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Useful resources

Books on (classical) machine learning

- M Nielsen, “Neural networks and deep learning”, (web — free)

- A Geron, “Hands-on machine learning with Scikit-Learn and TensorFlow” (basic)
- Russell & Norvig, “Artificial intelligence: a modern approach” (classic)
Video lectures on (classical) machine learning (all freely available)

- F Marquardt, video lectures “Machine learning for physicists”

- “Deep Learning and Reinforcement Learning”, Summer School, Toronto 2018

- A Ng, “Machine learning”, full course, YouTube (Stanford U)

- H Larochelle, “Réseaux neuronaux” (eng), course IF725, YouTube (Sherbrooke U)

Many other resources available on line... (e.g., colah.github.io)


http://neuralnetworksanddeeplearning.com/
https://machine-learning-for-physicists.org/
http://videolectures.net/DLRLsummerschool2018_toronto/
https://www.youtube.com/playlist?list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
http://www.dmi.usherb.ca/%7Elarocheh/cours/ift725_A2013/contenu.html

Useful resources

Reviews on machine learning & quantum information & physics
(all available on the ArXiv)

Schuld et al., https://arxiv.org/abs/1409.3097

Biamonte et al., https://arxiv.org/abs/1611.09347

Ciliberto et al., https://arxiv.org/abs/1707.08561

Dunjko et al., https://arxiv.org/abs/1709.02779

Mehta et al., https://arxiv.org/abs/1803.08823

Carleo et al., https://arxiv.org/abs/1903.10563


https://arxiv.org/abs/1409.3097
https://arxiv.org/abs/1611.09347
https://arxiv.org/abs/1707.08561
https://arxiv.org/abs/1709.02779
https://arxiv.org/abs/1803.08823
https://arxiv.org/abs/1903.10563

1.1 Supervised learning
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(2012).




Training Set Size: Accuracy
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Figure 8: The effect of training set size on the classification accuracy of single qubit
states as mixed or pure. A comparison between the vectorised density matrix and Bloch

vector inputs is also shown. Each point is the average value of 10 iterations.

[D Craig, Master thesis]



Classification: Bloch Vector Classification: Density Matrix
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Figure 9: The distribution of correct and incorrect classification of states as mixed or
pure using the Bloch vector and density matrix inputs. A training set of size N = 10* and
test set of size M = 2 x 10° was used in each case. In both distributions the classification
accuracy was approximately 97%. The y-axis has been limited to 100 in each case as half
of the states have purity P = 1.

[D Craig, Master thesis]



Accuracy: Degrees of Freedom
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Figure 16: The average classification accuracy for each kind of state with a standard

deviation error. Each point is an average over 100 independent training iterations. The
states have been identified using the degrees of freedom (e.g. the 3 red points represent

unrotated Werner states, single rotated Werner states, and double rotated Werner states).

[D Craig, Master thesis]



Deep Neural Network Probabilistic
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Figure 1. Quantum Error Correcting Codes. A very general class of QEC codes is the class stabilizer codes,
defined by the stabilizer subgroup of the physical qubits that leaves the state of the logical qubits unperturbed.
Our neural architecture can be readily applied to such codes, however many codes of practical interest (like the
one we are testing against) have additional structure that would be interesting to consider. The example in (a)
shows a small patch of a toric code, which is a CSS code (the stabilizer operators are products of only Z or only
X operators, permitting us to talk of Z and X syndromes separately). Moreover, the toric code possesses a lattice
structure that provides for a variety of decoders designed to exploit that structure. Our decoder, depicted in (b),
does not have built-in knowledge of that structure, rather it learns it through training. Due to size constraints,
the depictions present only a small subset of all qubit or syndrome nodes.



Deep Neural Network Probabilistic
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Figure 2. Decoder performance for toric codes of distances 5 and 7. The x axis is the depolarization rate of the
physical qubits (the probability that an X, Y, or Z error has occurred), while the y axis is the fraction of properly
decoded code iterations (the conjugate of the logical error rate). The neural network decoder (rectangular
markers) significantly outperforms the minimal weight perfect matching decoder (triangular markers), both in
terms of threshold and logical error rate. For the above plots, neural networks with 18 hidden layers were used.



