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I. LECTURE 1: BASIC NOTIONS IN

QUANTUM KEY DISTRIBUTION

A. Generic aspects of a QKD protocol

We consider both discrete-variable systems, such as
qubits or other quantum systems with finite-dimensional
Hilbert space, and CV systems, such as bosonic modes
of the electromagnetic field which are described by an
infinite-dimensional Hilbert space. There a number of
reviews and books on these two general areas (e.g., see
Refs. [1, 2]). Some of the concepts are repeated below.
A generic “prepare and measure” QKD protocol can

be divided in two main steps: quantum communication
followed by classical postprocessing. During quantum
communication the sender (Alice) encodes instances of a
random classical variable α into non-orthogonal quantum
states. These states are sent over a quantum channel (op-
tical fiber, free-space link) controlled by the eavesdrop-
per (Eve), who tries to steal the encoded information.
The linearity of quantum mechanics forbids to perform
perfect cloning [3, 4], so that Eve can only get partial
information while disturbing the quantum signals. At
the output of the communication channel, the receiver
(Bob) measures the incoming signals and obtains a ran-
dom classical variable β. After a number of uses of the
channel, Alice and Bob share raw data described by two
correlated variables α and β.
The remote parties use part of the raw data to esti-

mate the parameters of the channel, such as its trans-
missivity and noise. This stage of parameter estimation
is important in order to evaluate the amount of post-
processing to extract a private shared key from the re-
maining data. Depending on this information, they in
fact perform a stage of error correction (EC), which al-
lows them to detect and eliminate errors, followed by a
stage of privacy amplification (PA) that allows them to
reduce Eve’s stolen information to a negligible amount.
The final result is the secret key.
Depending on which variable is guessed, we have direct

or reverse reconciliation. In direct reconciliation (DR),
it is Bob that post-process its outcomes in order to infer
Alice’s encodings. This procedure is usually assisted by
means of forward classical communication (CC) from Al-
ice to Bob. By contrast, in reverse reconciliation (RR),
it is Alice who post-process her encoding variable in or-
der to infer Bob’s outcomes. This procedure is usually
assisted by a final round of backward CC from Bob to
Alice. Of course, one may more generally consider two-

way procedures where the extraction of the key is helped
by forward and feedback CCs, which may be even in-
terleaved with the various communication rounds of the
protocol.

Let us remark that there may also be an additional
post-processing routine, called sifting, where the remote
parties communicate in order to agree instances while
discard others, depending on the measurement bases they
have independently chosen. For instance this happens
in typical DV protocols, where the Z-basis is randomly
switched with the X-basis, or in CV protocols where the
homodyne detection is switched between the q and the p
quadrature.

Sometimes QKD protocols are formulated in
entanglement-based representation. This means
that Alice’ preparation of the input ensemble of states
is replaced by an entangled state ΨAB part of which is
measured by Alice. The measurement on part A has
the effect to conditionally prepare a state on part B.
The outcome of the measurement is one-to-one with
the classical variable encoded in the prepared states.
This representation is particularly useful for the study
of QKD protocols, so that their prepare and measure
formulation is replaced by an entanglement-based
formulation for assessing the security and deriving the
secret key rate.

B. Asymptotic security and eavesdropping

strategies

The asymptotic security analysis is based on the as-
sumption that the parties exchange a number n≫ 1 (ide-
ally infinite) of signals. The attacks can then be divided
in three classes of increasing power: Individual, collec-
tive, and general-coherent. If the attack is individual,
Eve uses a fresh ancilla to interact with each transmitted
signal and she performs individual measurements on each
output ancillary systems. The individual measurements
can be done run-by-run or delayed at the end of the pro-
tocol, so that Eve may optimize over Alice and Bob’s CC
(also known as delayed-choice strategy). In the presence
of an individual attacks, we have three classical variables
for Alice, Bob and Eve, say α, β and γ. The asymptotic
key rate is then given by the difference of the mutual in-
formation [5] I among the various parties according to
Csiszar and Korner’s classical theorem [6]. In DR (◮),
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we have the key rate

R◮ := I(α : β)− I(α : γ), (1)

where I(α : β) := H(α) − H(α|β), with H being the
Shannon entropy, and H(|) its conditional version [5]. In
RR (◭), we have instead

R◭ := I(α : β)− I(β : γ), (2)

If the attack is collective then Eve still uses a fresh
ancilla for each signal sent but now her output ancillary
systems are all stored in a quantum memory which is col-
lectively measured at the end of the protocol after Alice
and Bob’s CCs. In this case, we may compute a lower
bound to the key rate by replacing Eve’s mutual infor-
mation with Eve’s Holevo information [7] on the relevant
variable. In DR, one considers Eve’s ensemble of output
states conditioned to Alice’s variable α, i.e., {ρE|α, P (α)}
where P (α) is the probability of the encoding α. Con-
sider then Eve’s average state ρE :=

∫

dαP (α)ρE|α. Eve’s
Holevo information on α is equal to

I(α : E) := S(ρE)−
∫

dαP (α)S(ρE|α), (3)

where S(ρ) := −Tr(ρlog2ρ) is the von Neumann entropy.
In RR, Eve’s Holevo information on β is given by

I(β : E) := S(ρE)−
∫

dβP (β)S(ρE|β), (4)

where ρE|β is Eve’s output state conditioned to the out-
come β with probability P (β). Thus, we may write the
two key rates [8]

R◮ := I(α : β)− I(α : E), (5)

R◭ := I(α : β)− I(β : E). (6)

In a general-coherent attack, Eve’s ancillae and the
signal systems are collectively subject to a joint unitary
interaction. The ancillary output is then stored in Eve’s
quantum memory for later detection after the parties’
CCs. In the asymptotic scenario, it has been proved [9]
that this attack can be reduced to a collective one by run-
ning a random symmetrization routine which exploits the
quantum de Finetti theorem [9–11]. By means of random
permutations, one can in fact transform a general quan-
tum state of n systems into a tensor product ρ⊗n, which
is the structure coming from the identical and indepen-
dent interactions of a collective attack.

II. PRELIMINARY NOTIONS

Recall that a qubit is represented as a vector in a bidi-
mensional Hilbert space, which is drawn by the following
basis vectors

|0〉 ≡
(

1

0

)

, |1〉 ≡
(

0

1

)

. (7)

Any pure qubit state can thus be expressed as a linear
superposition of these basis states,

|ψ〉 = α|0〉+ β|1〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉, (8)

with θ ∈ (0, π), φ ∈ (0, 2π) and i the imaginary unit.
This state can be pictorially represented as a vector in
the so-called “Bloch sphere”. When θ = 0 or θ = π, we
recover the basis states |0〉 and |1〉, respectively, which
are placed at the poles of the sphere. When θ = π/2,
the qubit pure state is a vector lying on the equator of
the sphere. Here we can identify the four vectors aligned
along the x̂ and ŷ axes, which are obtained in correspon-
dence of four specific values of φ, i.e., we have

φ = 0 : |+〉 = 1√
2

(

1

1

)

, (9)

φ = π : |−〉 = 1√
2

(

1

−1

)

, (10)

φ = π/2 : |+ i〉 = 1√
2

(

1

i

)

, (11)

φ = 3π/2 : | − i〉 = 1√
2

(

1

−i

)

. (12)

The basis vectors in Eq. (7) are eigenstates of the Pauli
operator (matrix)

σz = Z =

(

1 0
0 −1

)

. (13)

We call them the “Z basis”, as it is customary in QKD.
Similarly, the states in Eqs. (9) and (10) are eigenstates
of the Pauli operator (matrix)

σx = X =

(

0 1
1 0

)

, (14)

and are known as the X basis. Finally, the states in
Eqs. (11) and (12) are eigenstates of the Pauli operator
(matrix)

σy = Y =

(

0 −i
i 0

)

, (15)

and are known as the Y basis. These pairs of eigenstates
form two mutually unbiased bases (MUB). Formally, two
orthogonal basis of a d-dimensional Hilbert space, say
{|ψ1〉, ..., |ψd〉} and {|φ1〉, ..., |φd}〉, are mutually unbiased
if |〈ψi|φj〉|2 = 1/d for any i and j. Measuring a state of
one MUB using the other basis would produce a com-
pletely random result.
Using the three Pauli matrices and the bidimensional

identity operator (matrix)

11 =

(

1 0
0 1

)

, (16)

it is possible to write the most generic state of a qubit in
the form of a density operator,

ρ =
1

2
11 + ~n · ~σ, (17)
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with ~n the Bloch vector and ~σ = {σx, σy , σz}. This no-
tation comes handy when the qubit states are mixed,
which can be described with a vector ~n whose modulo is
less than 1, as opposed to pure states, for which |~n| = 1.
To give a physical meaning to the representation of a

qubit, we can interpret the qubit state in Eq. (8) as the
polarization state of a photon. This is also known as
“polarization qubit”. In this case, the Bloch sphere is
conventionally called the Poincaré sphere, but its mean-
ing is unchanged. The basis vectors on the poles of the
Poincaré sphere are usually associated with the linear
polarization states |H〉 = |0〉 and |V 〉 = |1〉, where H
and V refer to the horizontal or vertical direction of os-
cillation of the electromagnetic field, respectively, with
respect to a given reference system. The X basis states
are also associated with linear polarization but along di-
agonal (|D〉 = |+〉) and anti-diagonal (|A〉 = |−〉) di-
rections. Finally, the Y basis states are associated with
right-circular (|R〉 = |+ i〉) and left-circular (|L〉 = |− i〉)
polarization states. Any other state is an elliptical polar-
ization state and can be represented by suitably choosing
the parameters θ and φ.
It is worth noting that polarization can be cast in one-

to-one correspondence with another degree of freedom of
the photon which is particularly relevant from an exper-
imental point of view. This is illustrated in Fig. 1. The
light source emits a photon that is split into two arms
by the first beam-splitter (BS). The transmission of this
BS represents the angle θ of the Bloch sphere. More pre-
cisely, if r and t are the reflection and transmission coeffi-
cients of the BS, respectively, such that |r|2+ |t|2 = 1, we
can write r = cos(θ/2) and t = eiφ sin(θ/2) so to recover
Eq. (8). If the BS is 50:50, then θ = π/2 and the state
after the BS becomes

|ψ〉 = 1√
2

(

|0〉+ eiφ|1〉
)

. (18)

The phase φ now has a clear physical meaning, i.e., it
represents the relative electromagnetic phase between the
upper and lower arms of the interferometer in Fig. 1. This
phase can be modified by acting on the phase shifters in
Fig. 1 and this is one of the most prominent methods to
encode and decode information in QKD. In fact, it is fair
to say that the vast majority of QKD experiments were
performed using either the polarization or the relative
phase to encode information.

