉A|−1〉B|−1〉C|1〉D), (|0〉A|0〉B|0〉C|0〉D), (|−1〉A|1〉B|1〉C|−1〉D) and
(|−1〉A|1〉B|−1〉C|1〉D). Photon D is then measured in a superposition
state given by P| 〉0,−1D = (1/

!!
2

√
)( 0| 〉D + −1| 〉D ) via a mode-projection

carried out by a spatial light modulator (SLM) and a single-photon
detector (T), which triggers the three-photon entangled state:

Ψ| 〉exp =
1!!
3

√ 1| 〉A −1| 〉B 1| 〉C + 0| 〉A 0| 〉B 0| 〉C + −1| 〉A 1| 〉B 1| 〉C
[ ]

(4)

Note that this state has the same form as equation (1), with the
quantum levels (0,1,2) replaced by the OAM quantum numbers
(–1,0,1). To ensure that these three terms are in a coherent

superposition (as opposed to an incoherent mixture), we perform
superposition measurements in a two-dimensional subspace
spanned by the second and third terms in equation (4).
Measuring photon A in state M| 〉0,−1A = (1/

!!
2

√
)( 0| 〉A − −1| 〉A) pro-

jects the three-photon state into:

1!!
3

√ M| 〉0,−1A ( P| 〉0,1B M| 〉0,1C + M| 〉0,1B P| 〉0,1C ) (5)

where P| 〉0,1B/C = (1/
!!
2

√
)( 0| 〉B/C + 1| 〉B/C) and M| 〉0,1B/C = (1/

!!
2

√
)( 0| 〉B/C

− 1| 〉B/C). The terms P| 〉0,1B P| 〉0,1C and M| 〉0,1B M| 〉0,1C are missing
because of two-photon destructive interference at the OAM
beam splitter, which only occurs when photons B and C are
indistinguishable26. Note that this requires both two-photon and
one-photon interference to occur at the OAM beam splitter. The
use of narrowband interference filters (IF2) before detectors B and
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Figure 3 | Witnessing genuine multipartite entanglement in high dimensions. a, To verify that our three-photon state is entangled in 3 × 3 × 2 dimensions,
we have to show that it cannot be decomposed into entangled states of a smaller dimensionality structure. First, we calculate the best achievable overlap of
a (3,2,2) state σ with an ideal target (3,3,2) state |Ψ〉 to be Fmax = 2/3. Next, we calculate the overlap Fexp of our experimentally generated state ρexp with the
target state |Ψ〉. b, The 18 diagonal and 3 unique off-diagonal elements of ρexp that are measured to calculate a value of Fexp = 0.801 ± 0.018 (elements not
measured are filled in with crossed lines). This is above the bound of Fmax = 0.667 by 7 standard deviations and verifies that the generated state is genuinely
multipartite entanglement in 3 × 3 × 2 dimensions of its OAM. Fexp does not reach its maximal value of 1 because the state superposition is not perfectly
coherent. Theoretical values are shown by empty bars.
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★ Subspace Visibility Witness → k=103 x 103, d2(d+1), assumed conservation of OAM

CERTIFYING ENTANGLEMENT DIMENSIONALITY

Generation and confirmation of a
(100 × 100)-dimensional entangled quantum system
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Entangled quantum systems have properties that have fundamen-
tally overthrown the classical worldview. Increasing the complexity
of entangled states by expanding their dimensionality allows the
implementation of novel fundamental tests of nature, and more-
over also enables genuinely new protocols for quantum information
processing. Here we present the creation of a (100 × 100)-dimen-
sional entangled quantum system, using spatial modes of photons.
For its verification we develop a novel nonlinear criterion which
infers entanglement dimensionality of a global state by using only
information about its subspace correlations. This allows very prac-
tical experimental implementation as well as highly efficient extrac-
tion of entanglement dimensionality information. Applications in
quantum cryptography and other protocols are very promising.

photonic spatial modes | quantum optics | Schmidt rank |
entanglement witness

Quantum entanglement of distant particles leads to correla-
tions that cannot be explained in a local realistic way (1–3).

To obtain a deeper understanding of entanglement itself, as well as
its application in various quantum information tasks, increasing the
complexity of entangled systems is important. Essentially, this can
be done in two ways. The first method is to increase the number of
particles involved in the entanglement (4). The alternative method
is to increase the entanglement dimensionality of a system.
Here we focus on the latter one, namely on the dimension of the

entanglement. The text is structured as follows. After a short re-
view of properties and previous experiments, we present a unique
method to verify high-dimensional entanglement. Then we show
how we experimentally create our high-dimensional two-photon
entangled state. We analyze this state with our method and verify
a 100 × 100-dimensional entangled quantum system. We conclude
with a short outlook to potential future investigations.
High-dimensional entanglement provides a higher information

density than conventional two-dimensional (qubit) entangled states,
which has important advantages in quantum communication. First,
it can be used to increase the channel capacity via superdense
coding (5). Second, high-dimensional entanglement enables the
implementation of quantum communication tasks in regimes where
mere qubit entanglement does not suffice. This involves situations
with a high level of noise from the environment (6, 7), or quantum
cryptographic systems where an eavesdropper has manipulated the
random number generator involved (8). Moreover, the entangled
dimensions of the whole Hilbert space also play a very interesting
role in quantum computation: high-dimensional systems can be used
to simplify the implementation of quantum logic (9). Furthermore, it
has been found recently (10) that any continuous measure of en-
tanglement (such as concurrence, entanglement of formation, or
negativity) can be very small, while the quantum system still permits
an exponential computation speedup over classical machines. This is
not the case for the dimension of entanglement—for every quantum
computation, it needs to be high (11, 12), which is another hint at
the fundamental relevance of the concept.
So far, high-dimensional entanglement has been implemented

only in photonic systems. There, different multilevel degrees of

freedom, such as spatial modes (13), time-energy (14), path (15,
16), as well as continuous variables (17, 18), have been used.
Entanglement of spatial modes of photons has especially attracted
much attention in recent years (19–28), because it is readily avail-
able from optical nonlinear crystals and the number of involved
modes of the entanglement can be very high (29).
In a recent experiment the nonseparability of a two-photon state

was shown, by observing Einstein–Podolsky–Rosen correlations of
photon pairs in down-conversion (30) (for a similar experiment,
see ref. 31). The authors were able to observe entanglement of
∼2,500 spatial states with a camera. In our experiment we go a step
further and not only show nonseparability, but we can also extract
information about the dimensionality of the entanglement. Pre-
cisely, we experimentally verify 100-dimensional entanglement.
One main challenge that remains is the detection and verifica-

tion of high-dimensional entanglement. For reconstructing the full
quantum state via state tomography, the number of required mea-
surements is impractical even for relatively low dimensions because
it scales quadratically with the quantum system dimension (24, 27).
Even if one had reconstructed the full quantum state, the quanti-
fication of the entangled dimensions is a daunting task analytically
and even numerically (32). If the full density matrix of the state is
not known, it is only possible to give lower bounds of the entangled
dimensions. Such methods are usually referred to as a “Schmidt
number witness” (33–35).

Results
In our experiment we are in a regime where it is unfeasible to
reconstruct the full density matrix because of the required number

Significance

Quantum entanglement is one of the key features of quantum
mechanics. Quantum systems are the basis of new paradigms
in quantum computation, quantum cryptography, or quantum
teleportation. By increasing the size of the entangled quantum
system, a wider variety of fundamental tests as well as more
realistic applications can be performed. The size of the entan-
gled quantum state can increase with the number of particles
or, as in the present paper, with the number of involved dimen-
sions. We explore a quantum system that consists of two photons
which are 100-dimensionally entangled. The dimensions investi-
gated are the different spatial modes of photons. The result may
have potential applications in quantum cryptography and other
quantum information tasks.
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MUBs in every two-dimensional subspace. This is represented
by the first term on the right side. If the entanglement dimen-
sionality of the state is smaller than that of the observed Hilbert
space, the maximally reachable value decreases by D for each
nonentangled dimension (D − d), which is expressed by the
second term.
The quantity in Eq. 1 is remarkable because the number of

required measurements scales only linearly with the dimension
of the whole Hilbert space, in contrast to state tomography,
which scales quadratically. Furthermore, it only involves mea-
surements in two-dimensional subspaces, which are easier to im-
plement than general high-dimensional measurements. Moreover,
the quantity W in Eq. 1 is nonlinear, which makes it particularly
efficient for nonmaximally entangled quantum states (SI Text).
In our experiment, we apply this unique method to a two-

photon quantum system. The photon pair is created by pumping
a nonlinear crystal with a laser, where spontaneous parametric
down-conversion (SPDC) occurs. For the high-dimensional degree

of freedom we use spatial modes of light. Specifically, we use the
Laguerre–Gauss (LG) basis to analyze entanglement. LG modes
form a basis of solutions of the paraxial wave equation in the cy-
lindrical coordinate system. They are described by two quantum
numbers. One quantum number lcorresponds to the orbital an-
gular momentum (OAM, or equivalently, the topological charge)
of the photon (38, 39). The second quantum number n corre-
sponds to the radial nodes in the intensity profile. Only lately this
second degree of freedom has been analyzed theoretically in a
quantum mechanical framework (40–42).
In the down-conversion process the angular momentum of the

photons is conserved, therefore this degree of freedom is anti-
correlated. For the radial quantum number n the situation is more
complicated. The full down-conversion process concerning the
correlations for the radial quantum number has been analyzed in
detail (40) and quasiperfect correlations have been found for
specific situations. Recently, these quasiperfect correlations have
been demonstrated experimentally (43). The state we expect from
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★ 2D Fidelity Witness → k=3 x 3 x 2, scales as d2(d+1)

Multi-photon entanglement in high dimensions
Mehul Malik1,2*, Manuel Erhard1,2, Marcus Huber3,4,5, Mario Krenn1,2, Robert Fickler1,2†

and Anton Zeilinger1,2

Forming the backbone of quantum technologies today, entan-
glement1,2 has been demonstrated in physical systems as
diverse as photons3, ions4 and superconducting circuits5.
Although steadily pushing the boundary of the number of
particles entangled, these experiments have remained in a
two-dimensional space for each particle. Here we show the
experimental generation of the first multi-photon entangled
state where both the number of particles and dimensions are
greater than two. Two photons in our state reside in a three-
dimensional space, whereas the third lives in two dimensions.
This asymmetric entanglement structure6 only appears in
multiparticle entangled states with d > 26. Our method relies
on combining two pairs of photons, high-dimensionally
entangled in their orbital angular momentum7. In addition, we
show how this state enables a new type of ‘layered’ quantum
communication protocol. Entangled states such as these serve
as a manifestation of the complex dance of correlations that
can exist within quantum mechanics.

In the recent past, big mysteries in quantum mechanics have
been illuminated by taking small steps in the right direction. The
phenomenon of quantum interference, for example, appeared
when one considered a single quantum particle with at least two dis-
crete levels. Moving to two particles gave us quantum entanglement
and Bell’s inequalities8, which allowed the conflict between
quantum mechanics and local realism to be tested in a statistical
manner9. Increasing the number of entangled particles to three,
although seemingly a simple step, provided the first ‘all-or-
nothing’ test of local realism10–12. Alongside this, increasing the
dimensions of a single quantum particle from two to three provided
a clear test of quantum contextuality13,14. History dictates that
increasing both the number and dimensions of quantum particles
in concert will lead to further interesting and fundamental phenomena.
In this Letter, we discuss one such phenomenon—namely, that of
asymmetric multiparticle entanglement6.

Two-dimensional entangled states are ubiquitous in quantum
information today. However, the amount of information carried
by a photon is potentially enormous, and harnessing this infor-
mation leads to quantum communication systems with record
capacities and unprecedented levels of security15,16. A natural
space for exploring large dimensions is a photon’s spatial degree
of freedom17. The orbital angular momentum (OAM) of a photon
is a spatial property that provides a discrete and unbounded state
space18. The dimension of an OAM-carrying photon is given by
the number of ‘twists’ in its wavefront. Recent experiments have
shown the entanglement of two photons in up to 100 × 100 dimen-
sions in their spatial modes19,20 and the teleportation of photons in
a four-dimensional OAM-polarization hybrid space21. However,

it is not yet known how to entangle three or more photons in a
high-dimensional state space.

The dimensionality of two-photon entangled states is given by
the Schmidt number22, which is the rank of the reduced single par-
ticle density matrix. This number represents the minimum number
of levels one needs to faithfully represent the state and its corre-
lations in any local basis. When one considers three entangled
photons of dimensionality greater than two, the question of how
many levels per photon are involved has three answers6,23.
Consider, for example, the state

Ψ| 〉332 =
1!!
3

√ [ 0| 〉A 0| 〉B 0| 〉C + 1| 〉A 1| 〉B 1| 〉C + 2| 〉A 2| 〉B 1| 〉C] (1)

Notice that the first two photons,A and B, live in a three-dimensional
space, whereas the third photon, C, lives in a two-dimensional space.
The state’s dimensionality is given by a vector of three numbers
(3,3,2), which are the ordered ranks of the single particle reductions
of the state density operator:

rank(ρA) = 3, rank(ρB) = 3, rank(ρC) = 2 (2)

where ρi = Tr!i Ψ| 〉332〈Ψ|332 is the state of system i ∈ (A, B, C). Only
certain combinations of these three ranks are allowed, leading to a
rich structure of asymmetric high-dimensional multipartite
entangled states24. In this Letter, we demonstrate the creation and
verification of one such entangled state, and discuss its application
in a novel layered quantum communication protocol.

The entanglement of three photons was first achieved by com-
bining two pairs of polarization-entangled photons in such a way
that it became impossible, even in principle, to know which pair
one of the detected photons belonged to7. The workhorse of such
experiments is the polarizing beam-splitter (PBS), which is used
to mix two photons from independent polarization-entangled
pairs in such a manner that information about their origin is
erased, producing a four-photon, two-dimensional GHZ state.
To manipulate the high-dimensional space of OAM, one would
need a device akin to the PBS, but operating on a photon’s spatial
wavefunction as opposed to its polarization.

The Mach–Zehnder interferometer depicted in Fig. 1 was
designed to sort a photon based on the parity of its OAM
quantum number25. The interferometer has dove prisms (DP1
and DP2) in each arm, rotated by 90° with respect to one another.
DP1 reflects an incoming photon, inverting its spiral phase front,
whereas DP2 both inverts and rotates it by 180°. Thus, each
photon interferes with a rotated version of itself, leading to con-
structive or destructive interference depending on its spatial mode

1Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information (IQOQI), Boltzmanngasse 3, A-1090 Vienna, Austria. 2Faculty of
Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria. 3Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. 4ICFO-
Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain. 5Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland.
†Present address: Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, Ottawa K1N 6N5, Canada.
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OAMand transmits even ones. Thus, a coincidence detection between
its two outputs can only arise when photons B and C are both carry-
ing either odd or even OAM. This projects the state from equation
(3) onto a subspace spanned by the five terms (|1〉A|−1〉B|1〉C|−1〉D),
(|1〉A|−1〉B|−1〉C|1〉D), (|0〉A|0〉B|0〉C|0〉D), (|−1〉A|1〉B|1〉C|−1〉D) and
(|−1〉A|1〉B|−1〉C|1〉D). Photon D is then measured in a superposition
state given by P| 〉0,−1D = (1/

!!
2

√
)( 0| 〉D + −1| 〉D ) via a mode-projection

carried out by a spatial light modulator (SLM) and a single-photon
detector (T), which triggers the three-photon entangled state:

Ψ| 〉exp =
1!!
3

√ 1| 〉A −1| 〉B 1| 〉C + 0| 〉A 0| 〉B 0| 〉C + −1| 〉A 1| 〉B 1| 〉C
[ ]

(4)

Note that this state has the same form as equation (1), with the
quantum levels (0,1,2) replaced by the OAM quantum numbers
(–1,0,1). To ensure that these three terms are in a coherent

superposition (as opposed to an incoherent mixture), we perform
superposition measurements in a two-dimensional subspace
spanned by the second and third terms in equation (4).
Measuring photon A in state M| 〉0,−1A = (1/

!!
2

√
)( 0| 〉A − −1| 〉A) pro-

jects the three-photon state into:

1!!
3

√ M| 〉0,−1A ( P| 〉0,1B M| 〉0,1C + M| 〉0,1B P| 〉0,1C ) (5)

where P| 〉0,1B/C = (1/
!!
2

√
)( 0| 〉B/C + 1| 〉B/C) and M| 〉0,1B/C = (1/

!!
2

√
)( 0| 〉B/C

− 1| 〉B/C). The terms P| 〉0,1B P| 〉0,1C and M| 〉0,1B M| 〉0,1C are missing
because of two-photon destructive interference at the OAM
beam splitter, which only occurs when photons B and C are
indistinguishable26. Note that this requires both two-photon and
one-photon interference to occur at the OAM beam splitter. The
use of narrowband interference filters (IF2) before detectors B and
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Figure 3 | Witnessing genuine multipartite entanglement in high dimensions. a, To verify that our three-photon state is entangled in 3 × 3 × 2 dimensions,
we have to show that it cannot be decomposed into entangled states of a smaller dimensionality structure. First, we calculate the best achievable overlap of
a (3,2,2) state σ with an ideal target (3,3,2) state |Ψ〉 to be Fmax = 2/3. Next, we calculate the overlap Fexp of our experimentally generated state ρexp with the
target state |Ψ〉. b, The 18 diagonal and 3 unique off-diagonal elements of ρexp that are measured to calculate a value of Fexp = 0.801 ± 0.018 (elements not
measured are filled in with crossed lines). This is above the bound of Fmax = 0.667 by 7 standard deviations and verifies that the generated state is genuinely
multipartite entanglement in 3 × 3 × 2 dimensions of its OAM. Fexp does not reach its maximal value of 1 because the state superposition is not perfectly
coherent. Theoretical values are shown by empty bars.
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Assumption-free, efficient entanglement witness? → QKD, Qinfo
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mutually unbiased with respect to ∣ ⟩m{ } m when all λm are the same. 
We hence refer to ∣ ⟩∼j{ } j as the tilted basis.

Due to this general non-orthogonality, the relation of equation 
(2) between the diagonal matrix elements ĩ ρ ĩ⟨ ∣ ∣ ⟩∼ ∼j j* *  and the 
coincidence counts Ñij for the local filter setting ĩ∣ ⟩∼j *  requires a 
small modification in terms of an additional normalization factor 
cλ =  λ λ ρ∑ ⟨ ∣ ∣ ⟩

λ∑( )
mn mnd

m n m n,
k k

2

2
, that is,

ĩ ρ ĩ⟨ ∣ ∣ ⟩ =
Ñ

∑ Ñ λ
∼ ∼j j c (7)* * ij

k l kl,

Apart from the inclusion of cλ (see detailed derivation in 
the Supplementary Information), measurements in the tilted basis 
are in principle not different from measurements in any orthonor-
mal basis.

The terms of equation (7), along with the measurement results 
in the standard basis, allow us to bound the fidelity term F2(ρ, Φ ), 
which in turn provides a lower bound ρ Φ∼F ( , ) for the fidelity F(ρ, Φ )  
that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

ρ ρΦ ≤ Φ ≤ Φ∼F F B( , ) ( , ) ( ) (8)k

which is satisfied by any state ρ with Schmidt rank k or less. 
Conversely, the entanglement dimensionality dent that is certifiable 
with our method is the maximal k such that ρ Φ > Φ−

∼F B( , ) ( )k 1 .
A detailed derivation of this bound along with the proofs of its 

tightness can be found in the Methods section. In the Supplementary 
Information we further present a generalization of the fidelity 
bound to multiple measurement bases, the derivation of bounds 
for entanglement of formation that arise from our method, and an 
extension of our fidelity bound to a family of multipartite states.

Crucially, our witness requires only two global product bases to 
be evaluated, and is hence significantly more efficient than the d +  1 
and (d +  1)2 bases required for the exact evaluation of the fidelity, or 
even a FST, respectively. For projective filtering the overall number 
of filter settings is obtained by multiplying the number of required 
bases by d2. A comprehensive comparison of the required number 
of measurement settings is given in Table 1.

Experimental certification of high-dimensional 
entanglement
We now apply our witness to certify high-dimensional OAM entan-
glement between two photons generated by Type-II spontaneous 
parametric down-conversion (SPDC) in a non-linear ppKTP crys-
tal (see Fig. 1a for details). To this end, we display computer-pro-
grammed holograms (Fig. 1b,c) on SLMs designed to manipulate 
the phase and amplitude of incident photons35. In this manner, we 

are able to projectively measure the photons in any spatial mode 
basis, for example, the LG basis, any mutually unbiased (MUB)36 or 
any tilted basis (TILT) composed of superpositions of elements of 
the standard basis (equation (6)). Additional details of the experi-
mental implementation, including information on the holograms, 
can be found in the Methods and Supplementary Information.

For local dimensions up to d =  11 (that is, for azimuthal quan-
tum numbers ℓ ∈ − …{ 5, , 5} ) we then proceed in the follow-
ing way. First, we measure the two-photon state in the LG basis 

∣ ⟩m{ } m to obtain a cross-talk matrix of coincidence counts Nmn 
(Fig. 2a), taking into account the effects of mode-dependent loss 
(see  Supplementary Information). This allows us to calculate 
the density matrix elements ρ⟨ ∣ ∣ ⟩mn mn , estimate the λm, and 
nominate the target state ∣Φ⟩ . We then use the set {λm}m to con-
struct the tilted basis ∣ ⟩∼j{ } j according to equation (6) and per-
form correlation measurements (Fig. 2b) that allow us to calculate 

ρ⟨ ∣ ∣ ⟩∼∼ ∼∼j j j j* * . From these measurements, we calculate the lower 
bound of the fidelity to the target state, for which we find high val-
ues, for example, ρ Φ∼F ( , ) =  76.2 ±  0.6% for d =  11 (data for other 
dimensions are presented in Table 2). However, in our set-up, the 
certification thresholds Bk for the tilted basis are higher than for 
the MUB (for example, B7 =  0.72 versus B7 =  0.64 for d =  11 in tilted 
versus MUB, respectively). We therefore also measure the correla-
tions in the first MUB ∣ ⟩j{ } j (Fig. 2c) following the standard MUB 
construction by Wootters et al.36, corresponding to λ = ∕ d1m  for 
all m in equation (6). Using these measurements, we calculate lower 
bounds of the fidelity to the maximally entangled state, and find 

ρ Φ+∼F ( , ) =  74.8 ±  0.4% for d =  11, which is significantly above the 
bound of B8(Φ +) =  ≈ .0 7278

11
, but below B9(Φ +) =  ≈ .0 8188

11
. We 

hence certify 9-dimensional entanglement in this way. Note that 
the asymmetry in the counts just below and above the diagonal 
in Fig.  2b,c corresponds to a slight misalignment in the experi-
ment. Errors in the fidelity are calculated by propagating statistical 
Poissonian errors in photon-count rates via Monte-Carlo simula-
tion of the experiment. This demonstrates that our witness indeed 
works for efficiently certifying high-dimensional entanglement. 
Moreover, this shows that although the tilted basis measurements 
can achieve higher fidelities, one pays a price in terms of increased 
certification thresholds, and thus an increased sensitivity to noise.’

Our approach hence provides a lower bound for F(ρ, Φ ) and k(ρ) 
using measurements in as few as two global product bases. Each of 
these are realized by d local filter settings on each side, totalling to 
2d2 global filter settings instead of d2(d +  1)2 for FST. For our state 
in a 11 ×  11-dimensional Hilbert space this corresponds to 242 filter 
settings, versus the 17,424 filter settings required for FST, which is a 
reduction by two orders of magnitude.

Discussion and outlook
A remarkable trait of high-dimensional entanglement is that mea-
surements in two bases are enough to certify any entangled pure 

Table 1 | The table shows the number of required measurements 
for optimal full state tomography (FST), optimal fidelity 
measurement [F(ρ, Φ)], and to calculate the fidelity bounds 
presented in this work FF[ ( , )]∼ ρ Φ

Number of measurements

Method FST F(ρ,Φ ) FF( , )∼ ρ Φ
Global product 
bases

(d!+ !1)2 d!+ !1 2

Local filter settings (d!+ !1)2d2 (d!+ !1)d2 2d2

The first line corresponds to the necessary number of measured global product bases (which can 
be realized with at most d!+ !1-outcome local measurements), and the second line, the necessary 
number of local filter settings (which can be realized with single-outcome local measurements)

Table 2 | Fidelities FF( , )+∼ ρ Φ  and FF( , )∼ ρ Φ  to the maximally 
entangled state and to the target state, obtained via 
measurements in two MUBs and two (M!=!1) tilted bases in 
dimension d, respectively.

Experimental results

d dent FF( , )+∼ ρ Φ FF( , )∼ ρ Φ
3 3 91.5!± !0.4% 92.5!± !0.4%
5 5 89.9!± !0.4% 90.0!± !0.5%
7 6 84.2!± !0.5% 86.9!± !0.6%

11 9 74.8!± !0.4% 76.2!± !0.6%

The second column lists the entanglement dimensionality dent certified using ∼ ρ Φ+F ( , )2
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 

a b c
1

3

5

7

9

∣m
〉

11

6,000

5,000

4,000

3,000

2,000

1,000

0

400

350

300

250

200

150

100

50

0

1

3

5

7

9

11

700

600

500

400

300

200

100

0

1

3

5

7

9

11

1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11
∣n〉

∣i〉

∣j *〉~ ∣j *〉

∣i〉~

Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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mutually unbiased with respect to ∣ ⟩m{ } m when all λm are the same. 
We hence refer to ∣ ⟩∼j{ } j as the tilted basis.