1.2 Unsupervised learning



Principal Component Analysis (PCA)

Alcoholic drinks
Beverages
Carcase meat
Cereals
Cheese
Confectionery
Fats and oils
Fish

Fresh fruit
Fresh potatoes
Fresh Veg
Other meat
Other Veg
Processed potatoes
Processed Veg
Soft drinks
Sugars

England
375
57
245
1472
105
54
193
147
1102
720
253
685
488
198
360
1374
156

N Ireland
135
47
267
1494
66
41
209
93
674
1033
143
586
355
187
334
1506
139

Scotland
458
53
242
1462
103
62
184
122
957
566
171
750
418
220
337
1572
147

Wales
475
73
227
1582
103
64
235
160
1137
874
265
803
570
203
365
1256
175

PCA for the average food
consumed (in grams) per
person per week for each
country in the UK



Principal Component Analysis (PCA)

England N Ireland Scotland Wales

Alcoholic drinks 375 135 458 475
Beverages 57 47 53 73
Carcase meat 245 267 242 227
Cereals 1472 1494 1462 1582 PCA for the average food
e 10 o g 109 consumed (in grams) per

onfectionery 54 41 62 64
Fats and oils 193 209 184 235 person per week for each
Fish 147 93 129 160 cou ntry in the UK
Fresh fruit 1102 674 957 1137
Fresh potatoes 720 1033 566 874
Fresh Veg 253 143 171 265
Other meat 685 586 750 803
Other Veg 488 355 418 570
Processed potatoes 198 187 220 203
Processed Veg 360 334 337 365
Soft drinks 1374 1506 4572 1256
Sugars 156 139 147 175

Wales England Scotland N Ireland
pcl | \. I \ ’/ I I I | | \._I
-300 -200 -100 0 100 200 300 400 500

1st principal component: in NI more potatoes, less fruit/cheese/alcohol

[http://setosa.io/ev/principal-component-analysis/]
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This plot shows 200 Werner states. The azes are the first two principal components
from the data set of reduced Fano vectors of the states [R McGibbon, Master thesis]



X states - convex combination of Bell states

px = pr|Wp N (V| + P2V )(W_| + p3|Py)(Py| + pa|D_)(D_|,

Fixed rotation on first and second qubit, hides structure

p=(Us®@Up)px(Us @ Up)?



o
]
19,1

o

N

o
1

0.15 1

Scaled variance

0.10

0.05 1

0.00

Fiaenvalues from PCA

o % o
n.. .

e o-:o e
SO
......M.\ ( -

e ":JE-.‘ g uz -
J W o %
* .:.. :T *;."; z“‘
L.t 'v oy €' LY L
':o%?g‘“.' - Spoe.e. :s.o/-‘
. ; v. oy s
“ Y s @
...-gﬁ..f. | ..‘"D}:. L
. v u." L1

1

2

3

4

-
T

5

6

7

8

-
T

9

[R McGibbon, Master thesis]

carried out on data set of 1000 rotated X states
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Figure 48: This plot shows 1000 X states from three different angles. The azes are the first three
principal components from the data set of reduced Fano vectors of the states. Available to view at

https://plot.ly/~quantum_data_analysis/O/first-three-principal-components-of-x-states/#/


https://plot.ly/~quantum_data_analysis/0/first-three-principal-components-of-x-states/#/

1.3 Reinforcement learning



Alpha Go

*Played since 4th
century BC

*19 x 19 board

*The lower bound on
the number of legal
board positions in Go
has been estimated to
be 2 x 10°

Expert beaten for the first time by a program in 2015.

Training: SL (learning from experts) + policy-gradient RL + ...
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[Silver et al, Nature 2017]
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2. Introduction to artificial neural networks
[M Nielsen, Neural networks and deep learning]



Example: Adder circuit — standard and perceptron
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[M Nielsen, http://neuralnetworksanddeeplearning.com/]



General architecture of a feed-forward neural network

r -
. hidden layers

\‘, "/} output layer
REAWSZ N\
XSS AN

input layer \’) ':‘:.:‘:” ‘X.'
7O
PSRN

-
L/

k .

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



Stochastic Gradient descent — update rule
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[M Nielsen, http://neuralnetworksanddeeplearning.com/]



Example of training a FFNN to classify
hand-written digits [Nielsen’s code, 74 lines, GitHub]

Input neurons
Hidden neurons

(1 layer only)
Output neurons
Training images (n)
Mini-batch size (m)
Learning rate

Epoch

Test images

784

30

10

50’000

10

30

10'000

Epoch ©: 9129 / 10000
Epoch 1: 9295 / 10000
Epoch 2: 9348 / 10000

Epoch 27: 9528 / 10000
Epoch 28: 9542 / 10000
Epoch 29: 9534 / 10000

Final accuracy: 95.34%

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



Example of training a FFNN to classify
hand-written digits: slower learning rate

Input neurons
Hidden neurons

(1 layer only)
Output neurons
Training images (n)
Mini-batch size (m)
Learning rate