PSA

PSB

Source

BS

BS

Detectors

FIG. 1. Fundamental phase-based interferometer. BS: beam-
splitter; PSA: phase shift Alice; PSB: phase shift Bob.
Adapted with permission from Ref. [20] c©APS (1992).

III. HISTORICAL DEVELOPMENT OF QKD

As we well know, from a historical perspective, the first
QKD protocols were introduced using DVs, especially po-
larization. This remains even today one of the simplest
ways to describe an otherwise complex subject. The sem-
inal BB84 protocol [12] was described using polarization.
In 1991 Ekert suggested a scheme, the “E91” [15], that
for the first time exploits entanglement for cryptographic
purposes. The conceptual equivalence of this scheme
with the BB84 protocol was demonstrated in 1992 by
Bennett, Brassard and Mermin [16], who also proposed a
simplified version of the E91 later called BBM92 or more
simply Einstein-Podolsky-Rosen (EPR) scheme. How-
ever, this supposed equivalence cannot be taken strictly
as it can be shown that the entangled based protocol of
E91 can provide device independent security, which is
impossible for the BB84 using separable states even in a
noise free scenario [17].
A few years later, Lo and Chau [18] and Shor and

Preskill [19] exploited this equivalence between the
prepare-and-measure BB84 and the entanglement-based
BBM92 to demonstrate the unconditional security of
the BB84 protocol. Another important protocol, the
“B92” [20], was proposed in 1992 by Bennett, show-
ing that QKD can be performed with even only two
non-orthogonal states [3, 4]. The idea of exploiting
non-orthogonality was later extended to more sophisti-
cated bipartite schemes by Goldenberg and Vaidman [21],
Koashi and Imoto [23] and Noh [22]. Even though these
protocols are based on bipartite states that are orthog-
onal, their security relies on the fact the eavesdropper
cannot simultaneously access both the systems prepared
by the sender, but only one of them which is instead
described by non-orthogonal states [24]. Finally, note
that non-orthogonality also has a bipartite formulation
in terms of quantum discord [25, 26], so that the pres-
ence of the latter can be shown to be a necessary (but
not sufficient) condition for security [27].
In the following, we outline the most intuitive and

practical DV-QKD protocols, called “prepare-and-
measure” protocols. The transmitting user, Alice,
prepares the signals by encoding a discrete random
variable (typically a binary variable) in a quantum
system with finite degrees of freedom, typically the
polarization of an optical photon (polarization qubit).
These signals are then sent to the receiving user, Bob,
who measures them in order to retrieve the encoded
information. In order to describe the modus operandi of
the various protocols, here we assume the ideal case of
single-photon sources.

IV. BB84 PROTOCOL

In the BB84 protocol with polarization qubits, Alice
prepares a random sequence of four states in two MUBs.
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These are usually chosen as |0〉, |1〉 (Z basis), and |+〉,
|−〉 (X basis). However, other choices are possible, in-
cluding the four states in Eqs. (9)-(12). The users asso-
ciate the binary digit 0 with the non-orthogonal states
|0〉 and |+〉, and the binary digit 1 with the other non-
orthogonal states |1〉 and |−〉. The non-orthogonality
condition guarantees that Eve (an eavesdropper) cannot
clone the states with perfect fidelity [3, 4]. This implies
that: (i) Eve cannot perfectly retrieve the information
encoded by Alice; and (ii) Eve’s action causes a distur-
bance on the quantum states that can be detected by the
legitimate users.
The states prepared by Alice are sent to Bob, who then

measures them in one of the two bases Z or X , selected
at random. See Table I. Note that, if Bob chooses the
same basis as Alice, then Bob should exactly decode Al-
ice’s input. By contrast, If Bob chooses the wrong basis,
his result, and thus the bit he reads, will be random. For
this reason, when the quantum communication is over,
Bob exploits a classical public channel to inform Alice
about what basis he used to measure each photon. Alice
reports back her bases and they discard all the events
corresponding to the use of different bases. After this
sifting operation, the two parties should have two iden-
tical strings of bits, forming the so-called “sifted key”.
In practice, however, the communication line is noisy

and this noise has to be fully ascribed to Eve in the worst-
case scenario. Because of the noise, Alice’s and Bob’s
local strings will differ by an amount that can be quanti-
fied in terms of “quantum bit error rate” (QBER). This
is defined as the probability that a generic bit in Bob’s
sifted string is different from the corresponding bit in
Alice’s sifted string. In order to compute the QBER, Al-
ice and Bob perform a session of parameter estimation,
where they agree to disclose a random subset of their
data. Comparing these bits (later discarded), they can
quantify the QBER and check if this is lower or higher
than a certain security threshold of the protocol. If it
is higher, it means that Eve has gain too much informa-
tion. If it is lower, it means that the parties have more
shared information than Eve, and they can use the clas-
sical procedures of EC and PA to derive a secret key.
As a first step, they implement EC so that their strings
are transformed into shorter but identical strings. Then,
they implement PA, so that their common string is fur-
ther shortened into a final form which is completely de-
coupled from Eve.

A. Intercept-resend against the BB84 protocol

We now describe a basic eavesdropping strategy, where
Eve measures Alice’s signal states and, from the out-
comes, she re-prepares states to be sent to Bob. This
strategy is here discussed to give an idea of how eaves-
dropping information automatically generates a non-
trivial QBER for the parties. Assume that Alice pre-
pares her states in the Z basis and assume that this is an

Alice’s encoding Bob’s decoding
basis bit state Z X

Z
0

1

|0〉
|1〉

0

1

?

?

X
0

1

|+〉
|−〉

?

?

0

1

TABLE I. Summary of Alice’s encoding (left) and Bob’s de-
coding (right) in BB84. Here “?” means that the output is
completely random, i.e., 0 or 1 with the same probability.

instance where Bob picks the same basis for his measure-
ment, so that the instance survives the sifting stage of
the protocol. For the same instance, Eve will implement
randomly either the Z or the X basis. With 50% proba-
bility, she applies the right basis Z, eavesdropping all the
input information without causing any noise. With 50%
probability, she applies the wrong basis X , therefore pro-
jecting Alice’s input into |+〉 or |−〉 with the same proba-
bility. In this case, Eve does not retrieve any information
and will randomize the system, so that Bob will also get
a random output which coincides with Alice’s input 50%
of the times. The reasoning is similar if we start from the
other basis X . See Table II for the complete scenario.
The noise induced by this attack is quite high, corre-

sponding to a QBER of 25% (above the security threshold
of the protocol, equal to ≃ 11% as discussed afterwards).
It is also clear that Eve gets at least the same information
as Bob (so that the key rate is zero). More exactly, Eve is
able to steal half of the sifted bits, while Alice and Bob’s
mutual information is given by 1 − H2(QBER) ≃ 0.19
key bits per sifted bit, where

H2(p) := −p log2 p− (1− p) log2(1− p) (19)

is binary Shannon entropy. By accounting of the sifting
process, we may add a factor 1/2 and consider the infor-
mation per use of the protocol or channel use. We have
then [1−H2(QBER)]/2 < 0.1 per channel use, compared
to 0.25 bits per channel use stolen by Eve. Note also that
the formula of the mutual information does not change
if we use the probability of success 1−QBER, since the
binary entropy is invariant under the exchange p→ 1−p.

B. Intercept-resend with an intermediate basis

The performance of the intercept-resend attack does
not substantially change if Eve, instead of randomizing
her measurement between the two MUBs Z and X , al-
ways applies an intermediate basis. Consider the orthog-
onal basis {|θ〉, |θ⊥〉}, where

|θ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉, (20)

|θ⊥〉 = sin(θ/2)|0〉 − e−iφ cos(θ/2)|1〉. (21)
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Encoding Decoding

basis bit state Eve after sifting

Z

{

|0〉
|1〉

−→ Z

{

0

1

ր

Z
0

1

|0〉
|1〉

ց

X

{

|+,−〉
|+,−〉

−→ Z

{

?

?

Z

{

|0, 1〉
|0, 1〉

−→ X

{

?

?

ր

X
0

1

|+〉
|−〉

ց

X

{

|+〉
|−〉

−→ X

{

0

1

TABLE II. BB84 scenario after sifting in the presence of an
intercept-resend attack (where Eve randomly switches be-
tween Z and X bases). Here “?” means that the output
value decoded by Bob is completely random, i.e., 0 or 1 with
the same probability. When Eve’s basis matches Alice’s, then
no error is introduced. When Eve’s basis is different from
Alice’s, Eve re-sends states from the other MUB and Bob
gets a random output, coinciding with Alice’s input 50% of
the times. As a result, we have a QBER of 25%. It is clear
that Eve retrieves at least the same information as Bob. As
a matter of fact, she steals half of the sifted bits. On the
other hand Bob, can only reconstruct ≃ 19% of the sifted
bits due to the fact that, in correcting his data, he does not
know which instances were perfectly eavesdropped and which
ones were completely randomized by Eve.