Due to this general non-orthogonality, the relation of equation 
(2) between the diagonal matrix elements ĩ ρ ĩ⟨ ∣ ∣ ⟩∼ ∼j j* *  and the 
coincidence counts Ñij for the local filter setting ĩ∣ ⟩∼j *  requires a 
small modification in terms of an additional normalization factor 
cλ =  λ λ ρ∑ ⟨ ∣ ∣ ⟩

λ∑( )
mn mnd

m n m n,
k k

2

2
, that is,

ĩ ρ ĩ⟨ ∣ ∣ ⟩ =
Ñ

∑ Ñ λ
∼ ∼j j c (7)* * ij

k l kl,

Apart from the inclusion of cλ (see detailed derivation in 
the Supplementary Information), measurements in the tilted basis 
are in principle not different from measurements in any orthonor-
mal basis.

The terms of equation (7), along with the measurement results 
in the standard basis, allow us to bound the fidelity term F2(ρ, Φ ), 
which in turn provides a lower bound ρ Φ∼F ( , ) for the fidelity F(ρ, Φ )  
that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

ρ ρΦ ≤ Φ ≤ Φ∼F F B( , ) ( , ) ( ) (8)k

which is satisfied by any state ρ with Schmidt rank k or less. 
Conversely, the entanglement dimensionality dent that is certifiable 
with our method is the maximal k such that ρ Φ > Φ−

∼F B( , ) ( )k 1 .
A detailed derivation of this bound along with the proofs of its 

tightness can be found in the Methods section. In the Supplementary 
Information we further present a generalization of the fidelity 
bound to multiple measurement bases, the derivation of bounds 
for entanglement of formation that arise from our method, and an 
extension of our fidelity bound to a family of multipartite states.

Crucially, our witness requires only two global product bases to 
be evaluated, and is hence significantly more efficient than the d +  1 
and (d +  1)2 bases required for the exact evaluation of the fidelity, or 
even a FST, respectively. For projective filtering the overall number 
of filter settings is obtained by multiplying the number of required 
bases by d2. A comprehensive comparison of the required number 
of measurement settings is given in Table 1.

Experimental certification of high-dimensional 
entanglement
We now apply our witness to certify high-dimensional OAM entan-
glement between two photons generated by Type-II spontaneous 
parametric down-conversion (SPDC) in a non-linear ppKTP crys-
tal (see Fig. 1a for details). To this end, we display computer-pro-
grammed holograms (Fig. 1b,c) on SLMs designed to manipulate 
the phase and amplitude of incident photons35. In this manner, we 

are able to projectively measure the photons in any spatial mode 
basis, for example, the LG basis, any mutually unbiased (MUB)36 or 
any tilted basis (TILT) composed of superpositions of elements of 
the standard basis (equation (6)). Additional details of the experi-
mental implementation, including information on the holograms, 
can be found in the Methods and Supplementary Information.

For local dimensions up to d =  11 (that is, for azimuthal quan-
tum numbers ℓ ∈ − …{ 5, , 5} ) we then proceed in the follow-
ing way. First, we measure the two-photon state in the LG basis 

∣ ⟩m{ } m to obtain a cross-talk matrix of coincidence counts Nmn 
(Fig. 2a), taking into account the effects of mode-dependent loss 
(see  Supplementary Information). This allows us to calculate 
the density matrix elements ρ⟨ ∣ ∣ ⟩mn mn , estimate the λm, and 
nominate the target state ∣Φ⟩ . We then use the set {λm}m to con-
struct the tilted basis ∣ ⟩∼j{ } j according to equation (6) and per-
form correlation measurements (Fig. 2b) that allow us to calculate 

ρ⟨ ∣ ∣ ⟩∼∼ ∼∼j j j j* * . From these measurements, we calculate the lower 
bound of the fidelity to the target state, for which we find high val-
ues, for example, ρ Φ∼F ( , ) =  76.2 ±  0.6% for d =  11 (data for other 
dimensions are presented in Table 2). However, in our set-up, the 
certification thresholds Bk for the tilted basis are higher than for 
the MUB (for example, B7 =  0.72 versus B7 =  0.64 for d =  11 in tilted 
versus MUB, respectively). We therefore also measure the correla-
tions in the first MUB ∣ ⟩j{ } j (Fig. 2c) following the standard MUB 
construction by Wootters et al.36, corresponding to λ = ∕ d1m  for 
all m in equation (6). Using these measurements, we calculate lower 
bounds of the fidelity to the maximally entangled state, and find 

ρ Φ+∼F ( , ) =  74.8 ±  0.4% for d =  11, which is significantly above the 
bound of B8(Φ +) =  ≈ .0 7278

11
, but below B9(Φ +) =  ≈ .0 8188

11
. We 

hence certify 9-dimensional entanglement in this way. Note that 
the asymmetry in the counts just below and above the diagonal 
in Fig.  2b,c corresponds to a slight misalignment in the experi-
ment. Errors in the fidelity are calculated by propagating statistical 
Poissonian errors in photon-count rates via Monte-Carlo simula-
tion of the experiment. This demonstrates that our witness indeed 
works for efficiently certifying high-dimensional entanglement. 
Moreover, this shows that although the tilted basis measurements 
can achieve higher fidelities, one pays a price in terms of increased 
certification thresholds, and thus an increased sensitivity to noise.’

Our approach hence provides a lower bound for F(ρ, Φ ) and k(ρ) 
using measurements in as few as two global product bases. Each of 
these are realized by d local filter settings on each side, totalling to 
2d2 global filter settings instead of d2(d +  1)2 for FST. For our state 
in a 11 ×  11-dimensional Hilbert space this corresponds to 242 filter 
settings, versus the 17,424 filter settings required for FST, which is a 
reduction by two orders of magnitude.

Discussion and outlook
A remarkable trait of high-dimensional entanglement is that mea-
surements in two bases are enough to certify any entangled pure 

Table 1 | The table shows the number of required measurements 
for optimal full state tomography (FST), optimal fidelity 
measurement [F(ρ, Φ)], and to calculate the fidelity bounds 
presented in this work FF[ ( , )]∼ ρ Φ

Number of measurements

Method FST F(ρ,Φ ) FF( , )∼ ρ Φ
Global product 
bases

(d!+ !1)2 d!+ !1 2

Local filter settings (d!+ !1)2d2 (d!+ !1)d2 2d2

The first line corresponds to the necessary number of measured global product bases (which can 
be realized with at most d!+ !1-outcome local measurements), and the second line, the necessary 
number of local filter settings (which can be realized with single-outcome local measurements)

Table 2 | Fidelities FF( , )+∼ ρ Φ  and FF( , )∼ ρ Φ  to the maximally 
entangled state and to the target state, obtained via 
measurements in two MUBs and two (M!=!1) tilted bases in 
dimension d, respectively.

Experimental results

d dent FF( , )+∼ ρ Φ FF( , )∼ ρ Φ
3 3 91.5!± !0.4% 92.5!± !0.4%
5 5 89.9!± !0.4% 90.0!± !0.5%
7 6 84.2!± !0.5% 86.9!± !0.6%

11 9 74.8!± !0.4% 76.2!± !0.6%

The second column lists the entanglement dimensionality dent certified using ∼ ρ Φ+F ( , )2
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 
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− mmm
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1  by identifying
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This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)
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For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
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where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=
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(6)
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where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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mutually unbiased with respect to ∣ ⟩m{ } m when all λm are the same. 
We hence refer to ∣ ⟩∼j{ } j as the tilted basis.

Due to this general non-orthogonality, the relation of equation 
(2) between the diagonal matrix elements ĩ ρ ĩ⟨ ∣ ∣ ⟩∼ ∼j j* *  and the 
coincidence counts Ñij for the local filter setting ĩ∣ ⟩∼j *  requires a 
small modification in terms of an additional normalization factor 
cλ =  λ λ ρ∑ ⟨ ∣ ∣ ⟩

λ∑( )
mn mnd

m n m n,
k k

2

2
, that is,

ĩ ρ ĩ⟨ ∣ ∣ ⟩ =
Ñ

∑ Ñ λ
∼ ∼j j c (7)* * ij

k l kl,

Apart from the inclusion of cλ (see detailed derivation in 
the Supplementary Information), measurements in the tilted basis 
are in principle not different from measurements in any orthonor-
mal basis.

The terms of equation (7), along with the measurement results 
in the standard basis, allow us to bound the fidelity term F2(ρ, Φ ), 
which in turn provides a lower bound ρ Φ∼F ( , ) for the fidelity F(ρ, Φ )  
that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

ρ ρΦ ≤ Φ ≤ Φ∼F F B( , ) ( , ) ( ) (8)k

which is satisfied by any state ρ with Schmidt rank k or less. 
Conversely, the entanglement dimensionality dent that is certifiable 
with our method is the maximal k such that ρ Φ > Φ−

∼F B( , ) ( )k 1 .
A detailed derivation of this bound along with the proofs of its 

tightness can be found in the Methods section. In the Supplementary 
Information we further present a generalization of the fidelity 
bound to multiple measurement bases, the derivation of bounds 
for entanglement of formation that arise from our method, and an 
extension of our fidelity bound to a family of multipartite states.

Crucially, our witness requires only two global product bases to 
be evaluated, and is hence significantly more efficient than the d +  1 
and (d +  1)2 bases required for the exact evaluation of the fidelity, or 
even a FST, respectively. For projective filtering the overall number 
of filter settings is obtained by multiplying the number of required 
bases by d2. A comprehensive comparison of the required number 
of measurement settings is given in Table 1.

Experimental certification of high-dimensional 
entanglement
We now apply our witness to certify high-dimensional OAM entan-
glement between two photons generated by Type-II spontaneous 
parametric down-conversion (SPDC) in a non-linear ppKTP crys-
tal (see Fig. 1a for details). To this end, we display computer-pro-
grammed holograms (Fig. 1b,c) on SLMs designed to manipulate 
the phase and amplitude of incident photons35. In this manner, we 

are able to projectively measure the photons in any spatial mode 
basis, for example, the LG basis, any mutually unbiased (MUB)36 or 
any tilted basis (TILT) composed of superpositions of elements of 
the standard basis (equation (6)). Additional details of the experi-
mental implementation, including information on the holograms, 
can be found in the Methods and Supplementary Information.

For local dimensions up to d =  11 (that is, for azimuthal quan-
tum numbers ℓ ∈ − …{ 5, , 5} ) we then proceed in the follow-
ing way. First, we measure the two-photon state in the LG basis 

∣ ⟩m{ } m to obtain a cross-talk matrix of coincidence counts Nmn 
(Fig. 2a), taking into account the effects of mode-dependent loss 
(see  Supplementary Information). This allows us to calculate 
the density matrix elements ρ⟨ ∣ ∣ ⟩mn mn , estimate the λm, and 
nominate the target state ∣Φ⟩ . We then use the set {λm}m to con-
struct the tilted basis ∣ ⟩∼j{ } j according to equation (6) and per-
form correlation measurements (Fig. 2b) that allow us to calculate 

ρ⟨ ∣ ∣ ⟩∼∼ ∼∼j j j j* * . From these measurements, we calculate the lower 
bound of the fidelity to the target state, for which we find high val-
ues, for example, ρ Φ∼F ( , ) =  76.2 ±  0.6% for d =  11 (data for other 
dimensions are presented in Table 2). However, in our set-up, the 
certification thresholds Bk for the tilted basis are higher than for 
the MUB (for example, B7 =  0.72 versus B7 =  0.64 for d =  11 in tilted 
versus MUB, respectively). We therefore also measure the correla-
tions in the first MUB ∣ ⟩j{ } j (Fig. 2c) following the standard MUB 
construction by Wootters et al.36, corresponding to λ = ∕ d1m  for 
all m in equation (6). Using these measurements, we calculate lower 
bounds of the fidelity to the maximally entangled state, and find 

ρ Φ+∼F ( , ) =  74.8 ±  0.4% for d =  11, which is significantly above the 
bound of B8(Φ +) =  ≈ .0 7278

11
, but below B9(Φ +) =  ≈ .0 8188

11
. We 

hence certify 9-dimensional entanglement in this way. Note that 
the asymmetry in the counts just below and above the diagonal 
in Fig.  2b,c corresponds to a slight misalignment in the experi-
ment. Errors in the fidelity are calculated by propagating statistical 
Poissonian errors in photon-count rates via Monte-Carlo simula-
tion of the experiment. This demonstrates that our witness indeed 
works for efficiently certifying high-dimensional entanglement. 
Moreover, this shows that although the tilted basis measurements 
can achieve higher fidelities, one pays a price in terms of increased 
certification thresholds, and thus an increased sensitivity to noise.’

Our approach hence provides a lower bound for F(ρ, Φ ) and k(ρ) 
using measurements in as few as two global product bases. Each of 
these are realized by d local filter settings on each side, totalling to 
2d2 global filter settings instead of d2(d +  1)2 for FST. For our state 
in a 11 ×  11-dimensional Hilbert space this corresponds to 242 filter 
settings, versus the 17,424 filter settings required for FST, which is a 
reduction by two orders of magnitude.

Discussion and outlook
A remarkable trait of high-dimensional entanglement is that mea-
surements in two bases are enough to certify any entangled pure 

Table 1 | The table shows the number of required measurements 
for optimal full state tomography (FST), optimal fidelity 
measurement [F(ρ, Φ)], and to calculate the fidelity bounds 
presented in this work FF[ ( , )]∼ ρ Φ

Number of measurements

Method FST F(ρ,Φ ) FF( , )∼ ρ Φ
Global product 
bases

(d!+ !1)2 d!+ !1 2

Local filter settings (d!+ !1)2d2 (d!+ !1)d2 2d2

The first line corresponds to the necessary number of measured global product bases (which can 
be realized with at most d!+ !1-outcome local measurements), and the second line, the necessary 
number of local filter settings (which can be realized with single-outcome local measurements)

Table 2 | Fidelities FF( , )+∼ ρ Φ  and FF( , )∼ ρ Φ  to the maximally 
entangled state and to the target state, obtained via 
measurements in two MUBs and two (M!=!1) tilted bases in 
dimension d, respectively.

Experimental results

d dent FF( , )+∼ ρ Φ FF( , )∼ ρ Φ
3 3 91.5!± !0.4% 92.5!± !0.4%
5 5 89.9!± !0.4% 90.0!± !0.5%
7 6 84.2!± !0.5% 86.9!± !0.6%

11 9 74.8!± !0.4% 76.2!± !0.6%

The second column lists the entanglement dimensionality dent certified using ∼ ρ Φ+F ( , )2

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | www.nature.com/naturephysics

EXPERIMENTAL RESULTS
LaserTelescope

Detection System

ppKTP
Crystal

SLMs

CC

SMF
PBS

DM

HWP

Tilted
state

Max. Ent.
state

A B

DispatchDate:  25.06.2018  · ProofNo: 203, p.3

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

ARTICLESNATURE PHYSICS

Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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mutually unbiased with respect to ∣ ⟩m{ } m when all λm are the same. 
We hence refer to ∣ ⟩∼j{ } j as the tilted basis.

Due to this general non-orthogonality, the relation of equation 
(2) between the diagonal matrix elements ĩ ρ ĩ⟨ ∣ ∣ ⟩∼ ∼j j* *  and the 
coincidence counts Ñij for the local filter setting ĩ∣ ⟩∼j *  requires a 
small modification in terms of an additional normalization factor 
cλ =  λ λ ρ∑ ⟨ ∣ ∣ ⟩

λ∑( )
mn mnd

m n m n,
k k

2

2
, that is,

ĩ ρ ĩ⟨ ∣ ∣ ⟩ =
Ñ

∑ Ñ λ
∼ ∼j j c (7)* * ij

k l kl,

Apart from the inclusion of cλ (see detailed derivation in 
the Supplementary Information), measurements in the tilted basis 
are in principle not different from measurements in any orthonor-
mal basis.

The terms of equation (7), along with the measurement results 
in the standard basis, allow us to bound the fidelity term F2(ρ, Φ ), 
which in turn provides a lower bound ρ Φ∼F ( , ) for the fidelity F(ρ, Φ )  
that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

ρ ρΦ ≤ Φ ≤ Φ∼F F B( , ) ( , ) ( ) (8)k

which is satisfied by any state ρ with Schmidt rank k or less. 
Conversely, the entanglement dimensionality dent that is certifiable 
with our method is the maximal k such that ρ Φ > Φ−

∼F B( , ) ( )k 1 .
A detailed derivation of this bound along with the proofs of its 

tightness can be found in the Methods section. In the Supplementary 
Information we further present a generalization of the fidelity 
bound to multiple measurement bases, the derivation of bounds 
for entanglement of formation that arise from our method, and an 
extension of our fidelity bound to a family of multipartite states.

Crucially, our witness requires only two global product bases to 
be evaluated, and is hence significantly more efficient than the d +  1 
and (d +  1)2 bases required for the exact evaluation of the fidelity, or 
even a FST, respectively. For projective filtering the overall number 
of filter settings is obtained by multiplying the number of required 
bases by d2. A comprehensive comparison of the required number 
of measurement settings is given in Table 1.

Experimental certification of high-dimensional 
entanglement
We now apply our witness to certify high-dimensional OAM entan-
glement between two photons generated by Type-II spontaneous 
parametric down-conversion (SPDC) in a non-linear ppKTP crys-
tal (see Fig. 1a for details). To this end, we display computer-pro-
grammed holograms (Fig. 1b,c) on SLMs designed to manipulate 
the phase and amplitude of incident photons35. In this manner, we 

are able to projectively measure the photons in any spatial mode 
basis, for example, the LG basis, any mutually unbiased (MUB)36 or 
any tilted basis (TILT) composed of superpositions of elements of 
the standard basis (equation (6)). Additional details of the experi-
mental implementation, including information on the holograms, 
can be found in the Methods and Supplementary Information.

For local dimensions up to d =  11 (that is, for azimuthal quan-
tum numbers ℓ ∈ − …{ 5, , 5} ) we then proceed in the follow-
ing way. First, we measure the two-photon state in the LG basis 

∣ ⟩m{ } m to obtain a cross-talk matrix of coincidence counts Nmn 
(Fig. 2a), taking into account the effects of mode-dependent loss 
(see  Supplementary Information). This allows us to calculate 
the density matrix elements ρ⟨ ∣ ∣ ⟩mn mn , estimate the λm, and 
nominate the target state ∣Φ⟩ . We then use the set {λm}m to con-
struct the tilted basis ∣ ⟩∼j{ } j according to equation (6) and per-
form correlation measurements (Fig. 2b) that allow us to calculate 

ρ⟨ ∣ ∣ ⟩∼∼ ∼∼j j j j* * . From these measurements, we calculate the lower 
bound of the fidelity to the target state, for which we find high val-
ues, for example, ρ Φ∼F ( , ) =  76.2 ±  0.6% for d =  11 (data for other 
dimensions are presented in Table 2). However, in our set-up, the 
certification thresholds Bk for the tilted basis are higher than for 
the MUB (for example, B7 =  0.72 versus B7 =  0.64 for d =  11 in tilted 
versus MUB, respectively). We therefore also measure the correla-
tions in the first MUB ∣ ⟩j{ } j (Fig. 2c) following the standard MUB 
construction by Wootters et al.36, corresponding to λ = ∕ d1m  for 
all m in equation (6). Using these measurements, we calculate lower 
bounds of the fidelity to the maximally entangled state, and find 

ρ Φ+∼F ( , ) =  74.8 ±  0.4% for d =  11, which is significantly above the 
bound of B8(Φ +) =  ≈ .0 7278

11
, but below B9(Φ +) =  ≈ .0 8188

11
. We 

hence certify 9-dimensional entanglement in this way. Note that 
the asymmetry in the counts just below and above the diagonal 
in Fig.  2b,c corresponds to a slight misalignment in the experi-
ment. Errors in the fidelity are calculated by propagating statistical 
Poissonian errors in photon-count rates via Monte-Carlo simula-
tion of the experiment. This demonstrates that our witness indeed 
works for efficiently certifying high-dimensional entanglement. 
Moreover, this shows that although the tilted basis measurements 
can achieve higher fidelities, one pays a price in terms of increased 
certification thresholds, and thus an increased sensitivity to noise.’

Our approach hence provides a lower bound for F(ρ, Φ ) and k(ρ) 
using measurements in as few as two global product bases. Each of 
these are realized by d local filter settings on each side, totalling to 
2d2 global filter settings instead of d2(d +  1)2 for FST. For our state 
in a 11 ×  11-dimensional Hilbert space this corresponds to 242 filter 
settings, versus the 17,424 filter settings required for FST, which is a 
reduction by two orders of magnitude.

Discussion and outlook
A remarkable trait of high-dimensional entanglement is that mea-
surements in two bases are enough to certify any entangled pure 

Table 1 | The table shows the number of required measurements 
for optimal full state tomography (FST), optimal fidelity 
measurement [F(ρ, Φ)], and to calculate the fidelity bounds 
presented in this work FF[ ( , )]∼ ρ Φ

Number of measurements

Method FST F(ρ,Φ ) FF( , )∼ ρ Φ
Global product 
bases

(d!+ !1)2 d!+ !1 2

Local filter settings (d!+ !1)2d2 (d!+ !1)d2 2d2

The first line corresponds to the necessary number of measured global product bases (which can 
be realized with at most d!+ !1-outcome local measurements), and the second line, the necessary 
number of local filter settings (which can be realized with single-outcome local measurements)

Table 2 | Fidelities FF( , )+∼ ρ Φ  and FF( , )∼ ρ Φ  to the maximally 
entangled state and to the target state, obtained via 
measurements in two MUBs and two (M!=!1) tilted bases in 
dimension d, respectively.

Experimental results

d dent FF( , )+∼ ρ Φ FF( , )∼ ρ Φ
3 3 91.5!± !0.4% 92.5!± !0.4%
5 5 89.9!± !0.4% 90.0!± !0.5%
7 6 84.2!± !0.5% 86.9!± !0.6%

11 9 74.8!± !0.4% 76.2!± !0.6%

The second column lists the entanglement dimensionality dent certified using ∼ ρ Φ+F ( , )2

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | www.nature.com/naturephysics

EXPERIMENTAL RESULTS
LaserTelescope

Detection System

ppKTP
Crystal

SLMs

CC

SMF
PBS

DM

HWP

Tilted
state

Max. Ent.
state

A B

DispatchDate:  25.06.2018  · ProofNo: 203, p.3

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

ARTICLESNATURE PHYSICS

Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
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m
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1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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mutually unbiased with respect to ∣ ⟩m{ } m when all λm are the same. 
We hence refer to ∣ ⟩∼j{ } j as the tilted basis.

Due to this general non-orthogonality, the relation of equation 
(2) between the diagonal matrix elements ĩ ρ ĩ⟨ ∣ ∣ ⟩∼ ∼j j* *  and the 
coincidence counts Ñij for the local filter setting ĩ∣ ⟩∼j *  requires a 
small modification in terms of an additional normalization factor 
cλ =  λ λ ρ∑ ⟨ ∣ ∣ ⟩

λ∑( )
mn mnd

m n m n,
k k

2

2
, that is,

ĩ ρ ĩ⟨ ∣ ∣ ⟩ =
Ñ

∑ Ñ λ
∼ ∼j j c (7)* * ij

k l kl,

Apart from the inclusion of cλ (see detailed derivation in 
the Supplementary Information), measurements in the tilted basis 
are in principle not different from measurements in any orthonor-
mal basis.

The terms of equation (7), along with the measurement results 
in the standard basis, allow us to bound the fidelity term F2(ρ, Φ ), 
which in turn provides a lower bound ρ Φ∼F ( , ) for the fidelity F(ρ, Φ )  
that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

ρ ρΦ ≤ Φ ≤ Φ∼F F B( , ) ( , ) ( ) (8)k

which is satisfied by any state ρ with Schmidt rank k or less. 
Conversely, the entanglement dimensionality dent that is certifiable 
with our method is the maximal k such that ρ Φ > Φ−

∼F B( , ) ( )k 1 .
A detailed derivation of this bound along with the proofs of its 

tightness can be found in the Methods section. In the Supplementary 
Information we further present a generalization of the fidelity 
bound to multiple measurement bases, the derivation of bounds 
for entanglement of formation that arise from our method, and an 
extension of our fidelity bound to a family of multipartite states.

Crucially, our witness requires only two global product bases to 
be evaluated, and is hence significantly more efficient than the d +  1 
and (d +  1)2 bases required for the exact evaluation of the fidelity, or 
even a FST, respectively. For projective filtering the overall number 
of filter settings is obtained by multiplying the number of required 
bases by d2. A comprehensive comparison of the required number 
of measurement settings is given in Table 1.

Experimental certification of high-dimensional 
entanglement
We now apply our witness to certify high-dimensional OAM entan-
glement between two photons generated by Type-II spontaneous 
parametric down-conversion (SPDC) in a non-linear ppKTP crys-
tal (see Fig. 1a for details). To this end, we display computer-pro-
grammed holograms (Fig. 1b,c) on SLMs designed to manipulate 
the phase and amplitude of incident photons35. In this manner, we 

are able to projectively measure the photons in any spatial mode 
basis, for example, the LG basis, any mutually unbiased (MUB)36 or 
any tilted basis (TILT) composed of superpositions of elements of 
the standard basis (equation (6)). Additional details of the experi-
mental implementation, including information on the holograms, 
can be found in the Methods and Supplementary Information.