Epoch

Test images

784

100

10

50’000

10

0.001

30

10'000

Epoch ©6: 1139 / 10000
Epoch 1: 1136 / 10000
Epoch 2: 1135 / 10000

Epoch 27: 2101 / 10000
Epoch 28: 2123 / 10000
Epoch 29: 2142 / 10000

Final accuracy: 21.41%
(increasing)

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



Example of training a FFNN to classify
hand-written digits: faster learning rate

Input neurons
Hidden neurons

(1 layer only)
Output neurons
Training images (n)
Mini-batch size (m)
Learning rate

Epoch

Test images

784

100

10

50’000

10

100

30

10'000

Epoch 6: 10689 / 10000
Epoch 1: 1669 / 10000

Epoch 27: 982 / 1606806
Epoch 28: 982 / 106000
Epoch 29: 982 / 1060606

Final accuracy: 9.82%
(random)

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



Example of training a FFNN to classify
hand-written digits: high performance codes

Accuracy: 99.979% [Wan et al. (2013)]
All images are correctly classified, except 21.

Examples of incorrectly classified images:

OIS 2]N &5 (
A1 2L UAE AL

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



2.5 - A glimpse of the back-propagation algorithm

Computational graphs

e=(a+b)*x(b+1)

d=b+1

http://colah.github.io



Arithmetic on computational graphs

a=2andb=1

http://colah.github.io



Derivatives on computational graphs

Chain rule as a
summation over paths

Oa Ob
http://colah.github.io



Factoring computational graph paths

DTS

A
SX = ad + ae + al + Bd + Be + BC + v + ve + (C
0Z
e (a+ B+9)(0+ e+ ()

http://colah.github.io



Forward-Mode Differentiation ()
>

95X _
0X {a+8+’¥)(5+6+0

Reverse-Mode Differentiation (%—Z)
<€

0z
X —O—» —5+6—|— —-O—)*
(a+8+1 )(6+f+§) aY

http: //colah.github.io




Example: forward-mode differentiation

e=(a+0b)x(b+1) %:5
c=a-+b %:2 %:3
E=Bi 1 i
0b
e=cx*xd %:1 %:1 ?_(;:1
?;:0 %zl

Derivative of the output with respect to a single input

http://colah.github.io



Example: backward-mode differentiation

e _
da

Derivative of our output with respect to all input!
Very practical to calculate the partial derivatives
of the network cost function wrt all weights and biases.

http://colah.github.io



2.6 — Overfitting

o

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



2.6 — Overfitting

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



2.6 — Overfitting

o

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



Example of training a FFNN to classify

hand-written digits

Input neurons
Hidden neurons

(1 layer only)
Output neurons
Training images (n)
Mini-batch size (m)
Learning rate

Epoch

Test images

784

30

10

50’000

10

30

10'000

Epoch ©: 9129 / 10000
Epoch 1: 9295 / 10000
Epoch 2: 9348 / 10000

Epoch 27: 9528 / 10000
Epoch 28: 9542 / 10000
Epoch 29: 9534 / 10000

Final accuracy: 95.34%

[M Nielsen, http://neuralnetworksanddeeplearning.com/]



Example of training a FFNN to classify
hand-written digits: small training set & many epochs

Input neurons 784

Accuracy (%) on the test data
82.30 T ! .

Hidden neurons 30
(1 layer only) 82251

Output neurons 10

82.20 |
Cost on the training data
oo . 0.010 - b .
Training images 1’000 82.15}
(n) 0.009
.. : 82.10
Mini-batch size 10 0.008
(m)
8205 EYSrTRmE———— L ._._0.007_
Learning rate 0.5
B DD L= .._..0.006
0.005
Epoch 400 8195
0'00%00 2.%0 360 3%0 400
. , 81 9 L Epoch
Test Images 10’000 9050 250 300 350 400

Epoch
Also, accuracy on training data 100%

[M Nielsen, http://neuralnetworksanddeeplearning.com/|



Example of training a FFNN to classify
hand-written digits: large training set

Input neurons

Hidden neurons
(1 layer only)

Output neurons

Training images

(n)

Mini-batch size
(m)
Learning rate

Epoch

Test images

784

30

10

50°000

10

0.5

30

10°000

100

98

96|

90

.................................................................................................................

—— Accuracy on the test data
Accuracy on the training data

5 10 15 20 25 30
Epoch

[M Nielsen, http://neuralnetworksanddeeplearning.com/]
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