Here the choice of parameters is not limited to θ = 0 (Z
basis) or θ = π/2 and φ = 0 (X basis). Another possible
choice is for instance θ = π/4 and φ = 0, i.e., the so-called
“Breidbart basis”. In general, Eve associates Alice’s bit-
value 0 (i.e., her states |0〉 and |+〉) to the outcome θ,
and Alice’s bit-value 1 (i.e., her states |1〉 and |−〉) to the
other outcome θ. It is easy to compute the conditional
probabilities

P (θ|0) = P (θ⊥|1) = cos2(θ/2), (22)

P (θ|+) = P (θ⊥|−) =
1 + sin θ cosφ

2
. (23)

and their complementary quantities (p→ 1− p)

P (θ⊥|0) = P (θ|1) = sin2(θ/2), (24)

P (θ⊥|+) = P (θ|−) =
1− sin θ cosφ

2
. (25)

Assuming the sifted scenario where the basis Z or X
is known to Eve, then we can easily compute the success
probability of Eve guessing Alice’s input, starting from
the probabilities above and using Bayes’ theorem with
identical priors. For instance, assume that Alice is using
the Z basis and sending the state |0〉. The probability
for Eve to guess the input 0 given her outcome θ is given
by P(0|θ) = P(θ|0) = cos2 (θ/2). In fact, from Bayes’
theorem, we may write

P (0|θ) = P (θ|0)P (0)
P (θ)

, (26)

P (θ) = P (θ|0)P (0) + P (θ|1)P (1). (27)

Then, using the conditional probabilities in Eqs. (22)-
(25) and the equal priors P (0) = P (1) = 1/2 (due to
Alice’s random input), we get the result above. We find
similar results for the other cases, so that we may write

P (0|θ) = P (1|θ⊥) = cos2(θ/2) := PZ
E , (28)

P (+|θ) = P (−|θ⊥) = 1 + sin θ cosφ

2
:= PX

E . (29)

Given Eve’s probabilities of success, PZ
E and PX

E , of
decoding Alice’s sifted bit in the two bases, Z and X ,
we can compute the corresponding expressions for Al-
ice and Eve’s mutual information. These are given by
IZE = 1 − H2(P

Z
E ) and IXE = 1 − H2(P

X
E ). Consider-

ing that Alice randomly switches between bases Z and
X , Eve’s information is therefore given by the average
IE = (IZE + IXE )/2. We can now see that, for the spe-
cific case of the Breidbart basis (θ = π/4, φ = 0), we
have the symmetric scenario PZ

E = PX
E := PE , where

Eve’s overall probability of guessing Alice’s sifted bit is
given by PE = (1 + 1/

√
2)/2 ≃ 0.854 (which is higher

than the 75% value of the previous intercept-resend at-
tack with switching bases). In the present attack, Eve
is able to eavesdrop IE = 1 − H2(PE) ≃ 0.4 bits per
sifted bit, which is less than the 50% value of the previ-
ous intercept-resend attack with switching bases (the ap-
parent discrepancy of the performance between guessing
probability and mutual information can be understood
in terms of the concavity of the Shannon entropy).
Let us now compute the QBER, first assuming the

general basis in Eqs. (20) and (21), and then specify-
ing the result for the Breidbart basis. Let us start by
considering the Z basis, with Alice sending |0〉. When
Eve projects the incoming polarization qubit onto the
state |θ〉, with probability P (θ|0) = cos2 (θ/2), Bob gets
an erroneous result with probability P (1|θ) = sin2 (θ/2).
If Eve projects onto |θ⊥〉, with probability P (θ⊥|0) =
sin2 (θ/2), Bob has an error with probability P (1|θ⊥) =
cos2 (θ/2). Therefore, we find the error probability

P (1|0) = P (1|θ)P (θ|0) + P (1|θ⊥)P (θ⊥|0)
= 2 cos2 (θ/2) sin2 (θ/2) = (sin2 θ)/2. (30)

It is easy to check that the error probability has the same
expression when Alice sends |1〉, so that we may write
PZ
err = P (0|1) = P (1|0) for the Z basis.
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A similar calculation can be done when Alice uses the
X basis sending |+〉 or |−〉. One finds PX

err = P (−|+) =
P (+|−) = (1 − sin2 θ cos2 φ)/2. As a result, the average
error probability (QBER) is equal to

Perr = (PZ
err + PX

err)/2 = [1 + (1− cos2 φ) sin2 θ]/4. (31)

For the Breidbart basis, a simple replacement in Eq. (31)
provides a QBER of 25%, exactly as in the previous at-
tack with switching bases. Alice and Bob’s mutual infor-
mation is again ≃ 0.19 key bits per sifted bit, lower than
Eve’s stolen information (≃ 0.4), so that no secret key
can be generated.

C. Optimal eavesdropping strategy of the BB84

protocol

A more powerful strategy that Eve can consider is to
attach an ancilla E (i.e., a quantum system with possibly
higher dimension than a qubit) to the incoming Alice’s
qubit. Let its state |E〉 unitarily interact with Alice’s
qubit state in the hope of gleaning some information.
With respect to Alice computational Z basis {|0〉, |1〉},
this unitary interaction can be written as

U |0〉|E〉 = |0〉|F0〉+ |1〉|D0〉, (32)

U |1〉|E〉 = |1〉|F1〉+ |0〉|D1〉, (33)

with |F0,1〉 and |D0,1〉 being Eve’s ancillary states after
the interaction; these are generally non-orthogonal and
un-normalized. There are two points worth noting here;
firstly, the Stinespring dilation theorem allows us to limit
our consideration of Eve’s ancillae to a four dimensional
quantum system or two qubits. Secondly, the interaction
with respect to Alice’sX basis {|+〉, |−〉} is automatically
determined using linearity. In both bases, the attack can
compactly be expressed by

U |a〉|E〉 = |a〉|Fa〉+ |a⊥〉|Da〉, (34)

where |a〉 ∈ {|0〉, |1〉, |+〉, |−〉} and 〈a|a⊥〉 = 0. In partic-
ular, the relation between Eve’s states in the two bases
is given by

2 |F±〉 = |F0〉+ |F1〉 ± |D0〉 ± |D1〉
2 |D±〉 = |F0〉 − |F1〉 ∓ |D0〉 ± |D1〉 .

(35)

In this formalism it is easy to write an optimal col-
lective attack which is able to saturate the minimum
QBER associated with the security of the BB84 pro-
tocol. This collective attack was shown in Ref. [29],
building on the individual symmetric attack described
in Ref. [30, 31]. Assume that the unitary U is such that
Eve’s un-normalized states are orthogonal of the follow-

ing form (in Eve’s two-qubit computational basis)

|F0〉 =
( √

F , 0, 0, 0
)T

|F1〉 =
( √

F cosx, 0, 0,
√
F sinx

)T

|D0〉 =
(

0,
√
D, 0, 0

)T

|D1〉 =
(

0,
√
D cos y,

√
D sin y, 0

)T

.

(36)

where x, y are two arbitrary angles, F = 1−D and

D =
1− cosx

2− cosx+ cos y
. (37)

This choice is such that 〈Fa |Fa〉 = F , 〈Da |Da〉 = D,
〈Fa |Fa⊥〉 = F cosx, 〈Da |Da⊥〉 = D cos y and all the
other inner products are zero, i.e., we have 〈Fa |Da〉 = 0
and 〈Fa |Da⊥〉 = 0. We can see that the attack acts
symmetrically in the two bases. Combining this choice
with Eq. (34), it is easy to see that the term F represents
the fidelity (probability of Bob getting the same state |a〉
sent by Alice), while D is the QBER, i.e., the probability
that Bob finds the state

∣

∣a⊥
〉

instead of |a〉. In fact, from
the conditional total output state ρBE|a := U |a〉 〈a| ⊗
|E〉 〈E|U † one can check that Bob’s conditional state

ρB|a := TrE
(

ρBE|a

)

= F−1 〈Fa| ρBE|a |Fa〉+D−1 〈Da| ρBE|a |Da〉 (38)

is given by

ρB|a = F |a〉 〈a|+D
∣

∣a⊥
〉 〈

a⊥
∣

∣ , (39)

while Eve’s conditional output state is given by

ρE|a = |Fa〉 〈Fa|+ |Da〉 〈Da| . (40)

From Eq. (39) we can easily see that Alice and Bob’s mu-
tual information is equal to IAB = [1 −H2(D)]/2 where
the factor 1/2 accounts for the basis reconciliation (sift-
ing) and H2 is the binary Shannon entropy.
Let us compute the performance of this attack assum-

ing it is an individual (delayed-choice) attack [30, 31].
Eve can store the ancilla in a memory in order to wait
for the basis reconciliation. She can then keep the same
instances of Alice and Bob and make individual mea-
surements on her ancillas. Eve can first measure ρE|a

to distinguish between the orthogonal sets {|Fa〉} and
{|Da〉} and then she can perform a further measurement
to distinguish between the non-orthogonal states |Fa〉
and |Fa⊥〉 or between the other non-orthogonal states
|Da〉 and |Da⊥〉. Because two states with overlap cosx
can be distinguish with probability (1 + sinx)/2 [32], we
have that Eve guesses the correct state up to an error

pEve = F

(

1 + sinx

2

)

+D

(

1 + sin y

2

)

. (41)

At fixed QBER D, this probability is minimized by the
choice x = y, so that Eve’s attack is reduced to just one
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parameter x. In this case, we can write D = (1−cosx)/2
and the following expression of Alice and Eve’s mutual
information

IAE =
[

1−H2

(

1+sin x
2

)]

/2 . (42)

By imposing the condition IAB = IAE , one finds the
following threshold value for the QBER [30, 31]

D =
1− 1/

√
2

2
≃ 14.6% . (43)

Let us now consider a collective version of this at-
tack [29], where Eve is not limited to individual mea-
surements on her ancillas, but she is allowed to perform
an optimal coherent measurement on all of them. Her
accessible information is therefore upper bounded by her
Holevo information χAE on Alice’s variable. Due to the
symmetry of the attack in the two bases, without losing
generality we can assume that the sifted instances are all
coming from the Z basis, i.e., a ∈ {0, 1}. With respect
to the sifted data, Eve’s Holevo bound is given by

χAE = S(ρE)−
S(ρE|a) + S(ρE|a⊥)

2
, (44)

where S is the von Neumann entropy, and ρE := (ρE|a +
ρE|a⊥)/2 is Eve’s average output state. Setting x = y,
one can compute χAE = H2(D). Including the sifting
1/2 factor and computing the rate R = IAB − χAE (bits
per use), we get [29]

RBB84 = [1 − 2H2(D)]/2 , (45)

which corresponds to the unconditionally-secure key-rate
of the BB84 protocol [19] with a threshold QBER of D ≃
11%. Thus, the collective symmetric attack is an optimal
eavesdropping strategy against the BB84 protocol. It is
optimal in the sense that it provides the lowest security
threshold for the protocol.