For local dimensions up to d =  11 (that is, for azimuthal quan-
tum numbers ℓ ∈ − …{ 5, , 5} ) we then proceed in the follow-
ing way. First, we measure the two-photon state in the LG basis 

∣ ⟩m{ } m to obtain a cross-talk matrix of coincidence counts Nmn 
(Fig. 2a), taking into account the effects of mode-dependent loss 
(see  Supplementary Information). This allows us to calculate 
the density matrix elements ρ⟨ ∣ ∣ ⟩mn mn , estimate the λm, and 
nominate the target state ∣Φ⟩ . We then use the set {λm}m to con-
struct the tilted basis ∣ ⟩∼j{ } j according to equation (6) and per-
form correlation measurements (Fig. 2b) that allow us to calculate 

ρ⟨ ∣ ∣ ⟩∼∼ ∼∼j j j j* * . From these measurements, we calculate the lower 
bound of the fidelity to the target state, for which we find high val-
ues, for example, ρ Φ∼F ( , ) =  76.2 ±  0.6% for d =  11 (data for other 
dimensions are presented in Table 2). However, in our set-up, the 
certification thresholds Bk for the tilted basis are higher than for 
the MUB (for example, B7 =  0.72 versus B7 =  0.64 for d =  11 in tilted 
versus MUB, respectively). We therefore also measure the correla-
tions in the first MUB ∣ ⟩j{ } j (Fig. 2c) following the standard MUB 
construction by Wootters et al.36, corresponding to λ = ∕ d1m  for 
all m in equation (6). Using these measurements, we calculate lower 
bounds of the fidelity to the maximally entangled state, and find 

ρ Φ+∼F ( , ) =  74.8 ±  0.4% for d =  11, which is significantly above the 
bound of B8(Φ +) =  ≈ .0 7278

11
, but below B9(Φ +) =  ≈ .0 8188

11
. We 

hence certify 9-dimensional entanglement in this way. Note that 
the asymmetry in the counts just below and above the diagonal 
in Fig.  2b,c corresponds to a slight misalignment in the experi-
ment. Errors in the fidelity are calculated by propagating statistical 
Poissonian errors in photon-count rates via Monte-Carlo simula-
tion of the experiment. This demonstrates that our witness indeed 
works for efficiently certifying high-dimensional entanglement. 
Moreover, this shows that although the tilted basis measurements 
can achieve higher fidelities, one pays a price in terms of increased 
certification thresholds, and thus an increased sensitivity to noise.’

Our approach hence provides a lower bound for F(ρ, Φ ) and k(ρ) 
using measurements in as few as two global product bases. Each of 
these are realized by d local filter settings on each side, totalling to 
2d2 global filter settings instead of d2(d +  1)2 for FST. For our state 
in a 11 ×  11-dimensional Hilbert space this corresponds to 242 filter 
settings, versus the 17,424 filter settings required for FST, which is a 
reduction by two orders of magnitude.

Discussion and outlook
A remarkable trait of high-dimensional entanglement is that mea-
surements in two bases are enough to certify any entangled pure 

Table 1 | The table shows the number of required measurements 
for optimal full state tomography (FST), optimal fidelity 
measurement [F(ρ, Φ)], and to calculate the fidelity bounds 
presented in this work FF[ ( , )]∼ ρ Φ

Number of measurements

Method FST F(ρ,Φ ) FF( , )∼ ρ Φ
Global product 
bases

(d!+ !1)2 d!+ !1 2

Local filter settings (d!+ !1)2d2 (d!+ !1)d2 2d2

The first line corresponds to the necessary number of measured global product bases (which can 
be realized with at most d!+ !1-outcome local measurements), and the second line, the necessary 
number of local filter settings (which can be realized with single-outcome local measurements)

Table 2 | Fidelities FF( , )+∼ ρ Φ  and FF( , )∼ ρ Φ  to the maximally 
entangled state and to the target state, obtained via 
measurements in two MUBs and two (M!=!1) tilted bases in 
dimension d, respectively.

Experimental results

d dent FF( , )+∼ ρ Φ FF( , )∼ ρ Φ
3 3 91.5!± !0.4% 92.5!± !0.4%
5 5 89.9!± !0.4% 90.0!± !0.5%
7 6 84.2!± !0.5% 86.9!± !0.6%

11 9 74.8!± !0.4% 76.2!± !0.6%

The second column lists the entanglement dimensionality dent certified using ∼ ρ Φ+F ( , )2
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)
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where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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mutually unbiased with respect to ∣ ⟩m{ } m when all λm are the same. 
We hence refer to ∣ ⟩∼j{ } j as the tilted basis.

Due to this general non-orthogonality, the relation of equation 
(2) between the diagonal matrix elements ĩ ρ ĩ⟨ ∣ ∣ ⟩∼ ∼j j* *  and the 
coincidence counts Ñij for the local filter setting ĩ∣ ⟩∼j *  requires a 
small modification in terms of an additional normalization factor 
cλ =  λ λ ρ∑ ⟨ ∣ ∣ ⟩

λ∑( )
mn mnd

m n m n,
k k

2

2
, that is,

ĩ ρ ĩ⟨ ∣ ∣ ⟩ =
Ñ

∑ Ñ λ
∼ ∼j j c (7)* * ij

k l kl,

Apart from the inclusion of cλ (see detailed derivation in 
the Supplementary Information), measurements in the tilted basis 
are in principle not different from measurements in any orthonor-
mal basis.

The terms of equation (7), along with the measurement results 
in the standard basis, allow us to bound the fidelity term F2(ρ, Φ ), 
which in turn provides a lower bound ρ Φ∼F ( , ) for the fidelity F(ρ, Φ )  
that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

ρ ρΦ ≤ Φ ≤ Φ∼F F B( , ) ( , ) ( ) (8)k

which is satisfied by any state ρ with Schmidt rank k or less. 
Conversely, the entanglement dimensionality dent that is certifiable 
with our method is the maximal k such that ρ Φ > Φ−

∼F B( , ) ( )k 1 .
A detailed derivation of this bound along with the proofs of its 

tightness can be found in the Methods section. In the Supplementary 
Information we further present a generalization of the fidelity 
bound to multiple measurement bases, the derivation of bounds 
for entanglement of formation that arise from our method, and an 
extension of our fidelity bound to a family of multipartite states.

Crucially, our witness requires only two global product bases to 
be evaluated, and is hence significantly more efficient than the d +  1 
and (d +  1)2 bases required for the exact evaluation of the fidelity, or 
even a FST, respectively. For projective filtering the overall number 
of filter settings is obtained by multiplying the number of required 
bases by d2. A comprehensive comparison of the required number 
of measurement settings is given in Table 1.

Experimental certification of high-dimensional 
entanglement
We now apply our witness to certify high-dimensional OAM entan-
glement between two photons generated by Type-II spontaneous 
parametric down-conversion (SPDC) in a non-linear ppKTP crys-
tal (see Fig. 1a for details). To this end, we display computer-pro-
grammed holograms (Fig. 1b,c) on SLMs designed to manipulate 
the phase and amplitude of incident photons35. In this manner, we 

are able to projectively measure the photons in any spatial mode 
basis, for example, the LG basis, any mutually unbiased (MUB)36 or 
any tilted basis (TILT) composed of superpositions of elements of 
the standard basis (equation (6)). Additional details of the experi-
mental implementation, including information on the holograms, 
can be found in the Methods and Supplementary Information.

For local dimensions up to d =  11 (that is, for azimuthal quan-
tum numbers ℓ ∈ − …{ 5, , 5} ) we then proceed in the follow-
ing way. First, we measure the two-photon state in the LG basis 

∣ ⟩m{ } m to obtain a cross-talk matrix of coincidence counts Nmn 
(Fig. 2a), taking into account the effects of mode-dependent loss 
(see  Supplementary Information). This allows us to calculate 
the density matrix elements ρ⟨ ∣ ∣ ⟩mn mn , estimate the λm, and 
nominate the target state ∣Φ⟩ . We then use the set {λm}m to con-
struct the tilted basis ∣ ⟩∼j{ } j according to equation (6) and per-
form correlation measurements (Fig. 2b) that allow us to calculate 

ρ⟨ ∣ ∣ ⟩∼∼ ∼∼j j j j* * . From these measurements, we calculate the lower 
bound of the fidelity to the target state, for which we find high val-
ues, for example, ρ Φ∼F ( , ) =  76.2 ±  0.6% for d =  11 (data for other 
dimensions are presented in Table 2). However, in our set-up, the 
certification thresholds Bk for the tilted basis are higher than for 
the MUB (for example, B7 =  0.72 versus B7 =  0.64 for d =  11 in tilted 
versus MUB, respectively). We therefore also measure the correla-
tions in the first MUB ∣ ⟩j{ } j (Fig. 2c) following the standard MUB 
construction by Wootters et al.36, corresponding to λ = ∕ d1m  for 
all m in equation (6). Using these measurements, we calculate lower 
bounds of the fidelity to the maximally entangled state, and find 

ρ Φ+∼F ( , ) =  74.8 ±  0.4% for d =  11, which is significantly above the 
bound of B8(Φ +) =  ≈ .0 7278

11
, but below B9(Φ +) =  ≈ .0 8188

11
. We 

hence certify 9-dimensional entanglement in this way. Note that 
the asymmetry in the counts just below and above the diagonal 
in Fig.  2b,c corresponds to a slight misalignment in the experi-
ment. Errors in the fidelity are calculated by propagating statistical 
Poissonian errors in photon-count rates via Monte-Carlo simula-
tion of the experiment. This demonstrates that our witness indeed 
works for efficiently certifying high-dimensional entanglement. 
Moreover, this shows that although the tilted basis measurements 
can achieve higher fidelities, one pays a price in terms of increased 
certification thresholds, and thus an increased sensitivity to noise.’

Our approach hence provides a lower bound for F(ρ, Φ ) and k(ρ) 
using measurements in as few as two global product bases. Each of 
these are realized by d local filter settings on each side, totalling to 
2d2 global filter settings instead of d2(d +  1)2 for FST. For our state 
in a 11 ×  11-dimensional Hilbert space this corresponds to 242 filter 
settings, versus the 17,424 filter settings required for FST, which is a 
reduction by two orders of magnitude.

Discussion and outlook
A remarkable trait of high-dimensional entanglement is that mea-
surements in two bases are enough to certify any entangled pure 

Table 1 | The table shows the number of required measurements 
for optimal full state tomography (FST), optimal fidelity 
measurement [F(ρ, Φ)], and to calculate the fidelity bounds 
presented in this work FF[ ( , )]∼ ρ Φ

Number of measurements

Method FST F(ρ,Φ ) FF( , )∼ ρ Φ
Global product 
bases

(d!+ !1)2 d!+ !1 2

Local filter settings (d!+ !1)2d2 (d!+ !1)d2 2d2

The first line corresponds to the necessary number of measured global product bases (which can 
be realized with at most d!+ !1-outcome local measurements), and the second line, the necessary 
number of local filter settings (which can be realized with single-outcome local measurements)

Table 2 | Fidelities FF( , )+∼ ρ Φ  and FF( , )∼ ρ Φ  to the maximally 
entangled state and to the target state, obtained via 
measurements in two MUBs and two (M!=!1) tilted bases in 
dimension d, respectively.

Experimental results

d dent FF( , )+∼ ρ Φ FF( , )∼ ρ Φ
3 3 91.5!± !0.4% 92.5!± !0.4%
5 5 89.9!± !0.4% 90.0!± !0.5%
7 6 84.2!± !0.5% 86.9!± !0.6%

11 9 74.8!± !0.4% 76.2!± !0.6%

The second column lists the entanglement dimensionality dent certified using ∼ ρ Φ+F ( , )2
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state ∣Φ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 

λ∣Φ⟩ = ∑ ∣ ⟩=
− mmm

d
m0

1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm
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n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state ∣Φ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ ) to the target state ∣Φ⟩ , given by

∑ρ ρ λ λ ρΦ = ∣Φ⟩ ⟨Φ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d
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1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ λΦ ≤ Φ =
=

−
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m

where the sum runs over the k largest Schmidt coefficients, that is, 
im, with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, 
any state for which F(ρ, Φ ) >  Bk(Φ ) is incompatible with a Schmidt 
rank of k or less, implying an entanglement dimensionality of at 
least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) that 
are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, Φ ),  
and the other that depends on the off-diagonal terms, called F2(ρ, Φ )  
(see Methods).

The contribution F1(ρ, Φ ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ ), would require a number 
of measurements that scales with the dimension. To avoid such 
a high overhead, we employ bounds for F2(ρ, Φ ) that can be cal-
culated from measurements in only one additional basis ∣ ⟩∼j{ } j  (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑
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(6)
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where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d"= "11 target state of ∼ ρ ΦF( , )"= "76.2"± "0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )"= "74.8"± "0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent"= "8, slightly lower than the bound of dent"= "9 obtained in the MUB case (c).
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ADAPTIVE WITNESS: COMPARISON 

1–outcome d = 11 d–outcome d = 11

TOMOGRAPHY d2(d+1)2 17,424 (d+1)2 144

2D WITNESS d2(d+1) 1452 d+1 12

ADAPTIVE 
WITNESS 2d2 242 2 2

by a planewave Gaussian beam produces a helically phased beam in the first diffraction
order. The process also works in reverse: a beam carrying an OAM of ℓ illuminating
a forked-diffraction grating with −ℓ produces a plane wave Gaussian beam, as in (21,
top). One way to ensure that the illuminating beam is a pure single-mode is to cou-

FIGURE 21. A diffractive optical element comprising a diffraction grating with
fork dislocation centered on the beam axis can convert a helically phased mode
into the fundamental Gaussian mode which can then be coupled to single mode
fibre.

ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.
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ple the laser light through a single-mode fibre, collimating the output to illuminate the
grating. Replacing the laser with a detector transforms the same grating system into a
mode detector – the target mode is converted into a Gaussian mode which is the only
mode that couples efficiently into the fibre and detector (21, bottom). If the detector is a
high quality photomultiplier or avalanche photodiode then modes, or complex superpo-
sitions of modes, can be measured even at the level of single photons and this has been
used in various experiments of the quantum entanglement of OAM [123]. However, all
such holograms can measure only one mode at a time and if a large state space (as in
the case of OAM) is to be measured one requires to test for each of the modes in turn.
It follows that the efficiency of such an approach can never exceed 1/N, where N is the
number of modes to be assessed. This limit in efficiency negates many of the potential
advantages that the large states space of OAM may have offered. More complicated
holograms can be designed where different input modes produce Gaussian beams in
different angular orders [139–141], however, in all of these the incident energy is still
split between the outputs leading again to an approximate 1/N limit in efficiency.

Fig. 1. (a) Conversion of OAM states into transverse momentum states with refractive opti-
cal elements. An image of the beam was captured in several transverse planes and overlaid
(in red) to give the image shown above. (b) A beam carrying OAM is prepared through
the use of a ℓ-forked hologram, realised using a spatial light modulator (SLM) and then
passed through the two elements, represented as the green rectangle, required to perform
the transformation of both the phase and intensity of the beam.

quarters of the input light was lost due to the limited diffraction efficiency of the SLMs [14].
In this paper we replace the previously used diffractive optical elements with refractive ele-

ments which carry out the desired optical transformation (Fig. 1). The transmission efficiency
of the combination of elements is approximately 85%, which makes them attractive for use
with single photons. The number of components was also reduced through the integration of
the transform lens previously required between the diffractive optical elements into the trans-
formation elements themselves. The height profiles for the refractive elements (Fig. 2) were
derived from the equations defining the phase profile of the diffractive elements [14], along
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where f is the focal length of the integrated lens. There are two free parameters, a and b, which
determine the scaling and position of the transformed beam. The parameter a takes the value
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the second element, d. The parameter b is optimised for the particular physical dimensions of
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IV. PATHWAY II: CORRELATION MEASUREMENTS

Here, we present direct correlation measurements for the case of OAM entanglement with d = 3. In Pathway
II, larger noise fraction can be tolerated by including measurements in additional mutually unbiased bases (MUB).
Correlation matrices, given in terms of coincidence counts, are shown for three di↵erent noise fractions, see Fig. 3. In
Fig. 3-a, we were able tolerate a noise fraction of 0.29 up to which entanglement can still be certified with measurements
in only 2 MUBs. The measurements were done in MUB B0 (the OAM computational basis) and MUB B3, where
the visibility sum (

P
V ) is still larger than 4/3. We recall that the upper bound for separable states is given byP

k�1

j=0
V

(j,j)  1 + k�1

d
, where k is the number of MUBs considered. In Fig. 3-b, we considered the measurements

in three MUBs, which led to a verification of entanglement up to a noise fraction of 0.46. Here, the measurements
in MUBs B0, B2, and B3 were taken into account, where the visibility sum (

P
V ) is still larger than 5/3. Finally, in

Fig. 3-c, we performed measurements in all 4 MUBs to show the largest resilience to noise. For a noise fraction of up
to 0.54, we were able to verify entanglement, where the visibility sum (

P
V ) is still larger than 2.

FIG. 3. Detecting three-dimensional OAM entanglement between two photons with increasing noise fraction. Each graph shows
the correlation measurements, given in coincidence counts per second, between Alice’s (x-axis) and Bob’s (y-axis) photon for
all modes of a mutually unbiased basis (MUB). For a low noise fraction, the measurements in two MUBs are already enough
to verify entanglement as depicted by the threshold (dashed line) on the left side in a. When the noise fraction is increased the
threshold moves to the right, which means that more MUBs need to be measured to still verify entanglement, as can be seen
in b and c. Only high-dimensionally entangled states allow to measure in more than 3 MUBs, which is the fundamental idea
behind Pathway II to noise resilience.

4

FIG. 2. Experimental setup for a) energy-time and b) orbital angular momentum (OAM) degrees of freedom. In both
experiments, a 405 nm continuous-wave laser produces high-dimensionally entangled photon pairs in a ppKTP crystal exploiting
type-II spontaneous parametric down-conversion (SPDC). The noise is optically added by intensity-adjustable light sources and
single-photon detection is accomplished using avalanche photo diodes. a) Additional polarization entanglement is generated
by bidirectionally pumping the crystal in a polarization Sagnac interferometer. The polarization basis the photon pairs are
measured in after an actively-stabilised post-selection-free Franson interferometer defines the measurement basis in the time
domain. Each detection event is time-tagged and recorded by means of a time-to-amplitude converter. b) The OAM-entangled
pairs are split depending on their polarization, analyzed through mode filtering by modulating the complex amplitude of the
photons and subsequently coupled into SMFs. Coincidence counts are recorded using a coincidence logic.

the production of photon pairs anti-correlated in OAM
~l0 = �~l1 for a Gaussian-mode pump photon with ~lp =
0, leading to entanglement in the OAM-angular position
variables [16]. The (theoretically) infinite-dimensional
states produced by the two experiments can be written
as

| iET-pol =

Z
dtf(t) |tiA |tiB ⌦ |��iAB (3)

| iOAM =
1X

`=�1
c` |�`iA |`iB , (4)

where f(t) is a continuous function of time, correspond-
ing to the coherence profile of the laser; |��iAB =
1p
2
(|HiA |HiB � |V iA |V iB) is a polarisation-entangled

Bell state; |±`i is the state of a photon carrying an OAM
quantum number of ±` and c` is a complex probability
amplitude, which is defined by the spatial characteristics
of the crystal and pump beam.

In order to gain meaningful insight into noise resilience,
both states must be appropriately discretised. In the

energy-time experiment we measure the time of arrival
of entangled photon pairs by discretising a time-frame of
duration F into bins and recording which bin a photon is
detected in. The duration of F is fixed and we divide it
into an integer number of time-bin modes d, each corre-
sponding to a duration td, i.e. F/d = td (see supplemen-
tary material). In Pathway II, we choose a finite cut-o↵
to the theoretically infinite sum over modes, such that
the modes with OAM quantum numbers l 2 {�D, ..., D}
are spanning a 2D+1 - dimensional Hilbert space. Thus,
ideally, the states generated by the experiments would be
close to the forms

| iET-pol =
dX

j=1

↵j |jiA |jiB ⌦ |��iAB (5)

| iOAM =
DX

`=�D

c` |�`iA |`iB , (6)

where |ji refers to a photon in a discrete time-bin state,
whose duration is td for j 2 {1, · · · d} and ↵j is a complex
probability amplitude.

<latexit sha1_base64="(null)">(null)</latexit>

S. Ecker, F. Bouchard, et al, arXiv:1904.01552 (PRX In Press) (2019)



HD-ENTANGLEMENT + NOISE = ENTANGLEMENT!

6

IV. PATHWAY II: CORRELATION MEASUREMENTS

Here, we present direct correlation measurements for the case of OAM entanglement with d = 3. In Pathway
II, larger noise fraction can be tolerated by including measurements in additional mutually unbiased bases (MUB).
Correlation matrices, given in terms of coincidence counts, are shown for three di↵erent noise fractions, see Fig. 3. In
Fig. 3-a, we were able tolerate a noise fraction of 0.29 up to which entanglement can still be certified with measurements
in only 2 MUBs. The measurements were done in MUB B0 (the OAM computational basis) and MUB B3, where
the visibility sum (

P
V ) is still larger than 4/3. We recall that the upper bound for separable states is given byP

k�1

j=0
V

(j,j)  1 + k�1

d
, where k is the number of MUBs considered. In Fig. 3-b, we considered the measurements

in three MUBs, which led to a verification of entanglement up to a noise fraction of 0.46. Here, the measurements
in MUBs B0, B2, and B3 were taken into account, where the visibility sum (

P
V ) is still larger than 5/3. Finally, in

Fig. 3-c, we performed measurements in all 4 MUBs to show the largest resilience to noise. For a noise fraction of up
to 0.54, we were able to verify entanglement, where the visibility sum (

P
V ) is still larger than 2.

FIG. 3. Detecting three-dimensional OAM entanglement between two photons with increasing noise fraction. Each graph shows
the correlation measurements, given in coincidence counts per second, between Alice’s (x-axis) and Bob’s (y-axis) photon for
all modes of a mutually unbiased basis (MUB). For a low noise fraction, the measurements in two MUBs are already enough
to verify entanglement as depicted by the threshold (dashed line) on the left side in a. When the noise fraction is increased the
threshold moves to the right, which means that more MUBs need to be measured to still verify entanglement, as can be seen
in b and c. Only high-dimensionally entangled states allow to measure in more than 3 MUBs, which is the fundamental idea
behind Pathway II to noise resilience.

4

FIG. 2. Experimental setup for a) energy-time and b) orbital angular momentum (OAM) degrees of freedom. In both
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photons and subsequently coupled into SMFs. Coincidence counts are recorded using a coincidence logic.

the production of photon pairs anti-correlated in OAM
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quantum number of ±` and c` is a complex probability
amplitude, which is defined by the spatial characteristics
of the crystal and pump beam.

In order to gain meaningful insight into noise resilience,
both states must be appropriately discretised. In the

energy-time experiment we measure the time of arrival
of entangled photon pairs by discretising a time-frame of
duration F into bins and recording which bin a photon is
detected in. The duration of F is fixed and we divide it
into an integer number of time-bin modes d, each corre-
sponding to a duration td, i.e. F/d = td (see supplemen-
tary material). In Pathway II, we choose a finite cut-o↵
to the theoretically infinite sum over modes, such that
the modes with OAM quantum numbers l 2 {�D, ..., D}
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type-II spontaneous parametric down-conversion (SPDC). The noise is optically added by intensity-adjustable light sources and
single-photon detection is accomplished using avalanche photo diodes. a) Additional polarization entanglement is generated
by bidirectionally pumping the crystal in a polarization Sagnac interferometer. The polarization basis the photon pairs are
measured in after an actively-stabilised post-selection-free Franson interferometer defines the measurement basis in the time
domain. Each detection event is time-tagged and recorded by means of a time-to-amplitude converter. b) The OAM-entangled
pairs are split depending on their polarization, analyzed through mode filtering by modulating the complex amplitude of the
photons and subsequently coupled into SMFs. Coincidence counts are recorded using a coincidence logic.

the production of photon pairs anti-correlated in OAM
~l0 = �~l1 for a Gaussian-mode pump photon with ~lp =
0, leading to entanglement in the OAM-angular position
variables [16]. The (theoretically) infinite-dimensional
states produced by the two experiments can be written
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(|HiA |HiB � |V iA |V iB) is a polarisation-entangled

Bell state; |±`i is the state of a photon carrying an OAM
quantum number of ±` and c` is a complex probability
amplitude, which is defined by the spatial characteristics
of the crystal and pump beam.

In order to gain meaningful insight into noise resilience,
both states must be appropriately discretised. In the

energy-time experiment we measure the time of arrival
of entangled photon pairs by discretising a time-frame of
duration F into bins and recording which bin a photon is
detected in. The duration of F is fixed and we divide it
into an integer number of time-bin modes d, each corre-
sponding to a duration td, i.e. F/d = td (see supplemen-
tary material). In Pathway II, we choose a finite cut-o↵
to the theoretically infinite sum over modes, such that
the modes with OAM quantum numbers l 2 {�D, ..., D}
are spanning a 2D+1 - dimensional Hilbert space. Thus,
ideally, the states generated by the experiments would be
close to the forms
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whose duration is td for j 2 {1, · · · d} and ↵j is a complex
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pairs are split depending on their polarization, analyzed through mode filtering by modulating the complex amplitude of the
photons and subsequently coupled into SMFs. Coincidence counts are recorded using a coincidence logic.

the production of photon pairs anti-correlated in OAM
~l0 = �~l1 for a Gaussian-mode pump photon with ~lp =
0, leading to entanglement in the OAM-angular position
variables [16]. The (theoretically) infinite-dimensional
states produced by the two experiments can be written
as

| iET-pol =

Z
dtf(t) |tiA |tiB ⌦ |��iAB (3)

| iOAM =
1X

`=�1
c` |�`iA |`iB , (4)

where f(t) is a continuous function of time, correspond-
ing to the coherence profile of the laser; |��iAB =
1p
2
(|HiA |HiB � |V iA |V iB) is a polarisation-entangled

Bell state; |±`i is the state of a photon carrying an OAM
quantum number of ±` and c` is a complex probability
amplitude, which is defined by the spatial characteristics
of the crystal and pump beam.

In order to gain meaningful insight into noise resilience,
both states must be appropriately discretised. In the

energy-time experiment we measure the time of arrival
of entangled photon pairs by discretising a time-frame of
duration F into bins and recording which bin a photon is
detected in. The duration of F is fixed and we divide it
into an integer number of time-bin modes d, each corre-
sponding to a duration td, i.e. F/d = td (see supplemen-
tary material). In Pathway II, we choose a finite cut-o↵
to the theoretically infinite sum over modes, such that
the modes with OAM quantum numbers l 2 {�D, ..., D}
are spanning a 2D+1 - dimensional Hilbert space. Thus,
ideally, the states generated by the experiments would be
close to the forms

| iET-pol =
dX

j=1

↵j |jiA |jiB ⌦ |��iAB (5)

| iOAM =
DX

`=�D

c` |�`iA |`iB , (6)

where |ji refers to a photon in a discrete time-bin state,
whose duration is td for j 2 {1, · · · d} and ↵j is a complex
probability amplitude.
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FIG. 3. Main results of our experimental demonstration of noise resistance for a) energy-time entanglement and b) OAM
entanglement. Each plot depicts the violation strength of a suitably chosen entanglement witness against the noise fraction, i.e.
the fraction of coincidence detections attributable to noise. In plot a) the principal competition in achieving noise resistance is
clearly visible. As the dimensionality is increased through fine-graining (Pathway I), more noise is induced (and thus the curves
move to the right), while a higher noise resilience is achieved (thus the noise threshold also moves to the right). Plot b) is
qualitatively di↵erent, as it explores Pathway II. Instead of fine-graining, more modes are included in the analysis which allow
for an increased number of mutual unbiased bases to be measured and thus also show a higher noise threshold with increasing
dimension. The error bars correspond to 3 standard deviations of the mean, calculated by propagating the Poissonian error in
the photon-counting rates via a Monte Carlo simulation. In b), the error bars are smaller than the data points.

for noise levels close to the noise threshold, fine-graining
results in the recurrence of otherwise obscured entangle-
ment.

ORBITAL ANGULAR MOMENTUM
ENTANGLEMENT

(PATHWAY II)

The second pathway to noise resilience takes advantage
of the larger number of mutually unbiased bases (MUBs)
in higher dimensions. Here, we explore this pathway us-
ing measurements of orbital angular momentum MUBs,
for which precise measurements techniques have only re-
cently been developed [42]. Mutually unbiased bases are
an invaluable tool in many quantum information tasks,
such as quantum state tomography, quantum cryptogra-
phy and entanglement certification. They consist of a

set of orthonormal bases {B↵}, where B↵ =
n
| (↵)

m i
o

,

m 2 {0, 1, ..., d � 1} and ↵ 2 {0, 1, ..., d}. Such a set is
called mutually unbiased if and only if,

���h (↵)
m | (�)

n i
���
2

= �↵��mn + (1 � �↵�)/d, (7)

where �i,j is the Kronecker delta. In dimensions that
are powers of prime numbers, it is known that there
exists exactly (d + 1) MUBs. Surprisingly, for dimen-
sions that are not powers of prime numbers, finding
the number of MUBs and their elements remains an
open problem [43]. For the case of prime dimensions
and ↵ � 1, a MUB element is explicitly given by

| (↵)
m i =

⇣
1/
p

d

⌘Pd�1
j=0 (!m

d )d�j
⇣
!
�(↵�1)
d

⌘sj
|ji, where

!d = exp(2⇡i/d) and sj = j + ... + (d � 1). In
the current experiment, we use the intensity flattening
technique [42] to measure the correlations of the pho-
ton pairs in all MUBs. The joint probability of Al-

ice and Bob measuring states | (↵)
m i and | (�)

n i, respec-
tively, is given by P

(↵,�)(m, n). For a complete set of
joint measurements by Alice and Bob, respectively in
MUBs B↵ and B� , we define the correlation visibility

as V
(↵,�) =

Pd�1
i=0 P

(↵,�)(i, i). Following the analysis
of [44], we obtain an upper bound for separable states
by considering the sum of the visibilities over k MUBs,
i.e.

Pk�1
j V

(j,j)  1 + k�1
d . In particular, for measure-

ments in all k = (d + 1) MUBs, entanglement certifica-

tion is achieved for
Pk�1

j V
(j,j)

> 2. Hence, in contrast
to the case of energy-time entanglement described be-
fore, where detections are limited to measurements in
two-dimensional subspaces but dimensions of up to 80,
we are now able to fully characterize the generated states
by performing high-dimensional projective measurements
but we are limited to lower overall dimensions. However,
this might be largely increased by using custom-tailored
phase-matching [45] or by considering the complete space
of transverse spatial modes, namely radial modes along
with azimuthal modes.

As a starting point, we consider bi-dimensionally en-
tangled OAM states of the form (|1,�1i+ |� 1, 1i)/

p
2.

Entanglement is certified by measuring correlations in
all three MUBs in the two-dimensional space of OAM
|` = ±1i. Environmental noise is steadily added by
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FIG. 3. Main results of our experimental demonstration of noise resistance for a) energy-time entanglement and b) OAM
entanglement. Each plot depicts the violation strength of a suitably chosen entanglement witness against the noise fraction, i.e.
the fraction of coincidence detections attributable to noise. In plot a) the principal competition in achieving noise resistance is
clearly visible. As the dimensionality is increased through fine-graining (Pathway I), more noise is induced (and thus the curves
move to the right), while a higher noise resilience is achieved (thus the noise threshold also moves to the right). Plot b) is
qualitatively di↵erent, as it explores Pathway II. Instead of fine-graining, more modes are included in the analysis which allow
for an increased number of mutual unbiased bases to be measured and thus also show a higher noise threshold with increasing
dimension. The error bars correspond to 3 standard deviations of the mean, calculated by propagating the Poissonian error
in the photon-counting rates via a Monte Carlo simulation, see Appendix C. In b), the error bars are smaller than the data
points.

for noise levels close to the noise threshold, fine-graining
results in the recurrence of otherwise obscured entangle-
ment.

ORBITAL ANGULAR MOMENTUM
ENTANGLEMENT

(PATHWAY II)

The second pathway to noise resilience takes advantage
of the larger number of mutually unbiased bases (MUBs)
in higher dimensions. Here, we explore this pathway us-
ing measurements of orbital angular momentum MUBs,
for which precise measurements techniques have only re-
cently been developed [42]. Mutually unbiased bases are
an invaluable tool in many quantum information tasks,
such as quantum state tomography, quantum cryptogra-
phy and entanglement certification. They consist of a

set of orthonormal bases {B↵}, where B↵ =
n
| (↵)

m i
o

,

m 2 {0, 1, ..., d � 1} and ↵ 2 {0, 1, ..., d}. Such a set is
called mutually unbiased if and only if,

���h (↵)
m

| (�)
n

i
���
2

= �↵��mn + (1 � �↵�)/d, (7)

where �i,j is the Kronecker delta. In dimensions that
are powers of prime numbers, it is known that there
exists exactly (d + 1) MUBs. Surprisingly, for dimen-
sions that are not powers of prime numbers, finding
the number of MUBs and their elements remains an
open problem [43]. For the case of prime dimensions

and ↵ � 1, a MUB element is explicitly given by

| (↵)
m i =

⇣
1/
p

d

⌘P
d�1
j=0 (!m

d
)d�j

⇣
!
�(↵�1)
d

⌘sj

|ji, where

!d = exp(2⇡i/d) and sj = j + ... + (d � 1). In
the current experiment, we use the intensity flattening
technique [42] to measure the correlations of the pho-
ton pairs in all MUBs. The joint probability of Al-

ice and Bob measuring states | (↵)
m i and | (�)

n i, respec-
tively, is given by P

(↵,�)(m, n). For a complete set of
joint measurements by Alice and Bob, respectively in
MUBs B↵ and B� , we define the correlation visibility

as V
(↵,�) =

P
d�1
i=0 P

(↵,�)(i, i). Following the analysis
of [44], we obtain an upper bound for separable states
by considering the sum of the visibilities over k MUBs,
i.e.

P
k�1
j

V
(j,j)  1 + k�1

d
. In particular, for measure-

ments in all k = (d + 1) MUBs, entanglement certifica-

tion is achieved for
P

k�1
j

V
(j,j)

> 2. Hence, in contrast
to the case of energy-time entanglement described be-
fore, where detections are limited to measurements in
two-dimensional subspaces but dimensions of up to 80,
we are now able to fully characterize the generated states
by performing high-dimensional projective measurements
but we are limited to lower overall dimensions. However,
this might be largely increased by using custom-tailored
phase-matching [45] or by considering the complete space
of transverse spatial modes, namely radial modes along
with azimuthal modes.

As a starting point, we consider bi-dimensionally en-
tangled OAM states of the form (|1,�1i+ |� 1, 1i)/

p
2.

Entanglement is certified by measuring correlations in
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FIG. 3. Required quantum contrast Q vs. dimension d for
various values of k for the two-MUB witness. Verification of
entanglement in increasingly higher dimensions requires an
increasing quantum contrast. The contrast necessary for d-
dimensional entanglement in a d-dimensional space is equal
to 2d2 � 3d + 1; this is indicated by the dotted line. If d + 1
MUBs are used, then the required contrasts are identical to
the results show in Fig. 2.

Mutually unbiased bases – The two-MUB witness can
be extended to incorporate measurements in more mutu-
ally unbiased bases, and performing more measurements
in more MUBs strengthens the resistance to noise. In d

dimensions, there exist at most d+ 1 mutually unbiased
bases, and if all of these are used, the fidelity is given by

F̃ (⇢,�) �
Q+ 1

d � 1

Q+ d� 1
(7)

and the corresponding condition for k dimensions of en-
tanglement in a d-dimensional space is then identical to
that for the target state witness, see Eq. 4. Consequently,
whether the entanglement witness based on the target
state or the witness based on d + 1 MUBs is used, the
minimum contrast required for verification of k dimen-
sions of entanglement is equal to k.

Conditional entropy – We also analyse conditional
entropies, commonly used in the confirmation of EPR
entanglement and in steering inequalities, in the con-
text of the signal-to-noise [3, 33, 34]. EPR entangle-
ment can be confirmed if the measurements in two mu-
tually unbiased bases violate the following inequality
[35]:H1(X|Y ) +H2(X|Y ) � log2 d, where H1(X|Y ) and
H2(X|Y ) are the conditional entropies in each of the
bases. We use the computational basis and a mutually
unbiased basis, and for the state that we consider, the

conditional entropies in each basis are the same. We find
that the sum of the conditional entropies is given by

H1(X|Y ) +H2(X|Y ) = 2 log2(Q+ d� 1)� 2Q log2 Q
Q+ d� 1

,

(8)

and therefore

log2(Q+ d� 1)� Q
Q+ d� 1

log2 Q� 1

2
log2 d < 0. (9)

There is no analytical solution to this, but numerical so-
lutions show that if EPR entanglement is to be confirmed
as the dimension increases, so too does the required quan-
tum contrast. The EPR criteria does not separate k-
dimensional entanglement from the size of the Hilbert
space d.
High-dimensional non-locality based on the CGLMP

inequality – Finally, we consider the CGLMP inequality
[5, 10] that can be used for establishing non-locality, un-
der the fair-sampling assumption. Here, local measure-
ments are performed on each photon from an entangled
pair to establish the high-dimensional Bell parameter Sd.
Local hidden variable theories are consistent with Sd  2,
whereas quantum mechanics permits a violation of this
inequality. In their work, CGLMP showed that max-
imally entangled quantum systems in high dimensions
can achieve a theoretical value of Sd(QM), which would
lead to a violation of the inequality. However, in any ex-
perimental verification, the achievable Sd is modified by
imperfections in the system. The maximum value of Sd

that is achievable in a system with a signal-to-noise ratio
of Q is

Sd =
Q� 1

Q� 1 + d
Sd(QM). (10)

Therefore, in order to violate the local hidden variable
inequality, the quantum contrast must satisfy

Q > 1 + d
2

Sd(QM)� 2
. (11)

We see here that as d increases, so too does the required
contrast.
It is known that under certain assumptions, the

CGLMP inequality can also be used as a dimension wit-
ness for entanglement [5], and therefore, as in the fi-
delity witness case, the separation of k and d may pro-
vide a decrease to the required signal-to-noise and an ad-
vantage for high-dimensional states for high-dimensional
non-locality. It will also be interesting to consider the
implications of this work for other Bell inequalities, such
as the one developed for maximally entangled states [36].
Discussion and conclusion— This work serves to answer
a simple question: “Are high-dimensional states robust

to noise?” In reality, the answer to this question is more
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entanglement in increasingly higher dimensions requires an
increasing quantum contrast. The contrast necessary for d-
dimensional entanglement in a d-dimensional space is equal
to 2d2 � 3d + 1; this is indicated by the dotted line. If d + 1
MUBs are used, then the required contrasts are identical to
the results show in Fig. 2.

Mutually unbiased bases – The two-MUB witness can
be extended to incorporate measurements in more mutu-
ally unbiased bases, and performing more measurements
in more MUBs strengthens the resistance to noise. In d

dimensions, there exist at most d+ 1 mutually unbiased
bases, and if all of these are used, the fidelity is given by

F̃ (⇢,�) �
Q+ 1

d � 1

Q+ d� 1
(7)

and the corresponding condition for k dimensions of en-
tanglement in a d-dimensional space is then identical to
that for the target state witness, see Eq. 4. Consequently,
whether the entanglement witness based on the target
state or the witness based on d + 1 MUBs is used, the
minimum contrast required for verification of k dimen-
sions of entanglement is equal to k.

Conditional entropy – We also analyse conditional
entropies, commonly used in the confirmation of EPR
entanglement and in steering inequalities, in the con-
text of the signal-to-noise [3, 33, 34]. EPR entangle-
ment can be confirmed if the measurements in two mu-
tually unbiased bases violate the following inequality
[35]:H1(X|Y ) +H2(X|Y ) � log2 d, where H1(X|Y ) and
H2(X|Y ) are the conditional entropies in each of the
bases. We use the computational basis and a mutually
unbiased basis, and for the state that we consider, the

conditional entropies in each basis are the same. We find
that the sum of the conditional entropies is given by

H1(X|Y ) +H2(X|Y ) = 2 log2(Q+ d� 1)� 2Q log2 Q
Q+ d� 1

,

(8)

and therefore

log2(Q+ d� 1)� Q
Q+ d� 1

log2 Q� 1

2
log2 d < 0. (9)

There is no analytical solution to this, but numerical so-
lutions show that if EPR entanglement is to be confirmed
as the dimension increases, so too does the required quan-
tum contrast. The EPR criteria does not separate k-
dimensional entanglement from the size of the Hilbert
space d.
High-dimensional non-locality based on the CGLMP

inequality – Finally, we consider the CGLMP inequality
[5, 10] that can be used for establishing non-locality, un-
der the fair-sampling assumption. Here, local measure-
ments are performed on each photon from an entangled
pair to establish the high-dimensional Bell parameter Sd.
Local hidden variable theories are consistent with Sd  2,
whereas quantum mechanics permits a violation of this
inequality. In their work, CGLMP showed that max-
imally entangled quantum systems in high dimensions
can achieve a theoretical value of Sd(QM), which would
lead to a violation of the inequality. However, in any ex-
perimental verification, the achievable Sd is modified by
imperfections in the system. The maximum value of Sd

that is achievable in a system with a signal-to-noise ratio
of Q is

Sd =
Q� 1

Q� 1 + d
Sd(QM). (10)

Therefore, in order to violate the local hidden variable
inequality, the quantum contrast must satisfy

Q > 1 + d
2

Sd(QM)� 2
. (11)

We see here that as d increases, so too does the required
contrast.
It is known that under certain assumptions, the

CGLMP inequality can also be used as a dimension wit-
ness for entanglement [5], and therefore, as in the fi-
delity witness case, the separation of k and d may pro-
vide a decrease to the required signal-to-noise and an ad-
vantage for high-dimensional states for high-dimensional
non-locality. It will also be interesting to consider the
implications of this work for other Bell inequalities, such
as the one developed for maximally entangled states [36].
Discussion and conclusion— This work serves to answer
a simple question: “Are high-dimensional states robust

to noise?” In reality, the answer to this question is more
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to 2d2 � 3d + 1; this is indicated by the dotted line. If d + 1
MUBs are used, then the required contrasts are identical to
the results show in Fig. 2.

Mutually unbiased bases – The two-MUB witness can
be extended to incorporate measurements in more mutu-
ally unbiased bases, and performing more measurements
in more MUBs strengthens the resistance to noise. In d

dimensions, there exist at most d+ 1 mutually unbiased
bases, and if all of these are used, the fidelity is given by

F̃ (⇢,�) �
Q+ 1

d � 1

Q+ d� 1
(7)

and the corresponding condition for k dimensions of en-
tanglement in a d-dimensional space is then identical to
that for the target state witness, see Eq. 4. Consequently,
whether the entanglement witness based on the target
state or the witness based on d + 1 MUBs is used, the
minimum contrast required for verification of k dimen-
sions of entanglement is equal to k.

Conditional entropy – We also analyse conditional
entropies, commonly used in the confirmation of EPR
entanglement and in steering inequalities, in the con-
text of the signal-to-noise [3, 33, 34]. EPR entangle-
ment can be confirmed if the measurements in two mu-
tually unbiased bases violate the following inequality
[35]:H1(X|Y ) +H2(X|Y ) � log2 d, where H1(X|Y ) and
H2(X|Y ) are the conditional entropies in each of the
bases. We use the computational basis and a mutually
unbiased basis, and for the state that we consider, the

conditional entropies in each basis are the same. We find
that the sum of the conditional entropies is given by

H1(X|Y ) +H2(X|Y ) = 2 log2(Q+ d� 1)� 2Q log2 Q
Q+ d� 1

,

(8)

and therefore

log2(Q+ d� 1)� Q
Q+ d� 1

log2 Q� 1

2
log2 d < 0. (9)

There is no analytical solution to this, but numerical so-
lutions show that if EPR entanglement is to be confirmed
as the dimension increases, so too does the required quan-
tum contrast. The EPR criteria does not separate k-
dimensional entanglement from the size of the Hilbert
space d.
High-dimensional non-locality based on the CGLMP

inequality – Finally, we consider the CGLMP inequality
[5, 10] that can be used for establishing non-locality, un-
der the fair-sampling assumption. Here, local measure-
ments are performed on each photon from an entangled
pair to establish the high-dimensional Bell parameter Sd.
Local hidden variable theories are consistent with Sd  2,
whereas quantum mechanics permits a violation of this
inequality. In their work, CGLMP showed that max-
imally entangled quantum systems in high dimensions
can achieve a theoretical value of Sd(QM), which would
lead to a violation of the inequality. However, in any ex-
perimental verification, the achievable Sd is modified by
imperfections in the system. The maximum value of Sd

that is achievable in a system with a signal-to-noise ratio
of Q is

Sd =
Q� 1

Q� 1 + d
Sd(QM). (10)

Therefore, in order to violate the local hidden variable
inequality, the quantum contrast must satisfy

Q > 1 + d
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Sd(QM)� 2
. (11)

We see here that as d increases, so too does the required
contrast.
It is known that under certain assumptions, the

CGLMP inequality can also be used as a dimension wit-
ness for entanglement [5], and therefore, as in the fi-
delity witness case, the separation of k and d may pro-
vide a decrease to the required signal-to-noise and an ad-
vantage for high-dimensional states for high-dimensional
non-locality. It will also be interesting to consider the
implications of this work for other Bell inequalities, such
as the one developed for maximally entangled states [36].
Discussion and conclusion— This work serves to answer
a simple question: “Are high-dimensional states robust
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increasing quantum contrast. The contrast necessary for d-
dimensional entanglement in a d-dimensional space is equal
to 2d2 � 3d + 1; this is indicated by the dotted line. If d + 1
MUBs are used, then the required contrasts are identical to
the results show in Fig. 2.

Mutually unbiased bases – The two-MUB witness can
be extended to incorporate measurements in more mutu-
ally unbiased bases, and performing more measurements
in more MUBs strengthens the resistance to noise. In d

dimensions, there exist at most d+ 1 mutually unbiased
bases, and if all of these are used, the fidelity is given by

F̃ (⇢,�) �
Q+ 1

d � 1

Q+ d� 1
(7)

and the corresponding condition for k dimensions of en-
tanglement in a d-dimensional space is then identical to
that for the target state witness, see Eq. 4. Consequently,
whether the entanglement witness based on the target
state or the witness based on d + 1 MUBs is used, the
minimum contrast required for verification of k dimen-
sions of entanglement is equal to k.

Conditional entropy – We also analyse conditional
entropies, commonly used in the confirmation of EPR
entanglement and in steering inequalities, in the con-
text of the signal-to-noise [3, 33, 34]. EPR entangle-
ment can be confirmed if the measurements in two mu-
tually unbiased bases violate the following inequality
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H2(X|Y ) are the conditional entropies in each of the
bases. We use the computational basis and a mutually
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conditional entropies in each basis are the same. We find
that the sum of the conditional entropies is given by

H1(X|Y ) +H2(X|Y ) = 2 log2(Q+ d� 1)� 2Q log2 Q
Q+ d� 1

,

(8)

and therefore

log2(Q+ d� 1)� Q
Q+ d� 1

log2 Q� 1

2
log2 d < 0. (9)

There is no analytical solution to this, but numerical so-
lutions show that if EPR entanglement is to be confirmed
as the dimension increases, so too does the required quan-
tum contrast. The EPR criteria does not separate k-
dimensional entanglement from the size of the Hilbert
space d.
High-dimensional non-locality based on the CGLMP

inequality – Finally, we consider the CGLMP inequality
[5, 10] that can be used for establishing non-locality, un-
der the fair-sampling assumption. Here, local measure-
ments are performed on each photon from an entangled
pair to establish the high-dimensional Bell parameter Sd.
Local hidden variable theories are consistent with Sd  2,
whereas quantum mechanics permits a violation of this
inequality. In their work, CGLMP showed that max-
imally entangled quantum systems in high dimensions
can achieve a theoretical value of Sd(QM), which would
lead to a violation of the inequality. However, in any ex-
perimental verification, the achievable Sd is modified by
imperfections in the system. The maximum value of Sd

that is achievable in a system with a signal-to-noise ratio
of Q is

Sd =
Q� 1

Q� 1 + d
Sd(QM). (10)

Therefore, in order to violate the local hidden variable
inequality, the quantum contrast must satisfy

Q > 1 + d
2

Sd(QM)� 2
. (11)

We see here that as d increases, so too does the required
contrast.
It is known that under certain assumptions, the

CGLMP inequality can also be used as a dimension wit-
ness for entanglement [5], and therefore, as in the fi-
delity witness case, the separation of k and d may pro-
vide a decrease to the required signal-to-noise and an ad-
vantage for high-dimensional states for high-dimensional
non-locality. It will also be interesting to consider the
implications of this work for other Bell inequalities, such
as the one developed for maximally entangled states [36].
Discussion and conclusion— This work serves to answer
a simple question: “Are high-dimensional states robust

to noise?” In reality, the answer to this question is more
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Seeing through chaos in multimode fibres
Martin Plöschner1, Tomáš Tyc2 and Tomáš Čižmár1*

In a similar fashion to diffusers or other highly scattering media, multimode fibres deliver coherent light signals in the
form of apparently random speckled patterns. In contrast to other optically random environments, multimode fibres
feature remarkably faithful cylindrical symmetry. Our experimental studies challenge the commonly held notion that
classifies multimode fibres as unpredictable optical systems. Instead, we demonstrate that commercially available
multimode fibres are capable of performing as extremely precise optical components. We show that, with a sufficiently
accurate theoretical model, light propagation within straight or even significantly deformed segments of multimode fibres
may be predicted up to distances in excess of hundreds of millimetres. Harnessing this newly discovered predictability in
imaging, we demonstrate the unparalleled power of multimode fibre-based endoscopes, which offer exceptional
performance both in terms of resolution and instrument footprint. These results thus pave the way for numerous exciting
applications, including high-quality imaging deep inside motile organisms.

The theoretical description of light transport processes within
ideal multimode fibres (MMFs) has been developed for over
half a century1–4. This elaborate theoretical model is,

however, frequently considered inadequate to describe real-life
MMFs, which are manufactured by drawing melted silica preforms.
Such fibres are commonly seen as unreliable, and the inherent ran-
domization of light propagating through them is typically attributed
to undetectable deviations from the ideal fibre structure. It is a com-
monly held belief that this additional chaos is unpredictable and
that its influence grows with the length of the fibre. Despite this,
light transport through MMFs remains deterministic.

The prospect of deterministic light propagation within MMFs
has only recently been used through methods of digital holography
and by adopting the concept of empirical measurement of the trans-
formation matrix (TM)5–11. This technique, developed in studies of
light propagation through highly turbid media12–17, has opened a
new window of opportunity for MMFs to become extremely
narrow and minimally invasive endoscopes, allowing sub-micro-
metre resolution imaging in deep regions of sensitive tissues9,18.

However attractive, this technology suffers from several major
limitations, the most critical being the lack of flexible operation.
Any bending or looping of the fibre results in changes to its TM,
rendering the imaging heavily impaired. All current methods
exploiting MMFs for imaging require open optical access to the
distal end of the fibre during the time-consuming measurement of
the TM. Furthermore, this characterization must be repeated
upfront for every intended configuration (deformation) and any
axial distance of the focal plane behind the fibre before the system
can be used for imaging7,19. The necessity to determine the TM
empirically is therefore a major bottleneck of the technology, and
it would be immensely advantageous to obtain the TM by another
route, ideally on the basis of numerical modelling.

The aim of this Article is to determine whether such modelling is
feasible in the supposedly chaotic environment of MMFs, given that,
unlike other random media, they feature a remarkable cylindrical
symmetry. Indeed, numerous studies have already indicated that
at least some aspects of the ordered behaviour (propagation
constants of modes) can ‘survive’ over very large distances20–23.

Our study represents a major advancement on these efforts. With
the availability of experimentally measured TMs stored in the

memory of a computer, all light transport processes can be emulated
with great accuracy, and the optical fibre can be subjected to
detailed investigation24.

While working with a relatively large numbers of modes (∼500),
we initially used the shortest practical fibre segment (∼10 mm) in
order to minimize the complexity of the problem. This intermediate
step allowed us to eliminate influences caused by imperfections
(unavoidable misalignment) in our experimental settings and,
importantly, establish the parameters of the fibre (core diameter,
numerical aperture) with sufficiently high precision.