D. Unconditional security of the BB84 protocol

This security threshold value of 11% is the same as the
one that is found by assuming the most general ‘coherent
attack’ against the protocol, where all the signal states
undergo a joint unitary interaction together with Eve’s
ancillae, and the latter are jointly measured at the end
of protocol. In this general case, the unconditional se-
curity of the BB84 protocol was provided by Shor and
Preskill [19]. The main idea was based on the reduc-
tion of a QKD protocol into an entanglement distillation
protocol (EDP). Given a set of non-maximally entan-
gled pairs, the EDP is a procedure to distill a smaller
number of entangled pairs with a higher degree of entan-
glement using only local operations and classical com-
munication (LOCC). In some ways, employing this for a
security proof for QKD actually makes perfect sense as it

involves the two parties ending with a number of maxi-
mally entangled pairs. Given the monogamous nature of
entanglement, no third party can be privy to any results
of subsequent measurements the two make.
In particular, Shor and Preskill [19] showed that

EDP can be done using quantum error correction codes,
namely the Calderbank-Shor-Steane (CSS) code [33–35]
which has the interesting property which decouples phase
errors from bit errors. This allows for corrections to be
made independently. In this way, one can show that the
key generation rate becomes

RBB84 = [1−H2(eb)−H2(ep)] /2, (46)

where eb and ep are bit and phase error rates. For eb =
ep = D, this results in the same formula of Eq. (45) and
it is simple to see that R = 0 for QBER D ≈ 11%.
It is important to say that a more refined analysis of

the secret key rate of the BB84 protocol should account
for other imperfections, such as the finite efficiency of EC
and the probability Q that Alice’s (single-photon) pulses
are effectively detected by Bob. Thus, one has the rate

RBB84 =
Q

2
[1−H2(D)− leakEC(D)] , (47)

where leakEC(D) = f(D)H2(D) is the leakage of infor-
mation due to EC, with f(D) ≥ 1 being the EC efficiency.
It is interesting to derive the optimal scaling of the BB84
protocol, by setting E = 0 in Eq. (47) and noticing that
Q = η, so that we get

Rideal
BB84 =

η

2
. (48)

In conclusion, it is worth to mention the ‘efficient’ ver-
sion of the BB84 protocol, where the sifting factor 1/2
can be eliminated from the rate [36]. The idea is to make
a bias used of the bases so that, e.g., the Z basis is cho-
sen with probability p and the X basis with probability
1− p. Instead of the standard choice of p = 1/2, one can
adopt a very asymmetric choice, so that p → 1−, mean-
ing that the parties almost always use the Z basis. In the
limit of large number of uses n → ∞, the scheme turns
out to be unconditionally secure, even though the exact
choice p = 0 would make it completely insecure at any
n. Therefore, the secret key rate of the efficient BB84
protocol is given by

Reff-BB84 = 1− 2H2(D). (49)

Accounting for imperfections, it becomes the double of
Eq. (47), and it leads to the ideal scaling Rideal

eff-BB84 = η.

V. SIX-STATE PROTOCOL

The BB84 protocol has also been extended to use six
states in three bases to enhance the key generation rate
and the tolerance to noise [37]. The 6-state protocol is
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identical to BB84 except, as its name implies, rather than
using two or four states, it uses six states on three bases
X , Y and Z. This creates an obstacle to the eavesdrop-
per who has to guess the right basis from among three
possibilities rather than just two of the BB84. This ex-
tra choice causes the eavesdropper to produce a higher
rate of error, for example, 1/3 when attacking all qubits
with a simple intercept-resend strategy, thus becoming
easier to detect. The unconditional key rate against co-
herent attacks has the following expression in terms of
the QBER D (including the sifting factor 1/3)

R6state =
1

3

[

1 +
3D

2
log2

D

2
(50)

+

(

1− 3D

2

)

log2

(

1− 3D

2

)]

,

which gives a security threshold value of about 12.6%,
slightly improving that of the BB84 protocol [37–39]. An
optimal attack achieving this rate is again provided by a
symmetric collective attack [29].
Before moving on, it is worth noting that the symmet-

ric attacks described in both the BB84 protocol as well as
the 6-state protocol are equivalent to the action of quan-
tum cloning machines (QCMs) [40]. Notwithstanding the
no-cloning theorem, QCMs imperfectly clone a quantum
state, producing a number of copies, not necessarily of
equal fidelity. QCMs which result in copies that have
the same fidelity are referred to as symmetric. In the
case of the BB84, the states of interest come from only 2
MUBs, hence the relevant QCM would be the phase co-

variant QCM which clones all the states of the equator
defined by two MUBs (the term ‘phase covariant’ comes
from the original formulation of the QCM cloning states
of the form (|0〉+eiφ|1〉)/

√
2 independently of φ [41]; this

QCM thus copies equally well the states from the X and
Y bases). As for the 6-state protocol, the relevant QCM
is universal, meaning that it imperfectly clones all states
from 3 MUBs with the same fidelity.

VI. B92 PROTOCOL

In 1992, Charles Bennett proposed what is arguably
the simplest protocol of QKD, the “B92” [20]. It uses
only two states to distribute a secret key between the
remote parties. This is the bare minimum required to
transmit one bit of a cryptographic key. More precisely,
in the B92 protocol, Alice prepares a qubit in one of two
quantum states, |ψ0〉 and |ψ1〉, to which she associates
the bit values 0 and 1, respectively. The state is sent
to Bob, who measures it in a suitable basis, to retrieve
Alice’s bit. If the states |ψ0〉, |ψ1〉 were orthogonal, it is
always possible for Bob to deterministically recover the
bit. For instance, if |ψ0〉 = |0〉 and |ψ1〉 = |1〉, Bob can
measure the incoming states in the Z basis and recover
the information with 100% probability.
However, Bob’s ability to retrieve the information

without any ambiguity also implies that Eve can do it

too. She will measure the states midway between Al-
ice and Bob, deterministically retrieve the information,
prepare new states identical to the measured ones, and
forward them to Bob, who will never notice any differ-
ence from the states sent by Alice. Orthogonal states are
much alike classical ones, that can be deterministically
measured, copied and cloned. Technically, the orthog-
onal states are eigenstates of some common observable,
thus measurements made using that observable would not
be subjected to any uncertainty. The no-cloning theo-
rem [3, 4] does not apply to this case.
By contrast, measurements will be bounded by inher-

ent uncertainties if Alice encodes the information in two
non-orthogonal states, for example the following ones:

|ψ0〉 = |0〉, |ψ1〉 = |+〉, 〈ψ0|ψ1〉 = s 6= 0. (51)

As Bennett showed in his seminal paper [20], any two
non-orthogonal states, even mixed, spanning disjoint
subspaces of the Hilbert space can be used. In the actual
case, the scalar product s is optimized to give the best
performance of the protocol. For the states in Eq. (51),

this parameter is fixed and amounts to 1/
√
2; i.e. the

states are derived from bases which are mutually unbi-
ased one to the other. Given the complementary na-
ture of the observables involved in distinguishing between
these states, neither Bob nor Eve can measure or copy
the states sent by Alice with a 100% success probabil-
ity. However, while Alice and Bob can easily overcome
this problem (as described in the following) and distil
a common bit from the data, Eve is left with an unsur-
mountable obstacle, upon which the whole security of the
B92 protocol is based.
In B92, Bob’s decoding is peculiar and worth describ-

ing. It is a simple example of “unambiguous state dis-
crimination” (USD) [42, 43]. To explain it, it is useful to
remember that the state |0〉 (|+〉) is a Z (X) eigenstate

and that |±〉 = (|0〉± |1〉)/
√
2, as it is easy to verify from

Eqs. (7), (9) and (10). Suppose first that Alice prepares
the input state |ψ0〉 = |0〉. When Bob measures it in the
Z basis, he will obtain |0〉 with probability 100% whereas
when he measures it in the X basis, he will obtain either
|+〉 or |−〉 with probability 50%. In particular, there is
one state that Bob will never obtain, which is |1〉. Now
suppose that Alice prepares the other state of B92, i.e.,
|ψ1〉 = |+〉. Bob will still measure in the same bases as
before but in this case, if we repeat the previous argu-
ment, we conclude that Bob can never obtain the state
|−〉 as a result. See Table III for a schematic represen-
tation of Bob’s outcomes and their probabilities (P) de-
pending on Alice’s encoding state and Bob’s chosen basis
for measurement:
From Table III it is clear that, for the conditional prob-

ability P (a|b) of guessing Alice’s encoding a given Bob’s
outcome b, we may write

P(+|1) = P(0|−) = 1. (52)

In other words, Bob can logically infer that when he de-
tects |1〉, Alice must have prepared the state |+〉, so he
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Alice Bob (Z) Bob (X)

|0〉 |0〉 , P = 1

|1〉 , P = 0

|+〉 , P = 1/2

|−〉 , P = 1/2

|+〉 |0〉 , P = 1/2

|1〉 , P = 1/2

|+〉 , P = 1

|−〉 , P = 0

TABLE III.

decodes the bit as ‘1’, whereas when he detects |−〉, Alice
must have prepared the state |0〉 so he decodes the bit
as ‘0’. Whenever he detects any other state, Bob is un-
sure of Alice’s preparation and the users decide to simply
discard these “inconclusive” events from their records.
This way, using this sort of “reversed decoding”, which

is typical of USD, and his collaboration with Alice, Bob
manages to decode the information encoded by Alice.
Despite the fact that USD can also be used by Eve, the
unconditional security of the B92 protocol was rigorously
proven in [44] for a lossless scenario and then extended to
a lossy, more realistic, case in [45], under the assumption
of single photons prepared by Alice. This assumption is
not necessary in the B92 version with a strong reference
pulse, which has been proven secure in [46]. Remarkably,
this particular scheme has been shown to scale linearly
with the channel transmission at long distance, a desir-
able feature in QKD. Two interesting variants of this
scheme appeared in [47] and [48], which allow for a much
simpler implementation.
The performance of the B92 protocol is not as good as

that of BB84. The presence of non-orthogonal but lin-
early independent states makes it possible for the eaves-
dropper to execute a good USD measurement on the
quantum states prepared by Alice. This makes the B92
very loss dependent and reduces its tolerance to noise
from a depolarizing channel [1] to about 3.34% [44]. This
value is much smaller than the one pertaining to the
BB84 protocol, which is 16.5% [19] (it should be stressed
here that these values refer to the depolarizing param-
eter p of a depolarizing channel acting on a state ρ as
(1− p)ρ+ p/3

∑

i=x,y,z σiρσi with Pauli operators σi).