Only when corrections for these aspects were implemented could
we see a perfect agreement with the theoretical model used. This not
only confirmed the existence of propagation-invariant modes
within the fibre, but also matched their output phases very accu-
rately, which is vitally important for imaging applications.
Progressing to ∼100-mm-long fibre segments, we have faced the
first challenges related to polarization coupling and significant devi-
ations of the refractive index from the ideal step-index profile, which
required major enhancement of our numerical modelling and
experimental methods.

With such a newly developed ability to predict light propagation,
even through such distances within the fibre, we could, for the first
time, rigorously investigate the influence of fibre deformation
(bending) on the resulting TM. The study has shown that even sig-
nificantly bent fibres are perfectly predictable, thus allowing compu-
tation of their TM based purely on the observation of the fibre
geometry. Finally, all of these new aspects were brought together
to test the performance of imaging in such an enhanced system.
We have shown that imaging can be achieved without experimental
TM acquisition, in both straight and deformed fibres at an arbitrary
distance behind the distal fibre facet.

Identification of propagation-invariant modes
Our experimental geometry, introduced in the Methods, allows
measurement of the TM in the representation of diffraction-
limited focal points (FPs), sometimes also called ‘delta peaks’,
which, from the experimental perspective, are the most convenient
choice. The input focal points (at the proximal end of the fibre) can
be generated using a spatial light modulator (SLM) that simply
steers a focused laser beam into a required location at the input
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order to minimize the complexity of the problem. This intermediate
step allowed us to eliminate influences caused by imperfections
(unavoidable misalignment) in our experimental settings and,
importantly, establish the parameters of the fibre (core diameter,
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Only when corrections for these aspects were implemented could
we see a perfect agreement with the theoretical model used. This not
only confirmed the existence of propagation-invariant modes
within the fibre, but also matched their output phases very accu-
rately, which is vitally important for imaging applications.
Progressing to ∼100-mm-long fibre segments, we have faced the
first challenges related to polarization coupling and significant devi-
ations of the refractive index from the ideal step-index profile, which
required major enhancement of our numerical modelling and
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With such a newly developed ability to predict light propagation,
even through such distances within the fibre, we could, for the first
time, rigorously investigate the influence of fibre deformation
(bending) on the resulting TM. The study has shown that even sig-
nificantly bent fibres are perfectly predictable, thus allowing compu-
tation of their TM based purely on the observation of the fibre
geometry. Finally, all of these new aspects were brought together
to test the performance of imaging in such an enhanced system.
We have shown that imaging can be achieved without experimental
TM acquisition, in both straight and deformed fibres at an arbitrary
distance behind the distal fibre facet.
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Our experimental geometry, introduced in the Methods, allows
measurement of the TM in the representation of diffraction-
limited focal points (FPs), sometimes also called ‘delta peaks’,
which, from the experimental perspective, are the most convenient
choice. The input focal points (at the proximal end of the fibre) can
be generated using a spatial light modulator (SLM) that simply
steers a focused laser beam into a required location at the input
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fibre facet. The output (distal) facet is imaged on a charge-coupled
device (CCD) chip, and focal points are acquired from the values of
individual pixels.

The chosen set of focal points is arranged across an orthogonal
grid as shown in Fig. 1a, and ordered as indicated by the red line.
The experimentally measured transformation matrix M for a
10-mm-long fibre segment is shown in Fig. 1b. Each row of M rep-
resents the amplitudes and phases of all output focal points for a
single input focal point mode sent into the fibre. Due to space con-
straints, here (and also in Fig. 1d–f ), the basis of modes for the TMs
shown has been reduced to one-third of the full dimension. The
complete transformation matrices are presented in Supplementary
Figs 5–7. Following TM acquisition we can numerically emulate
the optical fibre as an optical system and predict the outcome of
any optical field being sent into the fibre and thus validate the
correctness of any theoretical prediction.

The simplest form of theoretical description (see the scalar and
paraxial approach reviewed in Supplementary Methods 1) predicts
the existence of linearly polarized modes that do not change their
field distribution during propagation through the fibre. A series of
such propagation-invariant modes (PIMs), also known as eigen-
vectors of propagation operators or eigenmodes, are shown in
Fig. 1c. Again, due to space constraints we only show PIMs of a
fibre with many fewer modes. PIMs are defined by a pair of
indices m and l. Index l refers to the orbital angular momentum
of a given mode with magnitude equal to lħ/photon25.

Whether such modes remain unchanged after travelling through
the real fibre can now be tested using the experimentally measured
TM. Each of these theoretically predicted PIMs can be constructed
as a superposition of input focal points. Such a vector can then be
sent virtually into the fibre, which is implemented by its matrix mul-
tiplication with the TM. The resulting output vector of focal points
should contain the identical PIM, differing only by a phase constant.
Carrying out such an operation for all modes simultaneously is
mathematically equivalent to converting the experimentally
measured M into the representation of PIMs. This is achieved by
constructing a conversion matrix T (shown in Fig. 1d), in which
each line represents a single theoretically predicted PIM expressed
as a superposition of input focal points. PIMs in T are ordered as
indicated by the white line in Fig. 1c. If the theoretically predicted
PIMs are the true eigenvectors of the experimentally measured

transformation matrix M, its conversion into the representation of
PIMs should result in a purely diagonal matrix, indicating that
each input mode is perfectly conserved.

The converted transformation matrix !M0 =T M T† is shown in
Fig. 1e. Apparently, !M0 is not diagonal, which might lead to the con-
clusion that the optical fibre does not follow the theoretical model.
However, off-diagonal components can also appear as a result of
even a very small misalignment of the fibre. The misalignment
space of the degrees of freedom is very large, comprising three-
dimensional position, two tilts and one defocus, each on both
sides of the fibre. Moreover, these 12 degrees of freedom are intrin-
sically intertwined with uncertainty in the radius of the fibre core
(a) and the numerical aperture (NA). We have developed an
optimization procedure (described in the Methods; source available
at http://complexphotonics.dundee.ac.uk/) that simultaneously cor-
rects the TM for alignment imperfections and adjusts the values of a
and NA. The optimized result, !Mfinal (Fig. 1f ), carries 93% of the
optical power on the main diagonal, showing an excellent match
between the scalar theoretical prediction and the corrected
experimental data.

Polarization coupling of modes
Each mode can be defined in two orthogonal polarization states, and
only when both are taken into account can the TM be considered
complete. An explanation of how the polarization in our geometry
can be controlled to take such complete measurements of the TM is
provided in Methods. After optimization and conversion into PIMs,
such a complete TM will now have four quadrants. Those contain-
ing the main diagonal indicate that the polarization of a given mode
has been conserved, and the remaining ones indicate mutual coup-
ling between polarization states. The optimized TM with input
PIMs defined by two orthogonal linear polarization states for the
10-mm-long fibre is presented in Fig. 2a (see Supplementary
Figs 7–10 for complete data sets). Coupling between polarization
states is clearly present, but relatively weak. The change in the polar-
ization state of individual linearly polarized PIMs (LP PIMs) can be
efficiently visualized on the Poincaré sphere shown in Fig. 2b. The
polarizations of all modes remain linear, but their orientation is
rotated by up to 45° (corresponding to a shift of 90° along the
equator on the Poincaré sphere). The same data are visualized by
placing the polarization states of the output PIMs into the shape
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Figure 1 | Analysing a short segment of fibre. a, Organization of input and output modes. b, Experimentally measured TM. c, Theoretically predicted
LP PIMs. d, Conversion matrix between the representation of focal points and LP PIMs. e,f, Converted TM before (e) and after (f) the optimization
procedure, respectively.
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In a similar fashion to diffusers or other highly scattering media, multimode fibres deliver coherent light signals in the
form of apparently random speckled patterns. In contrast to other optically random environments, multimode fibres
feature remarkably faithful cylindrical symmetry. Our experimental studies challenge the commonly held notion that
classifies multimode fibres as unpredictable optical systems. Instead, we demonstrate that commercially available
multimode fibres are capable of performing as extremely precise optical components. We show that, with a sufficiently
accurate theoretical model, light propagation within straight or even significantly deformed segments of multimode fibres
may be predicted up to distances in excess of hundreds of millimetres. Harnessing this newly discovered predictability in
imaging, we demonstrate the unparalleled power of multimode fibre-based endoscopes, which offer exceptional
performance both in terms of resolution and instrument footprint. These results thus pave the way for numerous exciting
applications, including high-quality imaging deep inside motile organisms.

The theoretical description of light transport processes within
ideal multimode fibres (MMFs) has been developed for over
half a century1–4. This elaborate theoretical model is,

however, frequently considered inadequate to describe real-life
MMFs, which are manufactured by drawing melted silica preforms.
Such fibres are commonly seen as unreliable, and the inherent ran-
domization of light propagating through them is typically attributed
to undetectable deviations from the ideal fibre structure. It is a com-
monly held belief that this additional chaos is unpredictable and
that its influence grows with the length of the fibre. Despite this,
light transport through MMFs remains deterministic.

The prospect of deterministic light propagation within MMFs
has only recently been used through methods of digital holography
and by adopting the concept of empirical measurement of the trans-
formation matrix (TM)5–11. This technique, developed in studies of
light propagation through highly turbid media12–17, has opened a
new window of opportunity for MMFs to become extremely
narrow and minimally invasive endoscopes, allowing sub-micro-
metre resolution imaging in deep regions of sensitive tissues9,18.

However attractive, this technology suffers from several major
limitations, the most critical being the lack of flexible operation.
Any bending or looping of the fibre results in changes to its TM,
rendering the imaging heavily impaired. All current methods
exploiting MMFs for imaging require open optical access to the
distal end of the fibre during the time-consuming measurement of
the TM. Furthermore, this characterization must be repeated
upfront for every intended configuration (deformation) and any
axial distance of the focal plane behind the fibre before the system
can be used for imaging7,19. The necessity to determine the TM
empirically is therefore a major bottleneck of the technology, and
it would be immensely advantageous to obtain the TM by another
route, ideally on the basis of numerical modelling.

The aim of this Article is to determine whether such modelling is
feasible in the supposedly chaotic environment of MMFs, given that,
unlike other random media, they feature a remarkable cylindrical
symmetry. Indeed, numerous studies have already indicated that
at least some aspects of the ordered behaviour (propagation
constants of modes) can ‘survive’ over very large distances20–23.

Our study represents a major advancement on these efforts. With
the availability of experimentally measured TMs stored in the

memory of a computer, all light transport processes can be emulated
with great accuracy, and the optical fibre can be subjected to
detailed investigation24.

While working with a relatively large numbers of modes (∼500),
we initially used the shortest practical fibre segment (∼10 mm) in
order to minimize the complexity of the problem. This intermediate
step allowed us to eliminate influences caused by imperfections
(unavoidable misalignment) in our experimental settings and,
importantly, establish the parameters of the fibre (core diameter,
numerical aperture) with sufficiently high precision.

Only when corrections for these aspects were implemented could
we see a perfect agreement with the theoretical model used. This not
only confirmed the existence of propagation-invariant modes
within the fibre, but also matched their output phases very accu-
rately, which is vitally important for imaging applications.
Progressing to ∼100-mm-long fibre segments, we have faced the
first challenges related to polarization coupling and significant devi-
ations of the refractive index from the ideal step-index profile, which
required major enhancement of our numerical modelling and
experimental methods.

With such a newly developed ability to predict light propagation,
even through such distances within the fibre, we could, for the first
time, rigorously investigate the influence of fibre deformation
(bending) on the resulting TM. The study has shown that even sig-
nificantly bent fibres are perfectly predictable, thus allowing compu-
tation of their TM based purely on the observation of the fibre
geometry. Finally, all of these new aspects were brought together
to test the performance of imaging in such an enhanced system.
We have shown that imaging can be achieved without experimental
TM acquisition, in both straight and deformed fibres at an arbitrary
distance behind the distal fibre facet.

Identification of propagation-invariant modes
Our experimental geometry, introduced in the Methods, allows
measurement of the TM in the representation of diffraction-
limited focal points (FPs), sometimes also called ‘delta peaks’,
which, from the experimental perspective, are the most convenient
choice. The input focal points (at the proximal end of the fibre) can
be generated using a spatial light modulator (SLM) that simply
steers a focused laser beam into a required location at the input
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fibre facet. The output (distal) facet is imaged on a charge-coupled
device (CCD) chip, and focal points are acquired from the values of
individual pixels.

The chosen set of focal points is arranged across an orthogonal
grid as shown in Fig. 1a, and ordered as indicated by the red line.
The experimentally measured transformation matrix M for a
10-mm-long fibre segment is shown in Fig. 1b. Each row of M rep-
resents the amplitudes and phases of all output focal points for a
single input focal point mode sent into the fibre. Due to space con-
straints, here (and also in Fig. 1d–f ), the basis of modes for the TMs
shown has been reduced to one-third of the full dimension. The
complete transformation matrices are presented in Supplementary
Figs 5–7. Following TM acquisition we can numerically emulate
the optical fibre as an optical system and predict the outcome of
any optical field being sent into the fibre and thus validate the
correctness of any theoretical prediction.

The simplest form of theoretical description (see the scalar and
paraxial approach reviewed in Supplementary Methods 1) predicts
the existence of linearly polarized modes that do not change their
field distribution during propagation through the fibre. A series of
such propagation-invariant modes (PIMs), also known as eigen-
vectors of propagation operators or eigenmodes, are shown in
Fig. 1c. Again, due to space constraints we only show PIMs of a
fibre with many fewer modes. PIMs are defined by a pair of
indices m and l. Index l refers to the orbital angular momentum
of a given mode with magnitude equal to lħ/photon25.

Whether such modes remain unchanged after travelling through
the real fibre can now be tested using the experimentally measured
TM. Each of these theoretically predicted PIMs can be constructed
as a superposition of input focal points. Such a vector can then be
sent virtually into the fibre, which is implemented by its matrix mul-
tiplication with the TM. The resulting output vector of focal points
should contain the identical PIM, differing only by a phase constant.
Carrying out such an operation for all modes simultaneously is
mathematically equivalent to converting the experimentally
measured M into the representation of PIMs. This is achieved by
constructing a conversion matrix T (shown in Fig. 1d), in which
each line represents a single theoretically predicted PIM expressed
as a superposition of input focal points. PIMs in T are ordered as
indicated by the white line in Fig. 1c. If the theoretically predicted
PIMs are the true eigenvectors of the experimentally measured

transformation matrix M, its conversion into the representation of
PIMs should result in a purely diagonal matrix, indicating that
each input mode is perfectly conserved.

The converted transformation matrix !M0 =T M T† is shown in
Fig. 1e. Apparently, !M0 is not diagonal, which might lead to the con-
clusion that the optical fibre does not follow the theoretical model.
However, off-diagonal components can also appear as a result of
even a very small misalignment of the fibre. The misalignment
space of the degrees of freedom is very large, comprising three-
dimensional position, two tilts and one defocus, each on both
sides of the fibre. Moreover, these 12 degrees of freedom are intrin-
sically intertwined with uncertainty in the radius of the fibre core
(a) and the numerical aperture (NA). We have developed an
optimization procedure (described in the Methods; source available
at http://complexphotonics.dundee.ac.uk/) that simultaneously cor-
rects the TM for alignment imperfections and adjusts the values of a
and NA. The optimized result, !Mfinal (Fig. 1f ), carries 93% of the
optical power on the main diagonal, showing an excellent match
between the scalar theoretical prediction and the corrected
experimental data.

Polarization coupling of modes
Each mode can be defined in two orthogonal polarization states, and
only when both are taken into account can the TM be considered
complete. An explanation of how the polarization in our geometry
can be controlled to take such complete measurements of the TM is
provided in Methods. After optimization and conversion into PIMs,
such a complete TM will now have four quadrants. Those contain-
ing the main diagonal indicate that the polarization of a given mode
has been conserved, and the remaining ones indicate mutual coup-
ling between polarization states. The optimized TM with input
PIMs defined by two orthogonal linear polarization states for the
10-mm-long fibre is presented in Fig. 2a (see Supplementary
Figs 7–10 for complete data sets). Coupling between polarization
states is clearly present, but relatively weak. The change in the polar-
ization state of individual linearly polarized PIMs (LP PIMs) can be
efficiently visualized on the Poincaré sphere shown in Fig. 2b. The
polarizations of all modes remain linear, but their orientation is
rotated by up to 45° (corresponding to a shift of 90° along the
equator on the Poincaré sphere). The same data are visualized by
placing the polarization states of the output PIMs into the shape

a

b Acquired transformation matrix c Propagation-invariant modes

l-index −8 −6 −4 −2 0 2 4 6 8 10

m
-in

de
x

4

0

d Conversion matrix e Iteration 1 f Final iteration

phase

A
m

plitude

0

1

−π π

Figure 1 | Analysing a short segment of fibre. a, Organization of input and output modes. b, Experimentally measured TM. c, Theoretically predicted
LP PIMs. d, Conversion matrix between the representation of focal points and LP PIMs. e,f, Converted TM before (e) and after (f) the optimization
procedure, respectively.
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Optical elements such as lenses and polarizers are
used to modify the propagation of light. The transfor-
mations of the optical wave front that these elements
perform are described by simple and straightforward
transmission matrices (Fig. 1). The formalism of trans-
mission matrices is also used to microscopically de-
scribe the transmission through more complex optical
systems, including opaque materials such as a layer of
paint in which light is strongly scattered. A micro-
scopic description of this scattering process requires a
transmission matrix with an enormous number of ele-
ments. Sébastien Popoff, Geoffroy Lerosey, Rémi Carmi-
nati, Mathias Fink, Claude Boccara, and Sylvain Gigan
of the Institut Langevin in Paris now report in Physi-

cal Review Letters an experimental approach to micro-
scopically measure the transmission matrix for light
[1]. Knowledge of the transmission matrix promises a
deeper understanding of the transport properties and
enables precise control over light propagation through
complex photonic systems.

At first sight, opaque disordered materials such as pa-
per, paint, and biological tissue are completely different
from lenses and other clear optical elements. In disor-
dered materials all information in the wave front seems
to be lost due to multiple scattering. The propagation
of light in such materials is described very successfully
by a diffusion approach in which one discards phase in-
formation and considers only the intensity. An impor-
tant clue that phase information is very relevant in dis-
ordered systems was given by the observation of weak
photon localization in diffusive samples [2, 3]. Even ex-
tremely long light paths interfere constructively in the
exact backscattering direction, an interference effect that
can be observed in almost all multiple scattering sys-
tems. Interference in combination with very strong scat-

FIG. 1: Two optical elements fully characterized by their trans-
mission matrix, which relates the incident wave front to the
transmitted one. In the case of a thin lens, the transformation
of the wave front is described by a 2⇥ 2 matrix operating on a
vector describing the wave front curvature [27]. For more com-
plex elements such as a sugar cube the transmission matrix
operates in a basis of transversal modes, which is very large.
Full knowledge of the transmission matrix enables disordered
materials to focus light as lenses.

tering will even bring diffusion to a halt when condi-
tions are right for Anderson localization [4]. Since light
waves do not lose their coherence properties even af-
ter thousands of scattering events, the transport of light
through a disordered material is not dissipative at all,
but coherent, with a high information capacity [5].

A propagating monochromatic light wave is charac-
terized by the shape of its wave front. By choosing a
suitable basis, the wave front incident on a sample can
be decomposed into orthogonal modes. Typical choices
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<latexit sha1_base64="(null)">(null)</latexit>
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M.D. Choi, Lin. Alg. Appl. 10, 285 (1975) 
A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972)
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<latexit sha1_base64="(null)">(null)</latexit>

|̃ii
<latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit><latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit><latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit><latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit>

|j̃i
<latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit><latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit><latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit><latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit>
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<latexit sha1_base64="(null)">(null)</latexit>

|̃ii
<latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit><latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit><latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit><latexit sha1_base64="+YbNKD0JgLB8iU3VCwwzZbBA9rs=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU0lE0GPRi8cKthXaUDabSbt0swm7G6Wk/SlePCji1V/izX/jts1BWx8MPN6bYWZekHKmtOt+W6W19Y3NrfJ2ZWd3b//Arh62VZJJii2a8EQ+BEQhZwJbmmmOD6lEEgccO8HoZuZ3HlEqloh7PU7Rj8lAsIhRoo3Ut6uTnmY8xJxNe5KIAce+XXPr7hzOKvEKUoMCzb791QsTmsUoNOVEqa7nptrPidSMcpxWepnClNARGWDXUEFiVH4+P33qnBoldKJEmhLamau/J3ISKzWOA9MZEz1Uy95M/M/rZjq68nMm0kyjoItFUcYdnTizHJyQSaSajw0hVDJzq0OHRBKqTVoVE4K3/PIqaZ/XPbfu3V3UGtdFHGU4hhM4Aw8uoQG30IQWUHiCZ3iFN2tivVjv1seitWQVM0fwB9bnD/5OlHU=</latexit>
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<latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit><latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit><latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit><latexit sha1_base64="gZ5gLVCWI15ntxPtqALsuZRK6/0=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5KIoMeiF48V7Ac0oWw2k3btZhN2N0pJ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOVMacf5tkpr6xubW+Xtys7u3v6BXT1sqySTFFo04YnsBkQBZwJammkO3VQCiQMOnWB0M/M7jyAVS8S9Hqfgx2QgWMQo0Ubq29WJpxkPIX+YepKIAYe+XXPqzhx4lbgFqaECzb795YUJzWIQmnKiVM91Uu3nRGpGOUwrXqYgJXREBtAzVJAYlJ/PT5/iU6OEOEqkKaHxXP09kZNYqXEcmM6Y6KFa9mbif14v09GVnzORZhoEXSyKMo51gmc54JBJoJqPDSFUMnMrpkMiCdUmrYoJwV1+eZW0z+uuU3fvLmqN6yKOMjpGJ+gMuegSNdAtaqIWougJPaNX9GZNrBfr3fpYtJasYuYI/YH1+QP/2pR2</latexit>



INITIAL STATE

<latexit sha1_base64="(null)">(null)</latexit>

Valencia, Goel, McCutcheon, Defienne, Malik, arXiv:1910.04490 (2019)

a) b)

c) d)



INITIAL STATE

F ≥ 94.12%

<latexit sha1_base64="(null)">(null)</latexit>

Valencia, Goel, McCutcheon, Defienne, Malik, arXiv:1910.04490 (2019)

a) b)

c) d)



CHOI STATE: AFTER FIBRE

<latexit sha1_base64="(null)">(null)</latexit>

a) b)

c) d)



CHOI STATE: AFTER FIBRE

No entanglement ☹  BUT…

<latexit sha1_base64="(null)">(null)</latexit>

a) b)

c) d)



CHOI STATE: AFTER FIBRE

No entanglement ☹  BUT…

<latexit sha1_base64="(null)">(null)</latexit>

a) b)

c) d)

|T| |TM|



COMPLEX T MEASUREMENT: PHASE-STEPPING

ALICE BOB

Thorlabs GRIN 
MMF (2m)

a) b) c)

ei✓
<latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit>

reference 

mode

|S|



COMPLEX T MEASUREMENT: PHASE-STEPPING

ALICE BOB

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

Thorlabs GRIN 
MMF (2m)

a) b) c)

ei✓
<latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit>

reference 

mode

|S|



COMPLEX T MEASUREMENT: PHASE-STEPPING

ALICE BOB

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

Thorlabs GRIN 
MMF (2m)

a) b) c)

ei✓
<latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit>
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mode

|S|



REFERENCE MEASUREMENT

E

ALICE BOB

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

a) b) c)

ei✓
<latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit><latexit sha1_base64="v9W+ZDharbGR2qocUo+zC4SNFoo=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgadnV1SS3oBePEUwiJDHMTnqTIbMPZnqFsOQzvHhQxKtf482/cfIQVLSgoajqprvLT6TQ6DgfVm5peWV1Lb9e2Njc2t4p7u41dZwqDg0ey1jd+kyDFBE0UKCE20QBC30JLX90OfVb96C0iKMbHCfQDdkgEoHgDI3UhrtMdHAIyCa9Ysmxq+dexT2jhpQdx6tOScXzKqfUtZ0ZSmSBeq/43unHPA0hQi6Z1m3XSbCbMYWCS5gUOqmGhPERG0Db0IiFoLvZ7OQJPTJKnwaxMhUhnanfJzIWaj0OfdMZMhzq395U/MtrpxhUupmIkhQh4vNFQSopxnT6P+0LBRzl2BDGlTC3Uj5kinE0KRVMCF+f0v9J88R2Hdu99kq1i0UceXJADskxcUmZ1MgVqZMG4SQmD+SJPFtoPVov1uu8NWctZvbJD1hvnznSkeA=</latexit>
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.DESC RI PT ION OF P H YSI CAL REALITY

of lanthanum is 7/2, hence the nuclear magnetic
moment as determined by this analysis is 2.5
nuclear magnetons. This is in fair agreement
with the value 2.8 nuclear magnetons deter-
mined, from La III hyperfine structures by the
writer and N. S. Grace. 9
' M. F. Crawford and N. S. Grace, Phys. Rev. 4'7, 536

(1935).
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete' ?

A. EINsTEIN, B. PQDoLsKY AND N. RosEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufFicient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

A NY serious consideration of a physical
theory must take into account the dis-

tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.
In attempting to judge the success of a

physical theory, we may ask ourselves two ques-
tions: (1) "Is the theory correct?" and (2) "Is
the description given by the theory complete?"
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

Whatever the meaning assigned to the term
conzp/eEe, the following requirement for a com-
plete theory seems to be a necessary one: every
element of the physical reality must have a counter
part in the physical theory We shall ca. 11 this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.
The elements of the physical reality cannot

be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the following criterion, which we regard as
reasonable. If, without in any way disturbing a
system, we can predict with certainty (i.e. , with
probability equal to unity) the value of a physical
quantity, then there exists an element of physical
reality corresponding lo this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recognizing a
physical reality, at least provides us with one
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ABSTRACT. Bell’s Theorem proved that one cannot in general reproduce the results of quantum theory 
with a classical, deterministic local model. However, Einstein originally considered the case where one 
could define an “element of reality”, namely for the much simpler case where one could predict with 
certainty a definite outcome for an experiment. For this simple case, Bell’s Theorem says nothing. But by 
using a slightly more complicated model than Bell, one can show that even in this simple case where 
one can make definite predictions, one still cannot generally introduce deterministic, local models to 
explain the results. 
 