VII. LECTURE 2: CONTINUOUS-VARIABLE

QKD

A. Brief introduction to CV systems

We start by providing some basic notions on CV quan-
tum systems and bosonic Gaussian states. Here, and in
the following discussions on CV-QKD protocols, the vari-
ance of the vacuum state is set to 1. This is also known as
the vacuum or fundamental shot noise unit (SNU). Re-
call that CV quantum systems are described by infinite-
dimensional Hilbert spaces [2]. In particular, we consider
n bosonic modes of the electromagnetic field with tensor-
product Hilbert space ⊗n

k=1Hk and associated n pairs of

field operators â†k, âk, with k = 1, . . . , n. For each mode
k we can define the following field quadratures

q̂k := âk + â†k, p̂k := i
(

â†k − âk

)

. (53)

These operators can be arranged in an N -mode vec-

tor x̂ := (q̂1, p̂1, . . . , q̂n, p̂n)
T
. Using the standard bosonic

commutation relation, for field’s creation (â†k) and an-
nihilation (âk) operators, one can easily verify that any
pairs of entries of vector x satisfy the following commu-
tation relation

[x̂l, x̂m] = 2iΩlm, Ωlm =

(

0 1

−1 0

)

, (54)

where Ωlm is the symplectic form [2].
An n-mode quantum state can be represented either as

a density operator ρ̂ acting on ⊗n
k=1Hk or as a Wigner

function defined over a 2n-dimensional phase space (see
Ref. [2] for more details). In particular, a state is Gaus-
sian if its Wigner function is Gaussian, so that it is com-
pletely characterized by the first two statistical moments,
i.e., the mean value x̄ := 〈x̂〉 = Tr(x̂ρ̂) and covariance
matrix (CM) V, whose arbitrary element is defined by

Vij :=
1
2 〈{∆x̂i,∆x̂j}〉 , (55)

where ∆x̂i := x̂i − 〈x̂i〉 and {, } is the anti-commutator.
For a single-mode, one can consider different classes

of quantum states, the most known are the coherent
states. These are states with minimum (vacuum) noise
uncertainty, symmetrically distributed in the two quadra-
tures, and characterized by their complex amplitudes
in the phase space. They are denoted as |α〉, where
α = (q̄ + ip̄)/2, where (q̄, p̄) are the components of the
mean value. Another important class is that of squeezed
states, where the noise is less than the vacuum in one of
the two quadratures (while greater than in the other) [2].
The basic one-way CV-QKD protocols can be classified

with respect to the quantum states employed (coherent or
squeezed), the type of encoding adopted (Gaussian mod-
ulation or discrete alphabet), and the type of measure-
ment used (homodyne or heterodyne detection). In par-
ticular, Gaussian protocols based on the Gaussian mod-
ulation of Gaussian states have received an increasing
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attention in the latest years, not only because Gaussian
states are routinely produced in quantum optics labs but
also because they are relatively easy to study, due to their
description based on mean value and CM.

B. Historical outline

As an alternative to DV-QKD protocols, which are ide-
ally based on a single photon detection, CV-QKD proto-
cols encode keys into CV observables of light fields that
can be measured by shot-noise limited homodyne detec-
tion. In a homodyne detector an optical signal is cou-
pled to a shot-noise limited strong local oscillator (LO)
beam on a balanced beamsplitter and the light intensi-
ties on the output ports are measured. Depending on
the optical phase difference between the signal and LO,
the difference of photocurrents produced at each of the
two detectors will be proportional to one of the two field
quadratures. The LO therefore carries the phase refer-
ence, which allows to switch between the measurement
of q− and p−quadrature (or more generally perform the
state tomography by measuring the Wigner function as-
sociated to the state).
The first proposal of using the quadratures of the

bosonic field for implementing QKD dates back to 1999,
when Ralph [49] considered the encoding of key bits by
using four fixed quadrature displacements of bright co-
herent or two-mode entangled beams. Later, Ralph dis-
cussed the security of the two-mode entanglement-based
scheme in more detail [50], considering not only intercept-
resend attacks but also CV teleportation. The latter was
identified as an optimal attack against the protocol, im-
posing the requirements of high signal squeezing and low
channel loss [50]. Independently, Hillery [51] suggested
a CV-QKD protocol based on quadrature encoding of
a single-mode beam, randomly squeezed in one of the
quadrature directions. Security against intercept-resend
and beam-splitting attacks were assessed on the basis
of the uncertainty principle. Another early CV-QKD
scheme was suggested by Reid [52] and based on the veri-
fication of EPR-type correlations to detect an eavesdrop-
per.
In 2000 Cerf et al. [53] proposed the first all continu-

ous QKD protocol, where the quadratures of a squeezed
beam were used to encode a Gaussian-distributed secure
key. The security of the protocol was shown against in-
dividual attacks based on the uncertainty relations and
the optimality of a quantum cloner. Later, reconcilia-
tion procedures were introduced for Gaussian-distributed
data, which allowed to implement EC and PA close to
the theoretical bounds [54]. Another CV-QKD protocol
based on the Gaussian modulation of squeezed beams was
suggested by Gottesman and Preskill [55]. This protocol
was shown to be secure against arbitrary attacks at feasi-
ble levels of squeezing, by using quantum error-correcting
codes.
In 2001 Grosshans and Grangier introduced a sem-

inal coherent-state protocol with Gaussian quadrature
modulation and showed its security against individual
attacks [56] by resorting to the CV version of the no-
cloning theorem [57]. The standard protocol based on
DR, where Alice is the reference side for the informa-
tion post-processing, was however limited to 50% chan-
nel transmittance, i.e., 3dB. As an attempt to beat the
3dB limit, the use of post-selection in CV-QKD was sug-
gested by Silberhorn et al. [58]. Alternatively, it was
shown that the use of RR, where the reference side is
Bob, allowed the coherent-state protocol to be secure
against individual attacks up to arbitrarily-low channel
transmittances [59]. In 2004, the heterodyne detection
was then suggested for coherent-state protocols [61]; this
non-switching protocol had the advantage that both the
quadratures are measured, thus increasing the key rate.
The security of CV-QKD against collective Gaussian

attacks was shown independently by Navascués et al. [62]
and by Garćıa-Patrón and Cerf [63]. Collective Gaus-
sian attacks were fully characterized by Pirandola et
al. [64], who later derived the secret-key capacities for
CV-QKD [91, 96]. Security against collective attacks was
extended to the general attacks by Renner and Cirac [11]
using the quantum de Finetti theorem applied to infinite-
dimensional systems. This concluded the security proofs
for the basic one-way CV-QKD protocols in the asymp-
totic limit of infinitely large data sets [65] including
those with trusted-noise [27, 66, 67]. Next developments
were the study of finite-size effects and fully composable
proofs. It is also worth to mention the existence of other
direction lines where the limitations of a realistic eaves-
dropper are taken into account in the computation of the
secret key rate [68, 69]
Besides the development of one-way Gaussian proto-

cols and their security proofs, the quantum information
community has developed a number of other types of
protocols which are based on the use of CV systems,
including two-way protocols [70–72], thermal-state pro-
tocols [73–77], unidimensional protocols [78, 79], relay-
assisted protocols such as CV MDI-QKD [80, 81], and
also protocols that are based on the use of non-Gaussian
operations such as photon-subtraction [82], quantum
catalysis [83], or quantum scissors [84].

C. One-way CV-QKD protocols

The family of one-way CV-QKD protocols can be di-
vided into four major ones, depending on the signal states
and the type of measurements applied. It was already
mentioned that CV-QKD can be realized using coherent
or squeezed signal states, and the homodyne measure-
ment is used to obtain quadrature value of an incoming
signal. As an alternative to the homodyne detection, the
heterodyne measurement can be applied. Here the signal
mode is divided on a balanced beamsplitter and q- and
p-quadratures are simultaneously detected using homo-
dyne detectors at the outputs. A vacuum noise is then
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unavoidably being mixed to the signal.
The “prepare and measure” realization of a generic

one-way CV-QKD protocol includes the following steps:

• Alice encodes a classical variable α in the ampli-
tudes of Gaussian states which are randomly dis-
placed in the phase space by means of a zero-mean
Gaussian distribution, whose variance is typically
large. If coherent states are used, the modulation
is symmetric in the phase space. If squeezed states
are used instead, then the displacement is along
the direction of the squeezing and Alice randomly
switches between q- and p- squeezings.

• Alice then sends the modulated signal states to Bob
through the quantum channel, which is typically
a thermal-loss channel with transmissivity η and
some thermal noise, quantified by the mean num-
ber of thermal photons in the environment n̄ or,
equivalently, by the excess noise ε = 2η−1(1− η)n̄.
In some cases, one may have a fading channel where
the channel’s transmissivity varies over time (e.g.
due to turbulence) [85].

• At the output of the quantum channel, Bob per-
forms homodyne or heterodyne detection on the in-
coming signals, thus retrieving his classical variable
β. If homodyne is used, this is randomly switched
between the q- and the p- quadratures.

• If Alice and Bob have switched between different
quadratures, they will implement a session of CC to
reconcile their bases, so as to keep only the choices
corresponding to the same quadratures (sifting).

• By publicly declaring and comparing part of their
sifted data, Alice and Bob perform parameter esti-
mation. From the knowledge of the parameters of
the quantum channel, they can estimate the maxi-
mum information leaked to Eve, e.g., in a collective
Gaussian attack. If this leakage is above a certain
security threshold, they abort the protocol.

• Alice and Bob perform EC and PA on their data.
This is done in DR if Bob aims to infer Alice’s vari-
able, or RR if Alice aims to infer Bob’s one.