 
 
In 1935 Einstein, Podolsky, and Rosen (1) wrote their classic paper (EPR) which 
pointed directly to the Achilles’ Heel of quantum theory. They pointed out that if 
quantum theory were true, it would have to defy common sense in a manner which 
was very distasteful to a classically oriented mind. Bohr’s answer (2) was not a 
refutation of their logic, but rather an affirmation of the fact that quantum theory does 
just that. The subsequent history of the subject, which has vindicated Bohr, is not to 
be taken as a refutation of EPR, but rather as a confirmation of just exactly how 
counter-intuitive a theory quantum theory is. An indication of how expertly they 
zeroed in on the most troubling aspect of the subject is the fact that in 1985 alone, 50 
years after their paper was written, there were still 48 journal citations of their original 
article. 
 
They were interested in the completeness of the theory, and they defined a complete 
theory as one in which “Every element of the Physical Reality must have a 
counterpart in the physical theory”. As to the phrase “Physical Reality” that occurs 
here, they made no claim to be able to define it in general. Rather, they gave what 
they thought should be one minimal requirement that an element of physical reality 
should exhibit. It is this requirement, which seems so necessary and obvious, that 
quantum theory violates. They proposed that ”if, without in any way disturbing a 
system, we can predict with certainty (i.e., a probability equal to unity) the value of a 
physical quantity, then there exists an element of physical reality corresponding to 
this physical quantity.” 
 
They gave an example, but most subsequent discussion has used a different 
example given by Bohm (3). Consider a spin-0 system which decays into two spin ½ 
particles. The wave function will be 
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qubits are in the j00æ or j11æ state, the measurement qubit will report a
string of identical values. If the data qubits are in the j01æ or j10æ state,
the measurement qubit will report alternating values, as measurement
is QND. Single data bit-flip errors make the measurement outcomes
switch between these two patterns. For example, if the measurement
outcomes for three cycles are 0, 0 and 1, this indicates a change from
the identical to the alternating pattern in the last measurement, and
hence a detection event. Explicitly, with mt the measurement qubit
outcome at cycle t and › the exclusive OR (XOR) operator, for each of
the two patterns we have bt 5 mt21 › mt 5 0 or 1. A detection event at
cycle t is then identified when Dt 5 bt21 › bt 5 1.

We use minimum-weight perfect matching23–25 to decode to physical
errors, based on the pattern of detection events and an error model for the
system. Intuitively, such matching connects detection events in pairs or to
the boundary using the shortest total weighted path length. It is important
to note that errors can lead to detection event pairs that span multiple
cycles, necessitating the need for multi-round analysis as opposed to
round-by-round (see Supplementary Information for details).

To study the ability of our device to preserve quantum states, we
initialized the data qubits into a Greenberger–Horne–Zeilinger (GHZ)
state, 000j iz 111j ið Þ

! ffiffiffi
2
p# $

, and applied two rounds of the repetition
code (Fig. 3). The algorithm is shown in Fig. 3a. Using quantum state
tomography we measured the input density matrix r and find a GHZ
state with fidelity Tr(ridealr) of 82%, above the threshold of 50% for
genuine entanglement26. After two repetition code cycles, we use tomo-
graphy to construct the density matrices for each pattern of detection

events. We find a state fidelity of 78% in the case of no detection events,
indicating a retention of genuine quantum entanglement. In the case of
two detection events, which indicate a likely data qubit error in the first
cycle, we find elements away from the ideal positions. By applying the
recovery operation in post-processing (a single bit-flip on the blue data
qubit) we can restore the state. Energy relaxation, the most likely cause
of the detected bit-flip error, induces both bit-flip and phase-flip errors.
The bit-flip error is corrected and the diagonal terms are preserved, but
any phase-flip error remains uncorrected, reducing the off-diagonal
terms and fidelity to 59%. We note that genuine entanglement is pre-
served. Conditional tomography for every configuration can be found
in Supplementary Information.

The data in Fig. 3 clearly show that the one-dimensional repetition
code algorithm does not necessarily destroy the quantum nature of the
state. It allows for preserving the quantum state in the case of no errors,
and correcting bit-flip errors otherwise. This preservation is achieved
purely through error detection and classical post-processing, like for the
full surface code, avoiding the need for dynamic feedback with quantum
gates. For the remainder, we investigate the logical basis states individu-
ally, as tomographic reconstruction cannot be done fault-tolerantly.

We now address the critical question of how well our implementa-
tion of the repetition code protects logical states over many cycles. The
process flow is illustrated in Fig. 4a. We start by initializing the data
qubits in either of the logical basis states: j0Læ 5 j0..0æ or j1Læ 5 j1..1æ.
We then run the repetition code algorithm for k cycles, and finish by
measuring the state of all data qubits. We repeat this 90,000 times to
gather statistics. The classical measurement results are converted into
detection events, which are processed using minimum-weight perfect
matching to generate corrections (see Supplementary Information).
These corrections are then applied to the measured data qubit output
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Figure 1 | Repetition code: device and algorithm. a, The repetition code is a
one-dimensional (1D) variant of the surface code, and is able to protect against X̂
(bit-flip) errors. The code is implemented using an alternating pattern of data
and measurement qubits. b, Optical micrograph of the superconducting
quantum device, consisting of nine Xmon21 transmon qubits with individual
control and measurement, with a nearest-neighbour coupling scheme. c, The
repetition code algorithm uses repeated entangling and measurement operations
which detect bit-flips, using the parity scheme on the right. Using the output
from the measurement qubits during the repetition code for error detection,
the initial state can be recovered by removing physical errors in software.
Measurement qubits are initialized into the | 0æ state and need no reinitialization
as measurement is QND.
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Figure 2 | Error propagation and identification. a, The quantum circuit for
three cycles of the repetition code, and examples of errors. Errors propagate
horizontally in time, and vertically through entangling gates. Different errors
lead to different detection patterns: an error on a measurement qubit (gold) is
detected in two subsequent rounds. Data qubit errors (purple, red, blue) are
detected on neighbouring measurement qubits in the same or next cycle. Data
errors after the last round (blue) are detected by constructing the final set
of ẐẐ eigenvalues from the data qubit measurements. b, The connectivity
graph for the quantum circuit above, showing measurements and possible
patterns of detection events (grey), see main text for details. The example
detection events and their connections are highlighted, and the corresponding
detected errors are shown on the right, which when applied, will recover the
input data qubit state.
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N particles entangled in a 2-dimensional 
Hilbert space:
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hence a detection event. Explicitly, with mt the measurement qubit
outcome at cycle t and › the exclusive OR (XOR) operator, for each of
the two patterns we have bt 5 mt21 › mt 5 0 or 1. A detection event at
cycle t is then identified when Dt 5 bt21 › bt 5 1.

We use minimum-weight perfect matching23–25 to decode to physical
errors, based on the pattern of detection events and an error model for the
system. Intuitively, such matching connects detection events in pairs or to
the boundary using the shortest total weighted path length. It is important
to note that errors can lead to detection event pairs that span multiple
cycles, necessitating the need for multi-round analysis as opposed to
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terms and fidelity to 59%. We note that genuine entanglement is pre-
served. Conditional tomography for every configuration can be found
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purely through error detection and classical post-processing, like for the
full surface code, avoiding the need for dynamic feedback with quantum
gates. For the remainder, we investigate the logical basis states individu-
ally, as tomographic reconstruction cannot be done fault-tolerantly.

We now address the critical question of how well our implementa-
tion of the repetition code protects logical states over many cycles. The
process flow is illustrated in Fig. 4a. We start by initializing the data
qubits in either of the logical basis states: j0Læ 5 j0..0æ or j1Læ 5 j1..1æ.
We then run the repetition code algorithm for k cycles, and finish by
measuring the state of all data qubits. We repeat this 90,000 times to
gather statistics. The classical measurement results are converted into
detection events, which are processed using minimum-weight perfect
matching to generate corrections (see Supplementary Information).
These corrections are then applied to the measured data qubit output
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Figure 1 | Repetition code: device and algorithm. a, The repetition code is a
one-dimensional (1D) variant of the surface code, and is able to protect against X̂
(bit-flip) errors. The code is implemented using an alternating pattern of data
and measurement qubits. b, Optical micrograph of the superconducting
quantum device, consisting of nine Xmon21 transmon qubits with individual
control and measurement, with a nearest-neighbour coupling scheme. c, The
repetition code algorithm uses repeated entangling and measurement operations
which detect bit-flips, using the parity scheme on the right. Using the output
from the measurement qubits during the repetition code for error detection,
the initial state can be recovered by removing physical errors in software.
Measurement qubits are initialized into the | 0æ state and need no reinitialization
as measurement is QND.
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Figure 2 | Error propagation and identification. a, The quantum circuit for
three cycles of the repetition code, and examples of errors. Errors propagate
horizontally in time, and vertically through entangling gates. Different errors
lead to different detection patterns: an error on a measurement qubit (gold) is
detected in two subsequent rounds. Data qubit errors (purple, red, blue) are
detected on neighbouring measurement qubits in the same or next cycle. Data
errors after the last round (blue) are detected by constructing the final set
of ẐẐ eigenvalues from the data qubit measurements. b, The connectivity
graph for the quantum circuit above, showing measurements and possible
patterns of detection events (grey), see main text for details. The example
detection events and their connections are highlighted, and the corresponding
detected errors are shown on the right, which when applied, will recover the
input data qubit state.
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1Institut für Experimentalphysik, Universität Innsbruck, A-6020 Innsbruck, Austria
2Stonehill College, North Easton, Massachusetts 02357

3Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański, PL-80-952 Gdańsk, Poland
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When a single particle from two independent entangled pairs is detected in a manner such that it is
impossible to determine from which pair the single particle came, the remaining three particles become
entangled in a GHZ state. This procedure can be realized with existing sources of entangled photons
and with future sources of entangled atoms. [S0031-9007(97)02923-2]

PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

Entanglements of three or more particles are fascinat-
ing quantum systems, especially when the entanglement is
maximal. For example, if the polarizations of three parti-
cles are maximally entangled, as in Greenberger-Horne-
Zeilinger (GHZ) state [1], then, according to quantum
mechanics, each of them is unpolarized. However, there
are perfect correlations among the three: given the results
of arbitrary polarization measurements on two of the par-
ticles one can predict with certainty the outcome of an
appropriate measurement on the third particle. This fea-
ture seems to imply that each particle possesses many
Einstein-Podolsky-Rosen (EPR) elements of reality [2].
However, introduction of these elements of reality implies
a contradiction [1]. It would be interesting to experimen-
tally exhibit the dance of correlations present in a three-
particle entanglement. While there have been proposals
for producing three- or four-particle entanglements, none
of these has been achieved in the laboratory. Most of
the earlier proposals [3] employ interaction between the
particles to achieve entanglement. Here we propose a re-
alizable method based entirely on the concept of quantum
erasure [4].
In this Letter we present a general scheme and reali-

zable procedures for generating three-particle entangle-
ments out of just two pairs of entangled particles from
independent emissions [5]. The basic idea is to set up
an arrangement such that all information about the source
of one of the four particles is erased. This entangles the
other three particles as they propagate to their observation

stations. Finally, we also propose a scheme for observing
four-particle GHZ correlations.
Consider the arrangement of Fig. 1. Two independent

sources each emit a pair of particles [6] in a beam-
entangled state and, by chance, these emissions are nearly
simultaneous. Suppose, for example, that the states of the
pairs are

1p
2

sjal jdl 1 ja0l jc0ld , (1)

from source A, and
1p
2

sjd0l jb0l 1 jcl jbld , (2)

from source B (the letters represent beams taken by the
particles in Fig. 1; all beams have the same polarization)
[7]. The beams d and d

0 are mixed by a 50-50 beam
splitter, behind which are two detectors DT (trigger)
and D

0
T .

Suppose that one and only one of these four particles
is detected by DT , no particle is detected at D

0
T , and the

other six beams illuminate the three-particle interferome-
ter [1] of Fig. 2. Because of the beam splitter, the trigger
particle could have come from either source A or B. If
it came from A, its companion must be in beam a, and
the pair from B must be in beams b and c. Thus, the
state of the triple of remaining particles is jal jbl jcl. If,
on the other hand, the trigger particle came from source
B, its companion must be in beam b

0 and the pair from A

0031-9007y97y78(16)y3031(4)$10.00 © 1997 The American Physical Society 3031
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Entanglements of three or more particles are fascinat-
ing quantum systems, especially when the entanglement is
maximal. For example, if the polarizations of three parti-
cles are maximally entangled, as in Greenberger-Horne-
Zeilinger (GHZ) state [1], then, according to quantum
mechanics, each of them is unpolarized. However, there
are perfect correlations among the three: given the results
of arbitrary polarization measurements on two of the par-
ticles one can predict with certainty the outcome of an
appropriate measurement on the third particle. This fea-
ture seems to imply that each particle possesses many
Einstein-Podolsky-Rosen (EPR) elements of reality [2].
However, introduction of these elements of reality implies
a contradiction [1]. It would be interesting to experimen-
tally exhibit the dance of correlations present in a three-
particle entanglement. While there have been proposals
for producing three- or four-particle entanglements, none
of these has been achieved in the laboratory. Most of
the earlier proposals [3] employ interaction between the
particles to achieve entanglement. Here we propose a re-
alizable method based entirely on the concept of quantum
erasure [4].
In this Letter we present a general scheme and reali-

zable procedures for generating three-particle entangle-
ments out of just two pairs of entangled particles from
independent emissions [5]. The basic idea is to set up
an arrangement such that all information about the source
of one of the four particles is erased. This entangles the
other three particles as they propagate to their observation

stations. Finally, we also propose a scheme for observing
four-particle GHZ correlations.
Consider the arrangement of Fig. 1. Two independent

sources each emit a pair of particles [6] in a beam-
entangled state and, by chance, these emissions are nearly
simultaneous. Suppose, for example, that the states of the
pairs are

1p
2

sjal jdl 1 ja0l jc0ld , (1)

from source A, and
1p
2

sjd0l jb0l 1 jcl jbld , (2)

from source B (the letters represent beams taken by the
particles in Fig. 1; all beams have the same polarization)
[7]. The beams d and d

0 are mixed by a 50-50 beam
splitter, behind which are two detectors DT (trigger)
and D

0
T .

Suppose that one and only one of these four particles
is detected by DT , no particle is detected at D

0
T , and the

other six beams illuminate the three-particle interferome-
ter [1] of Fig. 2. Because of the beam splitter, the trigger
particle could have come from either source A or B. If
it came from A, its companion must be in beam a, and
the pair from B must be in beams b and c. Thus, the
state of the triple of remaining particles is jal jbl jcl. If,
on the other hand, the trigger particle came from source
B, its companion must be in beam b

0 and the pair from A
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Entanglements of three or more particles are fascinat-
ing quantum systems, especially when the entanglement is
maximal. For example, if the polarizations of three parti-
cles are maximally entangled, as in Greenberger-Horne-
Zeilinger (GHZ) state [1], then, according to quantum
mechanics, each of them is unpolarized. However, there
are perfect correlations among the three: given the results
of arbitrary polarization measurements on two of the par-
ticles one can predict with certainty the outcome of an
appropriate measurement on the third particle. This fea-
ture seems to imply that each particle possesses many
Einstein-Podolsky-Rosen (EPR) elements of reality [2].
However, introduction of these elements of reality implies
a contradiction [1]. It would be interesting to experimen-
tally exhibit the dance of correlations present in a three-
particle entanglement. While there have been proposals
for producing three- or four-particle entanglements, none
of these has been achieved in the laboratory. Most of
the earlier proposals [3] employ interaction between the
particles to achieve entanglement. Here we propose a re-
alizable method based entirely on the concept of quantum
erasure [4].
In this Letter we present a general scheme and reali-

zable procedures for generating three-particle entangle-
ments out of just two pairs of entangled particles from
independent emissions [5]. The basic idea is to set up
an arrangement such that all information about the source
of one of the four particles is erased. This entangles the
other three particles as they propagate to their observation

stations. Finally, we also propose a scheme for observing
four-particle GHZ correlations.
Consider the arrangement of Fig. 1. Two independent

sources each emit a pair of particles [6] in a beam-
entangled state and, by chance, these emissions are nearly
simultaneous. Suppose, for example, that the states of the
pairs are

1p
2

sjal jdl 1 ja0l jc0ld , (1)

from source A, and
1p
2

sjd0l jb0l 1 jcl jbld , (2)

from source B (the letters represent beams taken by the
particles in Fig. 1; all beams have the same polarization)
[7]. The beams d and d

0 are mixed by a 50-50 beam
splitter, behind which are two detectors DT (trigger)
and D

0
T .

Suppose that one and only one of these four particles
is detected by DT , no particle is detected at D

0
T , and the

other six beams illuminate the three-particle interferome-
ter [1] of Fig. 2. Because of the beam splitter, the trigger
particle could have come from either source A or B. If
it came from A, its companion must be in beam a, and
the pair from B must be in beams b and c. Thus, the
state of the triple of remaining particles is jal jbl jcl. If,
on the other hand, the trigger particle came from source
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Entanglements of three or more particles are fascinat-
ing quantum systems, especially when the entanglement is
maximal. For example, if the polarizations of three parti-
cles are maximally entangled, as in Greenberger-Horne-
Zeilinger (GHZ) state [1], then, according to quantum
mechanics, each of them is unpolarized. However, there
are perfect correlations among the three: given the results
of arbitrary polarization measurements on two of the par-
ticles one can predict with certainty the outcome of an
appropriate measurement on the third particle. This fea-
ture seems to imply that each particle possesses many
Einstein-Podolsky-Rosen (EPR) elements of reality [2].
However, introduction of these elements of reality implies
a contradiction [1]. It would be interesting to experimen-
tally exhibit the dance of correlations present in a three-
particle entanglement. While there have been proposals
for producing three- or four-particle entanglements, none
of these has been achieved in the laboratory. Most of
the earlier proposals [3] employ interaction between the
particles to achieve entanglement. Here we propose a re-
alizable method based entirely on the concept of quantum
erasure [4].
In this Letter we present a general scheme and reali-

zable procedures for generating three-particle entangle-
ments out of just two pairs of entangled particles from
independent emissions [5]. The basic idea is to set up
an arrangement such that all information about the source
of one of the four particles is erased. This entangles the
other three particles as they propagate to their observation

stations. Finally, we also propose a scheme for observing
four-particle GHZ correlations.
Consider the arrangement of Fig. 1. Two independent

sources each emit a pair of particles [6] in a beam-
entangled state and, by chance, these emissions are nearly
simultaneous. Suppose, for example, that the states of the
pairs are

1p
2

sjal jdl 1 ja0l jc0ld , (1)

from source A, and
1p
2

sjd0l jb0l 1 jcl jbld , (2)

from source B (the letters represent beams taken by the
particles in Fig. 1; all beams have the same polarization)
[7]. The beams d and d

0 are mixed by a 50-50 beam
splitter, behind which are two detectors DT (trigger)
and D

0
T .

Suppose that one and only one of these four particles
is detected by DT , no particle is detected at D

0
T , and the

other six beams illuminate the three-particle interferome-
ter [1] of Fig. 2. Because of the beam splitter, the trigger
particle could have come from either source A or B. If
it came from A, its companion must be in beam a, and
the pair from B must be in beams b and c. Thus, the
state of the triple of remaining particles is jal jbl jcl. If,
on the other hand, the trigger particle came from source
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 13 

nm, respectively. The bottom panel shows a sandwich-like BBO+HWP+BBO geometry for 

generating entangled photons, after careful birefringent compensations. b, Experimentally 

detected two-photon count rate as a function of laser pump power, with and without 

narrowband filtering. c, The entangled state fidelity at different two-photon count rate. d, 

Measurement of the joint spectrum of the photon pair. e, Test of the indistinguishability 

between the single photons created from independent SPDC through PBS-based two-photon 

interference experiments at different pump power (see Methods). 

 

 

Figure 2 | Experiment setup for generating ten-photon polarization-entangled GHZ 

state. a, A pulsed ultraviolet laser was focused on five sandwich-like bulks, consisted of two 

beam-like type II β-barium borate (BBO) crystals and one HWP, to produce five entangled 

photon pairs in spatial modes 1-2, 3-4, 5-6, 7-8 and 9-10. All the o photons propagated in the 

modes 1, 3, 5, 7 and 9, while the e photons propagated in the modes 2, 4, 6, 8 and 10 and were 

combined on four PBSs. Four prisms were utilized to adjust delay to ensure that the incoming 
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• Challenge: develop tools for 
manipulating photonic OAM

• Interferometer with rotated 
Dove prism in each arm
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,

l

1

2

3

∆ψ

0

π

0

π

0 0

4

exp(ilφ) exp(il(φ+π))

FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,

l

1

2

3

∆ψ

0

π

0

π

0 0

4

exp(ilφ) exp(il(φ+π))

FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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FIG. 4. First three stages of a general sorting scheme. The
gray boxes each represent an interferometer of the form shown in
Fig. 3 with different angles between the Dove prisms. The first
stage introduces a phase shift of a ! p and so sorts multiples
of 2: even ls into Port A1 and odd ls into Port B1. The odd-l
photons then pass though an Dl ! 1 hologram so that they
become even-l photons. The second stage introduces a phase
shift of a ! p!2, so it sorts even-l photons into even and odd
multiples of 2. The Dl ! 2 hologram is required before the
photons are sorted further in the third stage.

form the first two stages of the general OAM sorter out-
lined in Fig. 4. The light source used in this experiment
was a helium-neon laser with a power of ,1 mW. An
intracavity cross wire introduced rectangular symmetry to
the laser cavity and forced the laser to oscillate in high-
order Hermite-Gaussian "HGm,n# modes. Such modes are
characterized by the indices m and nwhich correspond to
zeros of intensity in the electric field in the x and y di-
rections, respectively. The Hermite-Gaussian modes were
then converted to Laguerre-Gaussian modes by passing
them through a p!2 mode converter based on cylindri-
cal lenses [16]. The resulting Laguerre-Gaussian modes
have an exp"ilf#phase structure and corresponding OAM
of lh̄ per photon. This conversion of Hermite-Gauss-
ian "HGm,n#beams gives Laguerre-Gaussian "LGl

p#beams
characterized by l ! jm 2 nj and p ! min"m, n#. Ad-
justments to the intracavity cross wire allowed us to gen-
erate HGm,0 modes with m ! 0, 1, 2, . . . , which in turn
gave rise to LGl

0 beams with l ! 0, 1, 2, . . . . The inter-
ferometers had an arm length of approximately 30 cm and
were built from standard optical components. The Dl ! 1
hologram was manufactured using standard photographic
techniques [17]. Note that such a hologram increases the l
value of any exp"ilf#mode by 1 [18]. The four ports were
directed onto a screen so a camera could take an image of
the output.

Figure 5 shows the output from the two-stage sorting
process. As can be seen, we succeeded in sorting modes
from l ! 0 to l ! 4 into different ports. The l ! 4 mode
appears in the same port as the l ! 0 beam, as one would
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FIG. 5. Experimental results of a 2-stage sorting scheme. The
four different output ports correspond to exp"ilf# modes with
the values l"mod4# ! 0, 1, 2,3, respectively.

expect. In this first experiment, the overall efficiency of
the OAM sorter was limited by the poor optical efficiency
of the particular hologram used to approximately 10%.

To demonstrate that our device works at the single-
photon level, a further experiment was carried out at in-
tensities so low that on average less than one photon was
present in each interferometer at any one time. This was
achieved by inserting neutral-density filters to attenuate the
power of the laser beam to ,0.3 nW. This experiment
used a 1-stage interferometer. The output ports of the inter-
ferometer were directed into a camera that averaged over
a number of frames. As anticipated, this interferometer
still sorts between odd and even ls with an efficiency lim-
ited only by the quality of the optical components (Fig. 6).
Although the device proposed in this Letter can sort in-
dividual photons according to their OAM, we did not de-
tect photons individually. We plan to do this in the future
with the use of a single photon source and single photon
detectors.

Our OAM sorter is the analog of the polarizing beam
splitter in that it selects the optical path on the basis of
OAM, one path for each of the distinguishable states. In
this way, our sorter can be used to generate entanglement
between the optical path and OAM in the same way that a
polarizing beam splitter can create entanglement between
the optical path and polarization [19]. This will make it
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.
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two bits of information that can be transferred with a single
photon.

Our device relies on the exp!ilf" form of the trans-
verse modes. On rotation of the beam through an angle
a, this phase dependence becomes exp#il!f 1 a"$. This
corresponds to a phase shift of Dc ! la [13], which is a
manifestation of a geometrical phase [14]. For particular
combinations of l and a, the rotated beam may be either in
or out of phase with respect to the original. For example,
when a ! p, a beam with even l is in phase with the origi-
nal but a beam with odd l rotated by the same angle is out
of phase by p (Fig. 2). If such a rotation is incorporated
into the arms of a two-beam interferometer, then the phase
shift between the two arms becomes l dependent. It fol-
lows that for different angles of rotation, constructive and
destructive interference occurs for different values of l.

This concept can be realized in the form of a Mach-
Zehnder interferometer with a Dove prism inserted into
each arm (Fig. 3). A Dove prism flips the transverse cross
section of any transmitted beam [15]. Two Dove prisms,
rotated with respect to each other through an angle a%2,
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FIG. 2. Gray-scale representations of phase profiles of nonro-
tated and rotated beams with an exp!ilf" phase structure. After
a rotation through p , a beam with even l is unchanged, while
one with odd l is out of phase by p with the nonrotated beam.
Interfering an l beam with a rotated copy of itself therefore
results in constructive interference for even l and destructive in-
terference for odd l.

rotate a passing beam through an angle a. In the ex-
ample shown in Fig. 3, a%2 ! p%2 and hence the relative
phase difference between the two arms of the interferome-
ter is Dc ! lp. By correctly adjusting the path length of
the interferometer we can ensure that photons with even l
appear in port A1 and photons with odd l appear in port
B1. If the input state is a mixture of even and odd l com-
ponents, then these components are “sorted” into an even
channel A1 and an odd channel B1.

Our principle can be extended further to enable us to
test for an arbitrarily large number of OAM states. This
is achieved by cascading additional Mach-Zehnder inter-
ferometers with different rotation angles (Fig. 4). (Note
that the scheme outlined in Ref. [12] could be extended
in an analogous fashion.) The first interferometer, stage
1, sorts photons with even and odd values of l into ports
A1 and B1, respectively. Photons with even l are then
passed into the second stage where they are sorted further.
The angle between the Dove prisms of the second stage
is a%2 ! p%4 corresponding to Dc ! lp%2. Therefore,
modes with l ! 4n , where n is an integer, go into port A2
and beams with a phase term of l ! 4n 1 2 go into port
B2. Unfortunately, there is no rotation angle that allows us
to unambiguously sort odd-l photons in the same way. We
solve this problem by placing a hologram in front of one
interferometer of the second stage so that we can increase
the azimuthal phase of the odd-l photons by 1, thereby
making their l values even. An additional interferometer
with a ! p%2 will now separate the original odd-l pho-
tons in the same way as the even-l photons were sorted.
Figure 4 outlines the first three sorting stages, which al-
low discrimination between eight different values of l. By
adding further stages, this procedure can be extended to
allow an arbitrarily large number of OAM states to be dis-
tinguished. It should be noted that, in the absence of holo-
grams, a scheme similar to that illustrated in Fig. 4 can be
constructed to sort beams where l takes on the values of 0
or 2n , where n is an integer.

To demonstrate the viability of our proposed mecha-
nism, three Mach-Zehnder interferometers were built to
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FIG. 3. First stage of our OAM sorter. A Mach-Zehnder in-
terferometer with a Dove prism placed in each arm. The beams
in the two arms are rotated with respect to each other through
an angle a, where a%2 is the relative angle between the dove
prisms. In the example shown, a%2 ! p%2, this device sorts
photons with even values of l into Port A1 and those with odd
values of l into Port B1.

257901-2 257901-2

Leach, Padgett, Barnett, Arnold, Courtial, PRL 88, 257901 (2002)
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• Appearance of interference dip indicates coherent superposition:
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• Pulsed femtosecond pump @ 404nm 
via SHG of 808nm Ti:Sapph



EXPERIMENTAL DETAILS

M M

M

M

M

SL
M

SL
M

SL
M Det B

Det C

Det D

SL
M Det A

Laser

Source

B
B

O

D
M

1

pp
K

tp

D
M

2
PBS

HWP@45°

HWP@45°

PBS

TB

BSpp
K

tp

D
M

2
DP1&2

IF
1

IF
1 IF

2
IF

2

• High-dimensional SPDC @ 808nm in two 
PPKTP crystals (ℓ = -1,0,1), pumped with 
average power of 820mW @ 404nm
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• Spatial light modulators (SLMs) used for 
projective measurements
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• Coherence obtained b/w crystals via 
precise path-length matching and 
interference filters (B,C ~1nm; A,D ~3nm)
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• OAM beam splitter implemented in 
Sagnac configuration for long-term 
stability; actively controlled with a 
piezo motor; enclosed in a box to 
stabilise temperature to < 0.2 °C;
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for propagation and ensure spatial 
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• Full reconstruction of our (large) state is prohibitive

• Entanglement Witness!

• Prove: measured state cannot be decomposed into entangled states 
of smaller dimensionality structure (e.g. - 322, 222, 22)

VERIFYING ENTANGLEMENT

Huber and Vicente, Phys. Rev. Lett. 110, 030501 (2013)
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Quantum mechanics predicts a number of, at first sight, counterintuitive phenomena. It therefore remains
a question whether our intuition is the best way to find new experiments. Here, we report the development
of the computer algorithmMELVIN which is able to find new experimental implementations for the creation
and manipulation of complex quantum states. Indeed, the discovered experiments extensively use
unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range
from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger state, to a vast variety of
experiments for asymmetrically entangled quantum states—a feature that can only exist when both the
number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional
transformations are found that perform cyclic operations. MELVIN autonomously learns from solutions for
simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability
to automate the design of a quantum experiment can be applied to many quantum systems and allows the
physical realization of quantum states previously thought of only on paper.
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Quantum mechanics encompasses a wide range of
counterintuitive phenomena such as teleportation [1,2],
quantum interference [3], quantum erasure [4], and entan-
glement [5–10]. Despite our struggle to reconcile them with
our picture of reality, these phenomena serve as building
blocks for many exciting and useful quantum technologies
such as quantum cryptography [11,12], computation [13,14],
and metrology [15,16]. A significant challenge arises,
however, when we try to combine such phenomena in order
to perform a complex quantum task. Understanding the
outcome of even a simple combination of these quantum
building blocks can be daunting for the human intuition.
Therefore, it is natural to ask: Given a certain desired
property of a quantum system, what combination of quan-
tum building blocks will be successful in achieving it?
In order to answer this question, we develop a classical

computer algorithm called MELVIN, to which we teach how
these quantum phenomena work and, subsequently, assign it
a specific problem. The machine then takes on the task of
finding and optimizing arrangements of quantum building
blocks that result in a solution. This allows us to uncover
experimental methods to create an array of new types of
entangled states previously thought to exist only in theory. In
addition, it also allows us to address the question of how to
manipulate such high-dimensional quantum states, which is
key for their use in quantum information systems.
While searching for these experiments, MELVIN enlarges

its own toolbox by identifying useful groups of elements,
leading to a significant speed-up in subsequent discoveries.
The experiments found by our algorithm show a departure
from conventional experiments in quantum mechanics in

that they rely on highly unfamiliar, but perfectly conceiv-
able experimental techniques. This provides some insight
into the kind of out-of-the-box thinking that is required for
creating such complex quantum states.
Our method aims to create and manipulate general

complex quantum states for which arbitrary transformations
are not known. The algorithm creates experiments using
experimentally accessible optical components that can
readily be implemented in the laboratory [17,18]. In addi-
tion, our algorithm considers multiple degrees of freedom of
single quantum systems and can be extended to include
nonlinear components and states more complex than single
photons. This would allow us to investigate many other
interesting quantum phenomena such as NOON states [19],
induced coherence [20,21], quantum teleportation of more
complex systems [2], or quantum metrology [15,16]. A
complementary field is computer assisted or automated
quantum circuit synthesis (QCS) [22–26], where optimal
implementations for quantum algorithms are designed from
universal sets of known quantum gates. While very powerful
in its own right, the technique of QCS is used for linear qubit
networks and usually requires fault-tolerant quantum com-
puters for the implementation of its results.
The algorithm.—The main goal is to develop an algo-

rithm which finds experimental implementations for quan-
tum states or quantum transformations with interesting
properties, see Fig. 1. Specific possible input states and a
toolbox of experimentally known transformations utilizable
by MELVIN are defined initially. Using the elements from
the toolbox, the algorithm assembles new experiments by
arranging elements randomly. Then, from the initial state,
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Therefore, it is natural to ask: Given a certain desired
property of a quantum system, what combination of quan-
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In order to answer this question, we develop a classical

computer algorithm called MELVIN, to which we teach how
these quantum phenomena work and, subsequently, assign it
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blocks that result in a solution. This allows us to uncover
experimental methods to create an array of new types of
entangled states previously thought to exist only in theory. In
addition, it also allows us to address the question of how to
manipulate such high-dimensional quantum states, which is
key for their use in quantum information systems.
While searching for these experiments, MELVIN enlarges
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leading to a significant speed-up in subsequent discoveries.
The experiments found by our algorithm show a departure
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quantum circuit synthesis (QCS) [22–26], where optimal
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universal sets of known quantum gates. While very powerful
in its own right, the technique of QCS is used for linear qubit
networks and usually requires fault-tolerant quantum com-
puters for the implementation of its results.
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complex quantum states for which arbitrary transformations
are not known. The algorithm creates experiments using
experimentally accessible optical components that can
readily be implemented in the laboratory [17,18]. In addi-
tion, our algorithm considers multiple degrees of freedom of
single quantum systems and can be extended to include
nonlinear components and states more complex than single
photons. This would allow us to investigate many other
interesting quantum phenomena such as NOON states [19],
induced coherence [20,21], quantum teleportation of more
complex systems [2], or quantum metrology [15,16]. A
complementary field is computer assisted or automated
quantum circuit synthesis (QCS) [22–26], where optimal
implementations for quantum algorithms are designed from
universal sets of known quantum gates. While very powerful
in its own right, the technique of QCS is used for linear qubit
networks and usually requires fault-tolerant quantum com-
puters for the implementation of its results.
The algorithm.—The main goal is to develop an algo-

rithm which finds experimental implementations for quan-
tum states or quantum transformations with interesting
properties, see Fig. 1. Specific possible input states and a
toolbox of experimentally known transformations utilizable
by MELVIN are defined initially. Using the elements from
the toolbox, the algorithm assembles new experiments by
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complex quantum states for which arbitrary transformations
are not known. The algorithm creates experiments using
experimentally accessible optical components that can
readily be implemented in the laboratory [17,18]. In addi-
tion, our algorithm considers multiple degrees of freedom of
single quantum systems and can be extended to include
nonlinear components and states more complex than single
photons. This would allow us to investigate many other
interesting quantum phenomena such as NOON states [19],
induced coherence [20,21], quantum teleportation of more
complex systems [2], or quantum metrology [15,16]. A
complementary field is computer assisted or automated
quantum circuit synthesis (QCS) [22–26], where optimal
implementations for quantum algorithms are designed from
universal sets of known quantum gates. While very powerful
in its own right, the technique of QCS is used for linear qubit
networks and usually requires fault-tolerant quantum com-
puters for the implementation of its results.
The algorithm.—The main goal is to develop an algo-

rithm which finds experimental implementations for quan-
tum states or quantum transformations with interesting
properties, see Fig. 1. Specific possible input states and a
toolbox of experimentally known transformations utilizable
by MELVIN are defined initially. Using the elements from
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tion, our algorithm considers multiple degrees of freedom of
single quantum systems and can be extended to include
nonlinear components and states more complex than single
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Quantum mechanics predicts a number of, at first sight, counterintuitive phenomena. It therefore remains
a question whether our intuition is the best way to find new experiments. Here, we report the development
of the computer algorithmMELVIN which is able to find new experimental implementations for the creation
and manipulation of complex quantum states. Indeed, the discovered experiments extensively use
unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range
from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger state, to a vast variety of
experiments for asymmetrically entangled quantum states—a feature that can only exist when both the
number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional
transformations are found that perform cyclic operations. MELVIN autonomously learns from solutions for
simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability
to automate the design of a quantum experiment can be applied to many quantum systems and allows the
physical realization of quantum states previously thought of only on paper.
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Quantum mechanics encompasses a wide range of
counterintuitive phenomena such as teleportation [1,2],
quantum interference [3], quantum erasure [4], and entan-
glement [5–10]. Despite our struggle to reconcile them with
our picture of reality, these phenomena serve as building
blocks for many exciting and useful quantum technologies
such as quantum cryptography [11,12], computation [13,14],
and metrology [15,16]. A significant challenge arises,
however, when we try to combine such phenomena in order
to perform a complex quantum task. Understanding the
outcome of even a simple combination of these quantum
building blocks can be daunting for the human intuition.
Therefore, it is natural to ask: Given a certain desired
property of a quantum system, what combination of quan-
tum building blocks will be successful in achieving it?
In order to answer this question, we develop a classical

computer algorithm called MELVIN, to which we teach how
these quantum phenomena work and, subsequently, assign it
a specific problem. The machine then takes on the task of
finding and optimizing arrangements of quantum building
blocks that result in a solution. This allows us to uncover
experimental methods to create an array of new types of
entangled states previously thought to exist only in theory. In
addition, it also allows us to address the question of how to
manipulate such high-dimensional quantum states, which is
key for their use in quantum information systems.
While searching for these experiments, MELVIN enlarges

its own toolbox by identifying useful groups of elements,
leading to a significant speed-up in subsequent discoveries.
The experiments found by our algorithm show a departure
from conventional experiments in quantum mechanics in

that they rely on highly unfamiliar, but perfectly conceiv-
able experimental techniques. This provides some insight
into the kind of out-of-the-box thinking that is required for
creating such complex quantum states.
Our method aims to create and manipulate general

complex quantum states for which arbitrary transformations
are not known. The algorithm creates experiments using
experimentally accessible optical components that can
readily be implemented in the laboratory [17,18]. In addi-
tion, our algorithm considers multiple degrees of freedom of
single quantum systems and can be extended to include
nonlinear components and states more complex than single
photons. This would allow us to investigate many other
interesting quantum phenomena such as NOON states [19],
induced coherence [20,21], quantum teleportation of more
complex systems [2], or quantum metrology [15,16]. A
complementary field is computer assisted or automated
quantum circuit synthesis (QCS) [22–26], where optimal
implementations for quantum algorithms are designed from
universal sets of known quantum gates. While very powerful
in its own right, the technique of QCS is used for linear qubit
networks and usually requires fault-tolerant quantum com-
puters for the implementation of its results.
The algorithm.—The main goal is to develop an algo-

rithm which finds experimental implementations for quan-
tum states or quantum transformations with interesting
properties, see Fig. 1. Specific possible input states and a
toolbox of experimentally known transformations utilizable
by MELVIN are defined initially. Using the elements from
the toolbox, the algorithm assembles new experiments by
arranging elements randomly. Then, from the initial state,
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 

M

Ti-sapphire
laser

SHG

Multiport transformations

M

Kerr-lensing
compensation

DM

Kerr lens

NL1

NL2PBS1 PBS2

M M
P

T

T

a b

Lf

Lc

Lc Step 1

Step 2

AB CD

AB CD

AB CD

IF IF IF IF

A B

Det A Det B Det C Det D

– –

++

++

++

++

++

++

A B C D

∣+, 3〉

∣1〉B → ∣1〉C∣1〉A → i ∣1〉B – ∣+〉A

∣0〉A → i ∣2〉B

∣–1〉A → i ∣3〉B

∣0〉B → i ∣+〉A – ∣0〉B

∣–1〉B → ∣–1〉C

∣1〉C → i ∣–1〉C

∣0〉C → i ∣0〉C

∣–1〉C → ∣+〉A + i ∣1〉B

∣1, 1〉

∣0, 0〉∣+, 2〉

∣+, –1〉 ∣–1, –1〉

∣–1, 1〉

∣1, –1〉∣1, –1〉

∣–1, 1〉

∣1, –1〉 ∣1, –1〉

∣–1, 1〉

∣0, 0〉∣0, 0〉

∣0, 0〉 ∣0, 0〉

∣–1, 1〉

BS

Parity-sorterSPP
+2

R

c

CMP
∣+〉〈+∣

C D

Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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Fig. 3 | Multimode HOM interference in the multiport. a, Multimode HOM effect from a single crystal. The first interferometer is formed by PBS1 and the 
beam splitter. Here, the OAM parity-sorter transmits even OAM modes ∣ ⟩( 0 )B . The left interferometer arm includes a spiral phase-plate that transforms 
the state ∣ ⟩ ∣ ⟩→0 2A A. To erase the ‘which path’ information, a coherent superposition of OAM modes is measured at detectors A and B (see inset). The 
observed HOM visibility is (97.9!± !3.3)%. b, Four-photon HOM effect from two crystals for the Gaussian mode only. This two-photon interferometer is 
formed by the dichroic mirror and the OAM parity-sorter. The piezo actuator (P) is set such that the OAM parity-sorter acts as a mode-independent beam 
splitter. Thus, HOM interference for the ℓ = 0 mode can be observed. The presented visibility (88!± !14)% shows a high degree of temporal and spatial 
indistinguishability between the two created photon pairs. c, Four-photon HOM effect from two crystals for the ℓ modes + 1 and − 1. All nested single- and 
two-photon interferometers and both crystals are involved in this measurement. Higher-order OAM modes ℓ = ±( 1)  created in two different crystals 
interfere through the HOM effect. The observed HOM visibility of (83.5!± !2.5)% demonstrates the quality of the developed photon source and multiport. 
All experimental data curves are fitted with an assumed Gaussian spectrum. Error bars indicate Poissonian noise in the photon-counting rate.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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Fig. 3 | Multimode HOM interference in the multiport. a, Multimode HOM effect from a single crystal. The first interferometer is formed by PBS1 and the 
beam splitter. Here, the OAM parity-sorter transmits even OAM modes ∣ ⟩( 0 )B . The left interferometer arm includes a spiral phase-plate that transforms 
the state ∣ ⟩ ∣ ⟩→0 2A A. To erase the ‘which path’ information, a coherent superposition of OAM modes is measured at detectors A and B (see inset). The 
observed HOM visibility is (97.9!± !3.3)%. b, Four-photon HOM effect from two crystals for the Gaussian mode only. This two-photon interferometer is 
formed by the dichroic mirror and the OAM parity-sorter. The piezo actuator (P) is set such that the OAM parity-sorter acts as a mode-independent beam 
splitter. Thus, HOM interference for the ℓ = 0 mode can be observed. The presented visibility (88!± !14)% shows a high degree of temporal and spatial 
indistinguishability between the two created photon pairs. c, Four-photon HOM effect from two crystals for the ℓ modes + 1 and − 1. All nested single- and 
two-photon interferometers and both crystals are involved in this measurement. Higher-order OAM modes ℓ = ±( 1)  created in two different crystals 
interfere through the HOM effect. The observed HOM visibility of (83.5!± !2.5)% demonstrates the quality of the developed photon source and multiport. 
All experimental data curves are fitted with an assumed Gaussian spectrum. Error bars indicate Poissonian noise in the photon-counting rate.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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Fig. 3 | Multimode HOM interference in the multiport. a, Multimode HOM effect from a single crystal. The first interferometer is formed by PBS1 and the 
beam splitter. Here, the OAM parity-sorter transmits even OAM modes ∣ ⟩( 0 )B . The left interferometer arm includes a spiral phase-plate that transforms 
the state ∣ ⟩ ∣ ⟩→0 2A A. To erase the ‘which path’ information, a coherent superposition of OAM modes is measured at detectors A and B (see inset). The 
observed HOM visibility is (97.9!± !3.3)%. b, Four-photon HOM effect from two crystals for the Gaussian mode only. This two-photon interferometer is 
formed by the dichroic mirror and the OAM parity-sorter. The piezo actuator (P) is set such that the OAM parity-sorter acts as a mode-independent beam 
splitter. Thus, HOM interference for the ℓ = 0 mode can be observed. The presented visibility (88!± !14)% shows a high degree of temporal and spatial 
indistinguishability between the two created photon pairs. c, Four-photon HOM effect from two crystals for the ℓ modes + 1 and − 1. All nested single- and 
two-photon interferometers and both crystals are involved in this measurement. Higher-order OAM modes ℓ = ±( 1)  created in two different crystals 
interfere through the HOM effect. The observed HOM visibility of (83.5!± !2.5)% demonstrates the quality of the developed photon source and multiport. 
All experimental data curves are fitted with an assumed Gaussian spectrum. Error bars indicate Poissonian noise in the photon-counting rate.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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Fig. 3 | Multimode HOM interference in the multiport. a, Multimode HOM effect from a single crystal. The first interferometer is formed by PBS1 and the 
beam splitter. Here, the OAM parity-sorter transmits even OAM modes ∣ ⟩( 0 )B . The left interferometer arm includes a spiral phase-plate that transforms 
the state ∣ ⟩ ∣ ⟩→0 2A A. To erase the ‘which path’ information, a coherent superposition of OAM modes is measured at detectors A and B (see inset). The 
observed HOM visibility is (97.9!± !3.3)%. b, Four-photon HOM effect from two crystals for the Gaussian mode only. This two-photon interferometer is 
formed by the dichroic mirror and the OAM parity-sorter. The piezo actuator (P) is set such that the OAM parity-sorter acts as a mode-independent beam 
splitter. Thus, HOM interference for the ℓ = 0 mode can be observed. The presented visibility (88!± !14)% shows a high degree of temporal and spatial 
indistinguishability between the two created photon pairs. c, Four-photon HOM effect from two crystals for the ℓ modes + 1 and − 1. All nested single- and 
two-photon interferometers and both crystals are involved in this measurement. Higher-order OAM modes ℓ = ±( 1)  created in two different crystals 
interfere through the HOM effect. The observed HOM visibility of (83.5!± !2.5)% demonstrates the quality of the developed photon source and multiport. 
All experimental data curves are fitted with an assumed Gaussian spectrum. Error bars indicate Poissonian noise in the photon-counting rate.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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Fig. 3 | Multimode HOM interference in the multiport. a, Multimode HOM effect from a single crystal. The first interferometer is formed by PBS1 and the 
beam splitter. Here, the OAM parity-sorter transmits even OAM modes ∣ ⟩( 0 )B . The left interferometer arm includes a spiral phase-plate that transforms 
the state ∣ ⟩ ∣ ⟩→0 2A A. To erase the ‘which path’ information, a coherent superposition of OAM modes is measured at detectors A and B (see inset). The 
observed HOM visibility is (97.9!± !3.3)%. b, Four-photon HOM effect from two crystals for the Gaussian mode only. This two-photon interferometer is 
formed by the dichroic mirror and the OAM parity-sorter. The piezo actuator (P) is set such that the OAM parity-sorter acts as a mode-independent beam 
splitter. Thus, HOM interference for the ℓ = 0 mode can be observed. The presented visibility (88!± !14)% shows a high degree of temporal and spatial 
indistinguishability between the two created photon pairs. c, Four-photon HOM effect from two crystals for the ℓ modes + 1 and − 1. All nested single- and 
two-photon interferometers and both crystals are involved in this measurement. Higher-order OAM modes ℓ = ±( 1)  created in two different crystals 
interfere through the HOM effect. The observed HOM visibility of (83.5!± !2.5)% demonstrates the quality of the developed photon source and multiport. 
All experimental data curves are fitted with an assumed Gaussian spectrum. Error bars indicate Poissonian noise in the photon-counting rate.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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Fig. 3 | Multimode HOM interference in the multiport. a, Multimode HOM effect from a single crystal. The first interferometer is formed by PBS1 and the 
beam splitter. Here, the OAM parity-sorter transmits even OAM modes ∣ ⟩( 0 )B . The left interferometer arm includes a spiral phase-plate that transforms 
the state ∣ ⟩ ∣ ⟩→0 2A A. To erase the ‘which path’ information, a coherent superposition of OAM modes is measured at detectors A and B (see inset). The 
observed HOM visibility is (97.9!± !3.3)%. b, Four-photon HOM effect from two crystals for the Gaussian mode only. This two-photon interferometer is 
formed by the dichroic mirror and the OAM parity-sorter. The piezo actuator (P) is set such that the OAM parity-sorter acts as a mode-independent beam 
splitter. Thus, HOM interference for the ℓ = 0 mode can be observed. The presented visibility (88!± !14)% shows a high degree of temporal and spatial 
indistinguishability between the two created photon pairs. c, Four-photon HOM effect from two crystals for the ℓ modes + 1 and − 1. All nested single- and 
two-photon interferometers and both crystals are involved in this measurement. Higher-order OAM modes ℓ = ±( 1)  created in two different crystals 
interfere through the HOM effect. The observed HOM visibility of (83.5!± !2.5)% demonstrates the quality of the developed photon source and multiport. 
All experimental data curves are fitted with an assumed Gaussian spectrum. Error bars indicate Poissonian noise in the photon-counting rate.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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the multiport, all single and two-photon nested interferometers 
contained within it need to be interferometrically stable and have 
a high degree of spatial overlap to obtain multimode interference 

with a high visibility. To ensure single-photon interference stabil-
ity, the parity-sorter is actively stabilized with a piezo actuator. 
This also enables us to continuously switch its operation between 
a mode-independent 50/50 beam splitter and a mode-parity-sorter. 
The high spatial and temporal overlap of the multi-port inter-
ferometers is demonstrated experimentally with different mea-
surements shown in Fig. 3. Multimode HOM interference from 
a single crystal is demonstrated in Fig. 3a, where a photon pair 
from NL1 in modes ∣ ⟩0, 0 A,B results in the post-selected entan-
gled state ∕ ∣ ⟩ −∣− ⟩1 2 ( 0, 2 2, 0 )A,B A,B  after the beam splitter. As 
the path length difference before the beam splitter is varied, this 
state goes from being in a coherent superposition to a mixture 
of modes. At zero path length difference, the presence of high- 
visibility (97 ±  3.3%) HOM interference between two-photon mode 
superpositions | + |0 2A A and | + |−0 2B B confirms the presence 
of a coherent superposition. Single-mode ℓ =( 0)  HOM interfer-
ence from two crystals is demonstrated by tuning the piezo actuator 
such that the parity-sorter is acting as a mode-independent beam 
splitter. The joint spectral amplitude of the two photon pairs intro-
duces an additional element of distinguishability and leads to the 
observed HOM interference visibility of (88 ±  14)% (see Fig. 3b 
and Supplementary Information for details). Of high importance to 
the GHZ state creation is the multimodal HOM interference in the 
OAM degree of freedom between two crystals, as displayed in Fig. 3c.  
Here, we show the suppression of the joint probability amplitude 
∣ − ⟩ ⊗ ∣− ⟩1, 1 1, 1AB CD by (83.5 ±  2.5)%. This high visibility demon-
strates the high indistinguishability between photon pairs created in 
two different NLs and the coherent operation of the multiport in a 
multiphoton and multimodal OAM regime.