D. Computation of the key rate

In a Gaussian CV-QKD protocol, where the Gaussian
signal states are Gaussianly-modulated and the outputs
are measured by homodyne or heterodyne detection, the
optimal attack is a collective Gaussian attack. Here Eve
combines each signal state and a vacuum environmen-
tal state via a Gaussian unitary and collects the output
of environment in a quantum memory for an optimized
and delayed joint quantum measurement. The possi-
ble collective Gaussian attacks have been fully classified
in Ref. [64]. A realistic case is the so-called entangling

cloner [57] where Eve prepares a two-mode squeezed vac-
uum (TMSV) state with variance ω = 2n̄+ 1 and mixes
one of its modes with the signal mode via a beam-splitter
with transmissivity η, therefore resulting in a thermal-
loss channel (see Ref. [86] for a comparison of this attack
with respect to an all-optical teleportation attack). Un-
der a collective Gaussian attack, the asymptotic secret
key rates in DR (◮) or RR (◭) are respectively given by

R◮ = ξI(α : β)− I(α : E), (56)

R◭ = ξI(α : β)− I(β : E), (57)

where ξ ∈ (0, 1) is the reconciliation efficiency, defining
how efficient are the steps of EC and PA, I(α : β) is Alice
and Bob’s mutual information on their variables α and β,
while I(α : E) is Eve’s Holevo information [7] on Alice’s
variable, and I(β : E) on Bob’s variable. Note that a
sifting pre-factor may be present in protocols that need
basis reconciliation.
Theoretical evaluation of these rates is performed in

the equivalent entanglement-based representation of the
protocol, where Alice’s preparation of signal states on
the input mode a is replaced by a TMSV state Φµ

aA in
modes a and A. A Gaussian measurement performed on
mode A is able to remotely prepare a Gaussian ensem-
ble of Gaussian states on mode a. For instance, if A is
subject to heterodyne, then mode a is projected onto a
coherent state whose amplitude is one-to-one with the
outcome of the heterodyne and is Gaussianly modulated
in phase space with variance µ − 1. In this representa-
tion, Alice’s classical variable is equivalently represented
by the outcome of her measurement.
Once mode a is propagated through the channel, it

is perturbed by Eve and received as mode B by Bob.
Therefore, Alice and Bob will share a bipartite state ρAB.
In the worst case scenario, the entire purification of ρAB

is assumed to be held by Eve. This means that we assume
a pure state ΨABE involving a number of extra modes E
such that TrE(ΨABE) = ρAB. For a Gaussian protocol
under a collective Gaussian attack, we have that ΨABE

is pure, so that the Eve’s reduced output state ρE :=
TrAB(ΨABE) has the same entropy of ρAB, i.e.,

S(E) := S(ρE) = S(ρAB) := S(AB). (58)

Assuming that Alice and Bob performs rank-1 Gaus-
sian measurements (like homodyne or heterodyne), then
they project on pure states. In DR, this means that the
output α of Alice measurement, with probability p(α),
generates a pure conditional Gaussian state ΨBE|α whose
CM does not depend on the actual value of α. Then, be-
cause the reduced states ρB(E)|α := TrE(B)(ΨBE|α) have
the same entropy, we may write the following equality for
the conditional entropies

S(E|α) :=
∫

dα p(α)S(ρE|α)

= S(ρE|α) = S(ρB|α)

=

∫

dα p(α)S(ρB|α) := S(B|α). (59)
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Similarly, in RR, we have Bob’s outcome β with proba-
bility p(β) which generates a pure conditional Gaussian
state ΨAE|β with similar properties as above. In terms
of the reduced states ρA(E)|β := TrE(A)(ΨAE|β) we write
the conditional entropies

S(E|β) :=
∫

dβ p(β)S(ρE|β)

= S(ρE|β) = S(ρA|β)

=

∫

dβ p(β)S(ρA|β) := S(A|β). (60)

By using Eqs. (58), (59) and (60) in the key rates of
Eqs. (56) and (57) we may simplify the Holevo quantities
as

I(α : E) := S(E)− S(E|α) = S(AB)− S(B|α), (61)

I(β : E) := S(E)− S(E|β) = S(AB)− S(A|β). (62)

This is a remarkable simplification because the two rates
are now entirely computable from the output bipartite
state ρAB and its reduced versions ρB|α and ρA|β. In
particular, because all these state are Gaussian, the von
Neumann entropies in Eqs. (61) and (62) are very easy
to compute from the CM of ρAB. Similarly, the mutual
information I(α : β) can be computed from the CM.
Given the expressions of the rates, one can also compute
the security thresholds by solving R◮ = 0 or R◭ = 0.
Note that there is a more generalized framework for

security analysis, where Alice and Bob have trusted loss
and noise in their devices and they cannot purify into a
TMSV state. This is a device-dependent scenario which
is typical in realistic implementations where both the
preparation of the signals and the measurements of the
outputs are affected by imperfections. In this case, a
generalized treatment is possible following Refs. [27, 87].

E. Ideal performances in a thermal-loss channel

The ideal performances of the main one-way Gaus-
sian protocols can be studied in a thermal-loss chan-
nel, assuming asymptotic security, perfect reconciliation
(ξ = 1), and infinite Gaussian modulation. Let us con-
sider the entropic function

s(x) :=
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
, (63)

so that s(1) = 0 for the vacuum noise. For the protocol
with Gaussian-modulated coherent states and homodyne
detection [57], one has

R◮
coh,hom =

1

2
log2

η (1− η + ηω)

(1− η) [η + (1 − η)ω]
− s(ω)

+ s

[

√

η + (1− η)ω

1− η + ηω
ω

]

, (64)

R◭
coh,hom =

1

2
log2

ω

(1− η) [η + (1 − η)ω]
− s(ω). (65)

For the non-switching protocol with Gaussian-modulated
coherent states and heterodyne detection [61], one in-
stead has

R◮

coh,het = log2
2

e

η

(1− η) [1 + η + (1− η)ω]
− s(ω)

+ s [η + ω(1− η)] , (66)

R◭
coh,het = log2

2

e

η

(1− η) [1 + η + (1− η)ω]
− s(ω)

+ s

[

1 + (1− η)ω

η

]

. (67)

For the protocol with Gaussian-modulated squeezed
states (in the limit of infinite squeezing) and homodyne
detection [53], here we analytically compute

R◮
sq,hom =

1

2

[

log2
η

1− η
− s(ω)

]

, (68)

R◭
sq,hom =

1

2

[

log2
1

1− η
− s(ω)

]

. (69)

Note that, for this specific protocol, a simple bound can
be derived at low η and low n̄, which is given by [88]
R◭

sq,hom ≃ (η − n̄) log2 e + n̄ log2 n̄, which provides a se-

curity threshold n̄max(η) = exp[1+W−1(−η/e)] in terms
of the Lambert W-function.
Finally, for the protocol with Gaussian-modulated

infinitely-squeezed states and heterodyne detection [89],
here we analytically compute

R◮
sq,het =

1

2
log2

η2ω

(1− η) [1 + (1− η)ω]
− s(ω), (70)

R◭
sq,het =

1

2
log2

1− η + ω

(1− η) [1 + (1− η)ω]
− s(ω)

+ s

[

√

ω [1 + ω(1− η)]

1 + ω − η

]

. (71)

Note that this is a particular case of protocol where
trusted noise added at the detection can have beneficial
effects on its security threshold [66, 67]. In CV-QKD
this effect was studied in Refs. [27, 89–92], and later in
Refs. [93–95] as a tool to increase the lower bound to
the secret key capacity of the thermal-loss and ampli-
fier channels. In particular, the protocol presented in
Ref. [95] has the highest-known security threshold so far.
Also note that for a pure-loss channel (ω = 1), we find

R◭
sq,het = R◭

sq,hom =
1

2
log2

1

1− η
, (72)

which is half of the secret-key capacity of the pure-loss
channel − log2(1 − η) [96](see next lecture). According
to Ref. [91], this capacity is achievable if one of these two
protocols is implemented in the entanglement-based rep-
resentation and with a quantum memory. In particular
for the squeezed-state protocol with homodyne detection,
the use of the memory allows Alice and Bob to always
choose the same quadrature, so that we may remove the
sifting factor 1/2 from R◭

sq,hom in Eq. (72).
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VIII. LECTURE 3: ULTIMATE LIMITS OF QKD

A. Overview of the main contributions

One of the crucial problems in QKD is to achieve long
distances at reasonably-high rates. However, since the
proposal of the BB84 protocol [12], it was understood
that this is a daunting task because even an ideal im-
plementation of this protocol (based on perfect single-
photon sources, ideal detectors and perfect EC) shows
a linear decay of the secret key rate R in terms of the
loss η in the channel, i.e., R = η/2. One possible way
to overcome the rate problem was to introduce CV QKD
protocols. Their ideal implementation can in fact beat
any DV QKD protocol at any distance, even though cur-
rent practical demonstrations can achieve this task only
for limited distances due to practical problems related to
finite reconciliation efficiency and other technical issues.

One of the breakthroughs in CV QKD was the intro-
duction of the reverse reconciliation (RR) [56], where it is
Alice to infer Bob’s outcomes β, rather than Bob guessing
Alice’s encodings α, known as direct reconciliation (DR).
This led the CV QKD community to considering a mod-
ified Devetak-Winter rate [8] in RR. This takes the form
of I(α : β) − χ(E : β), where the latter is Eve’s Holevo
information on Bob’s outcomes. In a CV QKD setup,
where both the energy and the entropy may hugely vary
at the two ends of a lossy communication channel, there
may be a non-trivial difference between the two reconcil-
iation methods. Most importantly, it was soon realized
that RR allowed one to achieve much longer distances,
well beyond the 3dB limit of the previous CV approaches.
At long distances (i.e., small transmissivity η), an ideal
implementation of the CV QKD protocols proposed in
Refs. [60, 61] has rate R ≃ η/(2 ln 2) ≃ 0.72η. An open
question was therefore raised:

• What is the maximum key rate (secret key capac-
ity) achievable at the ends of a pure-loss channel?

With the aim of answering this question, a 2009 pa-
per [91] introduced the notion of reverse coherent infor-
mation (RCI) of a bosonic channel. This was quantity
was previously defined in the setting of DVs [90, 97]. It
was called “negative cb-entropy of a channel” in Ref. [97]
and “pseudocoherent information” in Ref. [98]; Ref. [90]
introduced the terminology of RCI and, most impor-
tantly, it showed its fundamental use as lower bound for
entanglement distribution over a quantum channel (thus
extending the hashing inequality [8] from states to chan-
nels). Ref. [91] extended the notion to CVs where it has
its more natural application.