Experimental results
We use an entanglement-dimension witness19 to verify that our 
three-photon state is indeed genuinely multipartite entangled in 
three dimensions. This approach is based on the idea that the over-
lap of an ideal three-dimensional GHZ state with any state from a 
lower-dimensional entanglement structure cannot exceed a certain 
maximum value. If our measured state exceeds this maximum fidel-
ity, it is genuinely multipartite entangled in dimension three. The 
entanglement structure is defined according to the Schmidt rank 
vector (SRV) formalism36. Each number in the SRV corresponds to 
the entanglement dimensionality of one party with respect to the 
remaining two parties. Thus for the GHZ state, all three bi-parti-
tions {A|BC, B|AC, C|AB} are three-dimensionally entangled, giv-
ing SRV =  (3,3,3). The maximum possible fidelity between a (3, 3, 3)  
state ψ∣ ⟩  and any quantum state χ with a smaller dimensionality 
structure, for example χ ∈  (3, 3, 2), is Fmax =  χ ψ ψ∣ ⟩ ⟨ ∣ ≤ ∕

χ∈
max Tr( ) 2 3

i j k( , , ) ,  
for all permutations of (i, j, k) with i, j ≤  3 and k ≤  2. Thus if the 
fidelity of our experimentally created state ρ, Fexp =  ρ ψ ψ∣ ⟩ ⟨ ∣Tr( ) , 
exceeds this bound Fmax, we have shown that we have indeed created 
a genuinely (3, 3, 3)-dimensionally entangled state.

The absolute values of the measured density matrix elements 
are depicted in Fig. 4a. The diagonal elements are simple pro-
jection measurements in the computational basis. However, 
each off-diagonal element is reconstructed from 64 consecutive 
two-dimensional subspace measurements. Hence, a total of 219 
measurements are performed with spatial light modulators in com-
bination with single-mode fibres to reconstruct the necessary den-
sity matrix elements (see Supplementary Information for details). In 
total, we observed 1,652 simultaneous four-photon ‘click’ events in 
378 hours. Owing to the long measurement time and high powers 
used, we subtract accidental four-photon clicks between detectors 
(see Supplementary Information for details). From these data, we 
calculate the experimental fidelity to be Fexp =  (75.2 ±  2.88)%, which 
certifies with three standard deviations that the observed state is 
indeed genuinely three-dimensional and three-photon entangled. 
The error was calculated using a Monte Carlo simulation of the 
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Fig. 2 | Experimental details and physical generation principle.  
a, Experimental details. Two nonlinear periodically poled potassium titanyl 
phosphate (ppKTP) crystals (NL1 and NL2) are each used to generate a 
pair of photons entangled in three dimensions of their OAM. A specifically 
designed telescope system of lenses compensates for Kerr lensing effects 
between the two crystals. Each crystal is housed in a custom-built oven 
whose temperature (T) is automatically adjusted to account for drifts in 
the optimal phase-matching temperature as a result of high pump powers. 
Two polarizing beam splitters (PBS) deterministically separate the photon 
pairs generated in each crystal. Narrowband interference filters (IF) in each 
arm guarantee a high degree of indistinguishability in the temporal domain. 
Photons A, B and C enter the multiport (purple hexagon), which consists 
of a series of nested single-photon and two-photon interferometers. The 
OAM parity-sorter (green rectangle) interferometrically sorts incoming 
photons according to their OAM parity (even or odd). A reflection (R) 
in combination with an ℓ = + 2 spiral phase-plate (SPP) is used in path 
A, before photons A and B are coherently recombined at a beam splitter 
(BS). Finally, a coherent-mode projection (CMP) projects photon A onto 
the superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩+ = + −0 1 , resulting in a three-dimensional 
GHZ-entangled state between photons B, C and D. DM, dichroic mirror; 
Det, detector; Lc, collimation lens; Lf, focusing lens; SHG, second-harmonic 
generation. b, Physical generation principle of a three-dimensional GHZ 
state. The nine possible joint probability amplitudes resulting from the 
tensor product of two pairs of three-dimensionally entangled photons 
(3!× !3!= !9) are represented by the red, green and blue lines. In step 1, the 
OAM parity-sorter inserted in paths B and C prevents a four-fold detection 
event between even and odd terms. In step 2, the multiport further 
eliminates two cross-connections between two additional probability 
amplitudes. Finally, only three joint probability amplitudes corresponding 
to a three-dimensional GHZ-entangled state remain. c, Detailed mode 
transformations performed by the multiport on photons entering and 
leaving in paths A, B and C.
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experiment with Poissonian counting statistics. One could, in prin-
ciple, reduce the number of measurements through the use of more 
efficient witnesses that use measurements in mutually unbiased 
bases37. Unfortunately, these are difficult to realize in a lossless man-
ner for complex photonic spatial modes.

In contrast to lower-dimensional entanglement structures, a gen-
uinely (3, 3, 3)-entangled GHZ state enables us to simultaneously 
test for three different GHZ violations in every two-dimensional 
subspace of our state. To test for such violations, one measures 
the Mermin operator M⟨ ⟩  =  ⟨ ⟩−⟨ ⟩−⟨ ⟩−⟨ ⟩XXX YYX YXY XYY 7,  
whose value according to local-realistic theories is limited to 
M∣ ∣ = 2. Figure 4b–d shows the results of such tests performed 

in every two-dimensional subspace. We obtain values of the 
Mermin operators Mb =  − 2.47 ±  0.33, Mc =  − 3.37 ±  0.32 and 
Md =  2.94 ±  0.34, which are all above the local-realistic bound of 
2 (the subscripts refer to panels b, c and d in Fig. 4). Additionally, 
the experimental results show that the relative phases of our state 
are precisely as expected according to equation (3). One should 
note, however, that our test of local realism is not free of loopholes 
such as the fair-sampling assumption, as we use probabilistic mode 
filters and accidental subtraction to measure our state. The use of 
multi-outcome OAM measurement techniques38 would allow one 
to address these limitations in future experiments.

In addition to two-dimensional GHZ violations, it is interesting 
to see how our experimentally generated state would perform in a 
truly high-dimensional and multisetting test of local realism39. Here, 
by inferring the quality of our generated state from our (limited) wit-
ness measurements, we discuss whether such a high-dimensional 
violation of local realism is possible in principle. The three crite-
ria that determine the quality of our state are white noise, average 
coherence between the three probability amplitudes and weighting 
of the individual diagonal elements. From our experimental data, 

we see that the ratio of the observed versus expected magnitudes 
of the off-diagonal elements of our state is 81.7% on average, which 
therefore quantifies the average coherence. Additionally, 87.8% of 
the detected counts in the diagonal elements are in the expected 
elements, indicating that the amount of white noise present in our 
state is 12.2%. We can then theoretically construct a density matrix 
ρp which contains these three parameters, and calculate the expec-
tation value for the generalized Mermin operator O (ref.39), which 
yields a result of O⟨ ⟩ρp =  6.26 ±  0.25 (details in the Supplementary 
Information). The limit for local-realistic theories is 6. It is there-
fore realistic that such an experiment can be carried out with our 
experimentally generated state. Of course, such a test would benefit 
from improvements in the four-photon counting rate through tech-
niques such as custom periodically poled KTP crystals specifically 
designed to minimize spectral distinguishability40, used in combi-
nation with high-efficiency detectors. This would also allow one to 
circumvent accidental subtraction.

Conclusion
In conclusion, we have shown an experimental realization of a 
three-particle GHZ state entangled in three dimensions. Our 
physical system comprises three photons entangled in their OAM. 
Remarkably, our experimental method for generating this state 
was found through the use of a computer algorithm called Melvin. 
The generation of this state required two technological milestones: 
a high-brightness, multimode four-photon source showing an 
improvement of two orders of magnitude in photon counting rates 
over state-of-the-art methods, and a new type of multiport that 
coherently operates in a 27-dimensional multimode space. Using 
our entangled state, we have demonstrated three simultaneous vio-
lations of the GHZ contradiction and showed the feasibility of a 
truly three-dimensional and multisetting GHZ test of local realism 
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Fig. 4 | Experimental measurements and simultaneous GHZ violations in two-dimensional state subspaces. Measured density matrix elements 
for calculating the fidelity Fexp!= !75.2% are depicted (elements not measured in the experiment are crossed out). This verifies genuine multipartite 
entanglement in (3, 3, 3) dimensions with three standard deviations. The non-flat distribution of the diagonal elements is expected from the initial states of 
the two entangled photon pairs. Furthermore, 87.8% of the detected counts of the diagonal elements are in the expected elements. The average coherence 
of the measured state is approximately 81.7%. Perfect coherence is indicated by empty bars. b–d, Three simultaneous GHZ violations in two-dimensional 
state subspaces. Experimental results for joint Pauli measurements XXX, YYX, YXY and XYY performed on each two-dimensional subspace of our three-
dimensional state are shown. For a relative minus sign in the quantum state, we theoretically expect − 1 for the XXX measurement and + 1 for all other 
measurements, as shown in b and c. Without a relative phase (d) we expect a sign flip in the measurement results. Calculating the Mermin operator  
M yields Mb!= !− 2.47!± !0.33 (b), Mc!= !− 3.37!± !0.32 (c) and Md!= !2.94!± !0.34 (d), which are all above the local-realistic bound of 2. Errors are calculated 
using a Monte Carlo simulation with an underlying Poissonian distribution for the photon-counting rate.

NA TURE PHOTONICS | www.nature.com/naturephotonics



• 27 diagonal, 3 off-diagonal 
elements measured

• Fexp = 75.2 ± 2.88%

• Certified to be 3D-GHZ entangled                
by 3 standard deviations

• 2-dim Mermin tests of  
3-particle entanglement

• M1 = -2.47 ± 0.33  
M2 = -3.37 ± 0.32  
M3 = 2.94 ± 0.34

VERIFYING 333 ENTANGLEMENT

Erhard, MM, Krenn and Zeilinger, Nature Photonics 12, 759 (2018) 

20
M

Classical 4Quantum

ARTICLESNATURE PHOTONICS

experiment with Poissonian counting statistics. One could, in prin-
ciple, reduce the number of measurements through the use of more 
efficient witnesses that use measurements in mutually unbiased 
bases37. Unfortunately, these are difficult to realize in a lossless man-
ner for complex photonic spatial modes.

In contrast to lower-dimensional entanglement structures, a gen-
uinely (3, 3, 3)-entangled GHZ state enables us to simultaneously 
test for three different GHZ violations in every two-dimensional 
subspace of our state. To test for such violations, one measures 
the Mermin operator M⟨ ⟩  =  ⟨ ⟩−⟨ ⟩−⟨ ⟩−⟨ ⟩XXX YYX YXY XYY 7,  
whose value according to local-realistic theories is limited to 
M∣ ∣ = 2. Figure 4b–d shows the results of such tests performed 

in every two-dimensional subspace. We obtain values of the 
Mermin operators Mb =  − 2.47 ±  0.33, Mc =  − 3.37 ±  0.32 and 
Md =  2.94 ±  0.34, which are all above the local-realistic bound of 
2 (the subscripts refer to panels b, c and d in Fig. 4). Additionally, 
the experimental results show that the relative phases of our state 
are precisely as expected according to equation (3). One should 
note, however, that our test of local realism is not free of loopholes 
such as the fair-sampling assumption, as we use probabilistic mode 
filters and accidental subtraction to measure our state. The use of 
multi-outcome OAM measurement techniques38 would allow one 
to address these limitations in future experiments.

In addition to two-dimensional GHZ violations, it is interesting 
to see how our experimentally generated state would perform in a 
truly high-dimensional and multisetting test of local realism39. Here, 
by inferring the quality of our generated state from our (limited) wit-
ness measurements, we discuss whether such a high-dimensional 
violation of local realism is possible in principle. The three crite-
ria that determine the quality of our state are white noise, average 
coherence between the three probability amplitudes and weighting 
of the individual diagonal elements. From our experimental data, 

we see that the ratio of the observed versus expected magnitudes 
of the off-diagonal elements of our state is 81.7% on average, which 
therefore quantifies the average coherence. Additionally, 87.8% of 
the detected counts in the diagonal elements are in the expected 
elements, indicating that the amount of white noise present in our 
state is 12.2%. We can then theoretically construct a density matrix 
ρp which contains these three parameters, and calculate the expec-
tation value for the generalized Mermin operator O (ref.39), which 
yields a result of O⟨ ⟩ρp =  6.26 ±  0.25 (details in the Supplementary 
Information). The limit for local-realistic theories is 6. It is there-
fore realistic that such an experiment can be carried out with our 
experimentally generated state. Of course, such a test would benefit 
from improvements in the four-photon counting rate through tech-
niques such as custom periodically poled KTP crystals specifically 
designed to minimize spectral distinguishability40, used in combi-
nation with high-efficiency detectors. This would also allow one to 
circumvent accidental subtraction.

Conclusion
In conclusion, we have shown an experimental realization of a 
three-particle GHZ state entangled in three dimensions. Our 
physical system comprises three photons entangled in their OAM. 
Remarkably, our experimental method for generating this state 
was found through the use of a computer algorithm called Melvin. 
The generation of this state required two technological milestones: 
a high-brightness, multimode four-photon source showing an 
improvement of two orders of magnitude in photon counting rates 
over state-of-the-art methods, and a new type of multiport that 
coherently operates in a 27-dimensional multimode space. Using 
our entangled state, we have demonstrated three simultaneous vio-
lations of the GHZ contradiction and showed the feasibility of a 
truly three-dimensional and multisetting GHZ test of local realism 
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Fig. 4 | Experimental measurements and simultaneous GHZ violations in two-dimensional state subspaces. Measured density matrix elements 
for calculating the fidelity Fexp!= !75.2% are depicted (elements not measured in the experiment are crossed out). This verifies genuine multipartite 
entanglement in (3, 3, 3) dimensions with three standard deviations. The non-flat distribution of the diagonal elements is expected from the initial states of 
the two entangled photon pairs. Furthermore, 87.8% of the detected counts of the diagonal elements are in the expected elements. The average coherence 
of the measured state is approximately 81.7%. Perfect coherence is indicated by empty bars. b–d, Three simultaneous GHZ violations in two-dimensional 
state subspaces. Experimental results for joint Pauli measurements XXX, YYX, YXY and XYY performed on each two-dimensional subspace of our three-
dimensional state are shown. For a relative minus sign in the quantum state, we theoretically expect − 1 for the XXX measurement and + 1 for all other 
measurements, as shown in b and c. Without a relative phase (d) we expect a sign flip in the measurement results. Calculating the Mermin operator  
M yields Mb!= !− 2.47!± !0.33 (b), Mc!= !− 3.37!± !0.32 (c) and Md!= !2.94!± !0.34 (d), which are all above the local-realistic bound of 2. Errors are calculated 
using a Monte Carlo simulation with an underlying Poissonian distribution for the photon-counting rate.
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experiment with Poissonian counting statistics. One could, in prin-
ciple, reduce the number of measurements through the use of more 
efficient witnesses that use measurements in mutually unbiased 
bases37. Unfortunately, these are difficult to realize in a lossless man-
ner for complex photonic spatial modes.

In contrast to lower-dimensional entanglement structures, a gen-
uinely (3, 3, 3)-entangled GHZ state enables us to simultaneously 
test for three different GHZ violations in every two-dimensional 
subspace of our state. To test for such violations, one measures 
the Mermin operator M⟨ ⟩  =  ⟨ ⟩−⟨ ⟩−⟨ ⟩−⟨ ⟩XXX YYX YXY XYY 7,  
whose value according to local-realistic theories is limited to 
M∣ ∣ = 2. Figure 4b–d shows the results of such tests performed 

in every two-dimensional subspace. We obtain values of the 
Mermin operators Mb =  − 2.47 ±  0.33, Mc =  − 3.37 ±  0.32 and 
Md =  2.94 ±  0.34, which are all above the local-realistic bound of 
2 (the subscripts refer to panels b, c and d in Fig. 4). Additionally, 
the experimental results show that the relative phases of our state 
are precisely as expected according to equation (3). One should 
note, however, that our test of local realism is not free of loopholes 
such as the fair-sampling assumption, as we use probabilistic mode 
filters and accidental subtraction to measure our state. The use of 
multi-outcome OAM measurement techniques38 would allow one 
to address these limitations in future experiments.

In addition to two-dimensional GHZ violations, it is interesting 
to see how our experimentally generated state would perform in a 
truly high-dimensional and multisetting test of local realism39. Here, 
by inferring the quality of our generated state from our (limited) wit-
ness measurements, we discuss whether such a high-dimensional 
violation of local realism is possible in principle. The three crite-
ria that determine the quality of our state are white noise, average 
coherence between the three probability amplitudes and weighting 
of the individual diagonal elements. From our experimental data, 

we see that the ratio of the observed versus expected magnitudes 
of the off-diagonal elements of our state is 81.7% on average, which 
therefore quantifies the average coherence. Additionally, 87.8% of 
the detected counts in the diagonal elements are in the expected 
elements, indicating that the amount of white noise present in our 
state is 12.2%. We can then theoretically construct a density matrix 
ρp which contains these three parameters, and calculate the expec-
tation value for the generalized Mermin operator O (ref.39), which 
yields a result of O⟨ ⟩ρp =  6.26 ±  0.25 (details in the Supplementary 
Information). The limit for local-realistic theories is 6. It is there-
fore realistic that such an experiment can be carried out with our 
experimentally generated state. Of course, such a test would benefit 
from improvements in the four-photon counting rate through tech-
niques such as custom periodically poled KTP crystals specifically 
designed to minimize spectral distinguishability40, used in combi-
nation with high-efficiency detectors. This would also allow one to 
circumvent accidental subtraction.

Conclusion
In conclusion, we have shown an experimental realization of a 
three-particle GHZ state entangled in three dimensions. Our 
physical system comprises three photons entangled in their OAM. 
Remarkably, our experimental method for generating this state 
was found through the use of a computer algorithm called Melvin. 
The generation of this state required two technological milestones: 
a high-brightness, multimode four-photon source showing an 
improvement of two orders of magnitude in photon counting rates 
over state-of-the-art methods, and a new type of multiport that 
coherently operates in a 27-dimensional multimode space. Using 
our entangled state, we have demonstrated three simultaneous vio-
lations of the GHZ contradiction and showed the feasibility of a 
truly three-dimensional and multisetting GHZ test of local realism 
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Fig. 4 | Experimental measurements and simultaneous GHZ violations in two-dimensional state subspaces. Measured density matrix elements 
for calculating the fidelity Fexp!= !75.2% are depicted (elements not measured in the experiment are crossed out). This verifies genuine multipartite 
entanglement in (3, 3, 3) dimensions with three standard deviations. The non-flat distribution of the diagonal elements is expected from the initial states of 
the two entangled photon pairs. Furthermore, 87.8% of the detected counts of the diagonal elements are in the expected elements. The average coherence 
of the measured state is approximately 81.7%. Perfect coherence is indicated by empty bars. b–d, Three simultaneous GHZ violations in two-dimensional 
state subspaces. Experimental results for joint Pauli measurements XXX, YYX, YXY and XYY performed on each two-dimensional subspace of our three-
dimensional state are shown. For a relative minus sign in the quantum state, we theoretically expect − 1 for the XXX measurement and + 1 for all other 
measurements, as shown in b and c. Without a relative phase (d) we expect a sign flip in the measurement results. Calculating the Mermin operator  
M yields Mb!= !− 2.47!± !0.33 (b), Mc!= !− 3.37!± !0.32 (c) and Md!= !2.94!± !0.34 (d), which are all above the local-realistic bound of 2. Errors are calculated 
using a Monte Carlo simulation with an underlying Poissonian distribution for the photon-counting rate.
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experiment with Poissonian counting statistics. One could, in prin-
ciple, reduce the number of measurements through the use of more 
efficient witnesses that use measurements in mutually unbiased 
bases37. Unfortunately, these are difficult to realize in a lossless man-
ner for complex photonic spatial modes.

In contrast to lower-dimensional entanglement structures, a gen-
uinely (3, 3, 3)-entangled GHZ state enables us to simultaneously 
test for three different GHZ violations in every two-dimensional 
subspace of our state. To test for such violations, one measures 
the Mermin operator M⟨ ⟩  =  ⟨ ⟩−⟨ ⟩−⟨ ⟩−⟨ ⟩XXX YYX YXY XYY 7,  
whose value according to local-realistic theories is limited to 
M∣ ∣ = 2. Figure 4b–d shows the results of such tests performed 

in every two-dimensional subspace. We obtain values of the 
Mermin operators Mb =  − 2.47 ±  0.33, Mc =  − 3.37 ±  0.32 and 
Md =  2.94 ±  0.34, which are all above the local-realistic bound of 
2 (the subscripts refer to panels b, c and d in Fig. 4). Additionally, 
the experimental results show that the relative phases of our state 
are precisely as expected according to equation (3). One should 
note, however, that our test of local realism is not free of loopholes 
such as the fair-sampling assumption, as we use probabilistic mode 
filters and accidental subtraction to measure our state. The use of 
multi-outcome OAM measurement techniques38 would allow one 
to address these limitations in future experiments.

In addition to two-dimensional GHZ violations, it is interesting 
to see how our experimentally generated state would perform in a 
truly high-dimensional and multisetting test of local realism39. Here, 
by inferring the quality of our generated state from our (limited) wit-
ness measurements, we discuss whether such a high-dimensional 
violation of local realism is possible in principle. The three crite-
ria that determine the quality of our state are white noise, average 
coherence between the three probability amplitudes and weighting 
of the individual diagonal elements. From our experimental data, 

we see that the ratio of the observed versus expected magnitudes 
of the off-diagonal elements of our state is 81.7% on average, which 
therefore quantifies the average coherence. Additionally, 87.8% of 
the detected counts in the diagonal elements are in the expected 
elements, indicating that the amount of white noise present in our 
state is 12.2%. We can then theoretically construct a density matrix 
ρp which contains these three parameters, and calculate the expec-
tation value for the generalized Mermin operator O (ref.39), which 
yields a result of O⟨ ⟩ρp =  6.26 ±  0.25 (details in the Supplementary 
Information). The limit for local-realistic theories is 6. It is there-
fore realistic that such an experiment can be carried out with our 
experimentally generated state. Of course, such a test would benefit 
from improvements in the four-photon counting rate through tech-
niques such as custom periodically poled KTP crystals specifically 
designed to minimize spectral distinguishability40, used in combi-
nation with high-efficiency detectors. This would also allow one to 
circumvent accidental subtraction.

Conclusion
In conclusion, we have shown an experimental realization of a 
three-particle GHZ state entangled in three dimensions. Our 
physical system comprises three photons entangled in their OAM. 
Remarkably, our experimental method for generating this state 
was found through the use of a computer algorithm called Melvin. 
The generation of this state required two technological milestones: 
a high-brightness, multimode four-photon source showing an 
improvement of two orders of magnitude in photon counting rates 
over state-of-the-art methods, and a new type of multiport that 
coherently operates in a 27-dimensional multimode space. Using 
our entangled state, we have demonstrated three simultaneous vio-
lations of the GHZ contradiction and showed the feasibility of a 
truly three-dimensional and multisetting GHZ test of local realism 
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Fig. 4 | Experimental measurements and simultaneous GHZ violations in two-dimensional state subspaces. Measured density matrix elements 
for calculating the fidelity Fexp!= !75.2% are depicted (elements not measured in the experiment are crossed out). This verifies genuine multipartite 
entanglement in (3, 3, 3) dimensions with three standard deviations. The non-flat distribution of the diagonal elements is expected from the initial states of 
the two entangled photon pairs. Furthermore, 87.8% of the detected counts of the diagonal elements are in the expected elements. The average coherence 
of the measured state is approximately 81.7%. Perfect coherence is indicated by empty bars. b–d, Three simultaneous GHZ violations in two-dimensional 
state subspaces. Experimental results for joint Pauli measurements XXX, YYX, YXY and XYY performed on each two-dimensional subspace of our three-
dimensional state are shown. For a relative minus sign in the quantum state, we theoretically expect − 1 for the XXX measurement and + 1 for all other 
measurements, as shown in b and c. Without a relative phase (d) we expect a sign flip in the measurement results. Calculating the Mermin operator  
M yields Mb!= !− 2.47!± !0.33 (b), Mc!= !− 3.37!± !0.32 (c) and Md!= !2.94!± !0.34 (d), which are all above the local-realistic bound of 2. Errors are calculated 
using a Monte Carlo simulation with an underlying Poissonian distribution for the photon-counting rate.
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LARGE-SCALE EXPERIMENTS WITH CLASSICAL LIGHT
a)             b)              c)               d)

e)              f)               g)               h)

000='!' 001='A' 002='B' 003='C' 010='D' 011='E' 012='F' 013='G' 

020='H' 021='I' 022='J' 023='K' 030='L' 031='M' 032='N' 033='O' 

100='P' 101='Q' 102='R' 103='S' 110='T' 111='U' 112='V' 113='W' 

120='X' 121='Y' 122='Z' 123='a' 130='b' 131='c' 132='d' 133='e' 

200='f' 201='g' 202='h' 203='i' 210='j' 211='k' 212='l' 213='m' 

220='n' 221='o' 222='p' 223='q' 230='r' 231='s' 232='t' 233='u' 

300='v' 301='w' 302='x' 303='y' 310='z' 311='0' 312='1' 313='2' 

320='3' 321='4' 322='5' 323='6' 330='7' 331='8' 332='9' 333=' ' 

Alphabet: Encoding: 

setting 0 1 2 3 

phase 

intensity 

Transmitted: 'Hello World!' 

H → 0,2,0 →   → 0,2,0 → H 
La Palma: Teneriffe: 

Received: 'Hello WorldP' 
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OPEN PROBLEMS

• Manipulation: Efficient + General Local Unitaries

• Generation: Entangling Gates - Theory + Experiment!

• Transport: Free-space/Fibre

• Transduction: Quantum States of Matter

• Theory: Certification Strategies, Non-Locality Tests
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