Given a bosonic channel E , consider its asymptotic
Choi matrix σE := limµ σ

µ
E . This is defined over a se-

quence of Choi-approximating states of the form σµ
E :=

IA ⊗ EB(Φµ
AB), where Φµ

AB is a TMSV state [2] with
n̄ = µ− 1/2 mean thermal photons in each mode. Then,

we define its RCI as [91]

IRCI(E) := lim
µ
I(A〈B)σµ

E

, (73)

I(A〈B)σµ

E
:= S[TrB(σ

µ
E )]− S(σµ

E ), (74)

with S(σ) := −Tr(σ log2 σ) is the von Neumann entropy
of σ. Here first note that, by changing TrB with TrA in
Eq. (74), one defines the coherent information (CI) of a
bosonic channel [91], therefore extending the definition
of Refs. [99, 100] to CV systems. Also note that IRCI(E)
is easily computable for a bosonic Gaussian channel, be-
cause σµ

E would be a two-mode Gaussian state.
Operationally, the RCI of a bosonic channel repre-

sents a lower bound for its secret key capacity and, more
weakly, its entanglement distribution capacity [91]. A
powerful CV QKD protocol reaching the RCI of a bosonic
channel consists of the following steps:

• Alice sends to Bob the B-modes of TMSV states
Φµ

AB with variance µ.

• Bob performs heterodyne detections of the output
modes sending back a classical variable to assist
Alice.

• Alice performs an optimal and conditional joint de-
tection of all the A-modes.

The achievable rate can be computed as a difference
between the Alice Holevo information χ(A : β) and Eve’s
Holevo information χ(E : β) on Bob’s outcomes. Note
that this is not a Devetak-Winter rate (in RR) but rather
a generalization, where the parties’ mutual information
is replaced by the Holevo bound. Because Eve holds the
entire purification of σµ

E , her reduced state ρE has en-
tropy S(ρE) = S(σµ

E ). Then, because Bob’s detections
are rank-1 measurements (projecting onto pure states),
Alice and Eve’s global state ρAE|β conditioned to Bob’s
outcome β is pure. This means that S(ρE|β) = S(ρA|β).
As a result, Eve’s Holevo information becomes

χ(E : β) := S(ρE)− S(ρE|β) = S(σµ
E )− S(ρA|β). (75)

On the other hand, we also write

χ(A : β) := S(ρA)− S(ρA|β), (76)

where ρA := TrB(σ
µ
E ) and ρA|β is conditioned to Bob’s

outcome. As a result we get the following achievable rate

Rµ(E) := χ(A : β)− χ(E : β) = I(A〈B)σµ

E
. (77)

By taking the limit for large µ, this provides the key
rate R(E) := limµR

µ(E) = IRCI(E), so that the secret
key capacity of the channel can be bounded as

K(E) ≥ IRCI(E) . (78)

In particular, for a pure-loss channel Eη with transmis-
sivity η, Pirandola, Garćıa-Patrón, Braunstein and Lloyd
wrote the lower bound [91]

K(Eη) ≥ IRCI(Eη) = − log2(1− η). (79)
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Later, in 2015, Ref. [96] derived the upper bound

K(Eη) ≤ − log2(1− η), (80)

which is known as the Pirandola-Laurenza-Ottaviani-
Banchi (PLOB) bound. This was done by employing the
relative entropy of entanglement (REE) [101–103], suit-
ably extended to quantum channels, combined with an
adaptive-to-block reduction of quantum protocols. Be-
cause of the coincidence between Eqs. (79) and (80),
Ref. [96] finally established the secret key capacity of the
pure-loss channel to be

K(Eη) = − log2(1− η), (81)

which, in turn, completely characterizes the fundamental
rate-loss scaling of QKD to be ≃ 1.44η bits per channel
use at long distances.
This capacity cannot be beaten by any point-to-point

QKD protocol at the two ends of the lossy channel. It can
only be outperformed if Alice and Bob pre-share some se-
cret randomness or if there is a quantum repeater split-
ting the quantum communication channel and assisting
the remote parties. For this reason, the PLOB bound not
only completely characterizes the fundamental rate-loss
scaling of point-to-point QKD but also provides the exact
benchmark for testing the quality of quantum repeaters.
Soon after the introduction of the PLOB bound, in

early 2016, Ref. [104] (later published as Ref. [105]) es-
tablished the secret key capacities achievable in chains
of repeaters and, more generally, quantum networks con-
nected by pure-loss channels. In particular, in the pres-
ence of a single repeater, in the middle between the re-
mote parties and equally splitting the overall pure-loss
channel Eη of transmissivity η, one finds the following
single-repeater secret key capacity

K1rep(Eη) = − log2(1−
√
η), (82)

At long distances η ≃ 0, this rate provides the fundamen-
tal rate-loss scaling in the presence of a single repeater.
This is given by [105, Supp. Note 1, Eq. (25)]

K1rep(Eη) ≃ 1.44
√
η bits per repeater use. (83)

In Fig. 2 we show the ideal key rates of point-to-point
QKD protocols and those of relay-assisted end-to-end
QKD protocols (i.e., exploiting an untrusted QKD re-
peater). These rates are compared with the PLOB bound
of Eq. (81) and the single-repeater bound of Eq. (82). By
ideal rates we mean the optimal ones that can be com-
puted assuming zero dark counts, perfect detector effi-
ciency, zero misalignment error, as well as perfect EC and
reconciliation efficiency. Point-to-point protocols cannot
beat the PLOB bound and asymptotically scales as ≃ η
bits per channel use. This is the case for the BB84 pro-
tocol (both with single-photon sources and decoy-state
implementation) and one-way CV-QKD protocols. Even
though MDI-QKD is relay assisted, its relay is not effi-
cient, which is why DV MDI-QKD is below the PLOB

bound. After TF-QKD [106] was introduced, a num-
ber of TF-inspired protocols were developed, all able to
beat the PLOB bound. The middle untrusted relays of
these protocols are therefore efficient (i.e., they are able
to ‘repeat’). Their key rates cannot overcome the single-
repeater bound, but clearly follow its asymptotic rate-
loss scaling of ≃ √

η bits per channel use.
In the following subsections, we provide the main

mathematical definitions, tools, and formulas related to
the study of the ultimate limits of point-to-point QKD
protocols over an arbitrary quantum channel. In particu-
lar, we show the main steps needed for proving the PLOB
bound. Then, we will discuss the extension of these re-
sults to repeater-assisted quantum communications.

B. Adaptive protocols and two-way assisted

capacities

Let us start by defining an adaptive point-to-point pro-
tocol P through a quantum channel E . Assume that Alice
has register a and Bob has register b. These registers are
(countable) sets of quantum systems which are prepared
in some state ρ0

ab
by an adaptive LOCC Λ0 applied to

some fundamental separable state ρ0
a
⊗ ρ0

b
. Then, for

the first transmission, Alice picks a system a1 ∈ a and
sends it through channel E ; at the output, Bob receives
a system b1 which is included in his register b1b → b.
Another adaptive LOCC Λ1 is applied to the registers.
Then, there is the second transmission a ∋ a2 → b2
through E , followed by another LOCC Λ2 and so on (see
Fig. 3). After n uses, Alice and Bob share an output
state ρn

ab
which is epsilon-close to some target private

state [107] φn with nRε
n secret bits. This means that, for

any ε > 0, one has ‖ρn
ab

− φn‖ ≤ ε in trace norm. This
is also called an (n,Rε

n, ε)-protocol. Operationally, the
protocol P is completely characterized by the sequence
of adaptive LOCCs L = {Λ0,Λ1 . . .}. The secret key ca-
pacity of the quantum channel is defined by taking the
limit of the asymptotic weak-converse rate limε,nR

ε
n and

maximizing over all adaptive protocols P , i.e.,

K(E) := sup
P

lim
ε

lim
n
Rε

n. (84)

C. General weak-converse upper bound

The secret key capacity can be bounded by a general
expression in terms of the REE [101–103]. First of all,
recall that the REE of a quantum state σ is given by

ER(σ) = inf
γ∈SEP

S(σ||γ), (85)

where γ is a separable state and S is the quantum relative
entropy, defined by [101]

S(σ||γ) := Tr [σ(log2 σ − log2 γ)] . (86)
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FIG. 2. State of the art in high-rate QKD. We plot the ideal key rates of several point-to-point and relay-assisted end-to-end
protocols with respect to the PLOB bound [96] of Eq. (81), having the asymptotic scaling of 1.44η bits per use, and the
single-repeater bound [104, 105] of Eq. (82), having the asymptotic scaling of 1.44

√
η bits per use. The key rates are expressed

in terms of bits per channel use and plotted versus distance (km) at the standard fiber-loss rate of 0.2 dB per km.
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FIG. 3. Point-to-point adaptive protocol. Each transmission
ai → bi through the quantum channel E is interleaved by
two adaptive LOCCs, Λi−1 and Λi, applied to Alice’s and
Bob’s local registers a and b. After n transmissions, Alice
and Bob share an output state ρnab close to some target state
φn. Adapted with permission from Ref. [95] c©IOPP (2018).

With these notions in hand, we may write a general
upper bound. In fact, for any quantum channel E , we
have [96]

C(E) ≤ E⋆

R (E) := sup
P

lim
n

ER(ρ
n
ab
)

n
, (87)

where E⋆

R (E) is defined by computing the REE of the
output state ρn

ab
, taking the limit for many channels uses,

and optimizing over all the adaptive protocols P .

To simplify the REE bound E⋆

R (E) into a single-letter
quantity, we adopt a technique of adaptive-to-block re-
duction or protocol “stretching” [95, 96, 108]. A pre-
liminary step consists in using a suitable simulation of
the quantum channel, where the channel is replaced by
a corresponding resource state. Then, this simulation
argument can be exploited to stretch the adaptive pro-
tocol into a much simpler block-type protocol, where the
output is decomposed into a tensor product of resource
states up to a trace-preserving LOCC.

D. LOCC simulation of quantum channels

Given an arbitrary quantum channel E , we may con-
sider a corresponding simulation S(E) = (T , σ) based on
some LOCC T and resource state σ. This simulation is
such that, for any input state ρ, the output of the channel
can be expressed as

E(ρ) = T (ρ⊗ σ). (88)
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See also Fig. 4. A channel E which is simulable as in
Eq. (88) can also be called “σ-stretchable”. Note that
there are different simulations for the same channel. One
is trivial because it just corresponds to choosing σ as
a maximally-entangled state and T as teleportation fol-
lowed by E completely pushed in Bob’s local operations.
Therefore, it is implicitly understood that one has to
carry out an optimization over these simulations, which
also depend on the specific functional under study.

a
LO

LO

CC

a’

b’
b

FIG. 4. LOCC simulation of an arbitrary quantum channel
E by means of an LOCC T applied to the input state ρ and
a resource state σ, according to Eq. (88).

E. Teleportation covariance and simulability

For some channels, the LOCC simulation takes a very
convenient form. This is the case for the “teleporta-
tion covariant” channels, that are those channels com-
muting with the random unitaries of quantum telepor-
tation [109–112], i.e., Pauli operators in DVs [1], phase-
space displacements in CVs [2]. More precisely, a quan-
tum channel E is called teleportation covariant if, for any
teleportation unitary U , we may write

E(UρU †) = V E(ρ)V † , (89)

for another (generally-different) unitary V [96].
Note that this is a wide family, which includes Pauli

channels (e.g., depolarizing or dephasing), erasure chan-
nels and bosonic Gaussian channels. Thanks to the prop-
erty in Eq. (89), the random corrections of the teleporta-
tion protocol can be pushed at the output of these chan-
nels. For this reason, they may be simulated by telepor-
tation. In fact, a teleportation-covariant channel E can
be simulated as

E(ρ) = Ttele(ρ⊗ σE), (90)

where Ttele is a teleportation LOCC (based on Bell detec-
tion and conditional unitaries) and σE is the Choi matrix
of the channel, defined as σE := I ⊗ E(Φ), with Φ being
a maximally entangled state.
For a teleportation-covariant bosonic channel (Gaus-

sian or non-Gaussian), we may write the asymptotic sim-
ulation [96]

E(ρ) = lim
µ

T µ
tele(ρ⊗ σµ

E ), (91)

where T µ
tele is a sequence of teleportation-LOCCs (based

on finite-energy versions of the ideal CV Bell detection)
and σµ

E := I⊗E(Φµ) is a sequence of Choi-approximating
states (recall that Φµ is a TMSV state with n̄ = (µ−1)/2
mean thermal photons in each mode). When a quantum
channel can be simulated as in Eq. (90) or (91) it may be
called “Choi-stretchable” or “teleportation simulable”.

F. Stretching of an adaptive protocol

By exploiting the LOCC simulation S(E) = (T , σ) of
a quantum channel E , we may completely simplify an
adaptive protocol. In fact, the output state ρn

ab
can be

decomposed into a tensor-product of resources states σ⊗n

up to a trace-preserving LOCC Λ̄. In other words, we
may write [96, Lemma 3]

ρn
ab

= Λ̄
(

σ⊗n
)

. (92)

As shown in Fig. 5, for the generic ith transmission, we
replace the original quantum channel E with a simulation
S(E) = (T , σ). Then, we collapse the LOCC T into
the adaptive LOCC Λi to form the composite LOCC ∆i.
As a result, the pre-transmission state ρi−1

ab
:= ρaaib is

transformed into the following post-transmission state

ρi
ab

= ∆i

(

ρi−1
ab

⊗ σ
)

. (93)

The next step is to iterate Eq. (93). One finds

ρn
ab

= (∆n ◦ · · · ◦∆1)(ρ
0
ab

⊗ σ⊗n). (94)

Because ρ0
ab

is separable, its preparation may be included
in the LOCCs and we get Eq. (92) for a complicated but
single trace-preserving LOCC Λ̄.
For a teleportation-covariant channel, we may write

the decomposition in terms of its Choi matrix, i.e.,

ρnab = Λ̄
(

σ⊗n
E

)

. (95)

Then, for a teleportation-covariant bosonic channel, we
need to consider the issue of the asymptotic simulation
in Eq. (91), so that we have

ρn
ab

= lim
µ

Λ̄µ(σ
µ⊗n
E ), (96)

where Λ̄µ is a sequence of trace-preserving LOCCs.

G. Single-letter upper bound

A crucial insight from Ref. [96] has been the combina-
tion of protocol stretching with the REE, so that its prop-
erties of monotonicity and sub-additivity can be power-
fully exploited. This is the key observation that leads to
a single-letter upper bound for all the two-way capacities
of a quantum channel. In fact, let us compute the REE
of the output state decomposed as in Eq. (92). We derive

ER(ρ
n
ab
)
(1)

≤ ER(σ
⊗n)

(2)

≤ nER(σ) , (97)
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FIG. 5. Stretching of the ith transmission of an adaptive protocol. (a) We depict the original transmission through the channel
E which transforms the register state ρi−1

ab
:= ρaaib

into the output ρiab. (b) We simulate the channel by means of an LOCC
T and a resource state σ, as in previous Fig. 4. (c) We collapse T and the adaptive LOCC Λi into a single LOCC ∆i applied
to the tensor product ρi−1

ab
⊗ σ, as in Eq. (93 ). Adapted with permission from Ref. [96] c©NPG (2017).

using (1) the monotonicity of the REE under trace-
preserving LOCCs and (2) its subadditive over tensor
products. By replacing Eq. (97) in Eq. (87), we then find
the single-letter upper bound

K(E) ≤ ER(σ) . (98)

In particular, if the channel E is teleportation-covariant,
it is Choi-stretchable, and we may write

K(E) ≤ ER(σE ) ≤ S(σE ||γ̃), (99)

for a suitable separable state γ̃.
For a teleportation-covariant bosonic channel, like a

single-mode Gaussian channel, we have the asymptotic
decomposition in Eq. (91). As a result, the upper bound
in Eq. (99) must be expressed in terms of its asymptotic
Choi matrix σE := limµ σ

µ
E , and takes the form [96]

K(E) ≤ lim inf
µ→+∞

S(σµ
E ||γ̃µ) , (100)

for a suitable sequence of separable states γ̃µ. For a
Gaussian channel σµ

E := I ⊗ E(Φµ) is Gaussian and also
γ̃µ can be chosen to be Gaussian, so that we are left
with computing the relative entropy between two Gaus-
sian states, for which we have a closed analytical for-
mula [96, Theorem 7].
Consider the most important Gaussian channel for CV-

QKD, which is the thermal-loss channel Eη,n̄. This trans-
forms input quadratures x̂ = (q̂, p̂)T as x̂ → √

ηx̂ +√
1− ηx̂E , where η ∈ (0, 1) is the transmissivity and E

is the thermal environment with n̄ mean photons. For
this channel, we may derive [96, Eq. (23)]

K(Eη,n̄) ≤











− log2 [(1− η)ηn̄]− h(n̄), if n̄ < η
1−η

,

0, if n̄ ≥ η
1−η

,

(101)
where we have set

h(x) := (x + 1) log2(x+ 1)− x log2 x. (102)

For n̄=0 we have the particular case of a bosonic pure-
loss channel Eη with transmissivity η, and we may write
the PLOB bound [96]

K(Eη) := K(η) ≤ − log2(1− η) . (103)

Combining this with upper bound with the lower bound
in Eq. (79), we conclude that the secret key capacity of
the pure-loss channel is given by [96, Eq. (19)]

K(η) = − log2(1− η) . (104)

This capacity determines the maximum rate achievable
by any QKD protocol in the presence of a lossy com-
munication line (see also Fig. 2). Note that the PLOB
bound can be extended to a multiband lossy channel, for
which we write K = −∑i log2(1 − ηi), where ηi are the
transmissivities of the various bands or frequency compo-
nents. For instance, for a multimode telecom fibre with
constant transmissivity η and bandwidth W , we have

K = −W log2(1− η). (105)

H. Ultimate limits for lossy repeater chains

Consider a linear chain of N quantum repeaters, la-
beled by r1, . . . , rN . This is characterized by an ensemble
of N +1 quantum channels {Ei} describing the sequence
of transmissions i = 0, . . . , N between the two end-points
Alice a := r0 and Bob b := rN+1 (see Fig. 6). Assume
the most general adaptive protocol P , where the gener-
ation of the secret key between Alice and Bob is ideally
assisted by adaptive LOCCs involving all the parties in
the chain. After n uses of the chain, Alice and Bob will
share an output state ρn

ab
which depends on P . By tak-

ing the limit of large n and optimizing over all possible
protocols P , we define the repeater-assisted secret key
capacity K({Ei}). This quantity satisfies the bound

K({Ei}) ≤ E⋆

R ({Ei}) := sup
P

lim
n
ER(ρ

n
ab
). (106)

where the REE ER is defined in Eq. (85) with an implicit
extension to asymptotic states.
In order to bound this capacity, let us perform a cut

“i” which disconnects channel Ei between ri and ri+1.
We may then simulate channel Ei with a resource state
σi, as in Eq. (88). By stretching the protocol with respect
to Ei, we may decompose Alice and Bob’s output state as
ρn
ab

= Λ̄i

(

σ⊗n
i

)

for a trace-preserving LOCC Λ̄i, which is
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FIG. 6. Chain of N quantum repeaters r1, . . . , rN between
Alice a := r0 and Bob b := rN+1. The chain is connected by
N + 1 quantum channels {Ei}.

local between “super-Alice” (i.e., all the repeaters with ≤
i) and the “super-Bob” (i.e., all the others with ≥ i+1).

If we now compute the REE on the output state, we
find ER(ρ

n
ab
) ≤ nER(σi) for any i and protocol P . By

replacing this inequality in Eq. (106), we establish the
single-letter bound [104, 105]

K({Ei}) ≤ min
i
ER(σi) . (107)

Consider now a chain of teleportation-covariant channels
{Ei}, so that each quantum channel satisfies the condition
in Eq. (89). These channels {Ei} can all be simulated by
their (possibly-asymptotic) Choi matrices {σEi

}. There-
fore, Eq. (107) takes the form

K({Ei}) ≤ min
i
ER(σEi

) . (108)

For a chain connected by pure-loss channels with trans-

missivities ηi, we can replace ER(σEi
) with − log2(1−ηi).

Therefore, the bound takes the form

K({Ei}) ≤ min
i
[− log2(1− ηi)] = − log2

[

1−min
i
ηi

]

.

(109)
This upper bound coincides with a lower bound. As-
sume that each pair of neighbor repeaters, ri and ri+1,
exchange a key at their channel capacity K(Ei) =
− log2(1 − ηi) and one-time pad is applied to all the
keys to generate an end-to-end key at the minimum rate
miniK(Ei). As a result, the upper bound above is sat-
urated and we have an exact result for the secret key
capacity of a lossy chain [104, 105]

K({Ei}) = − log2

[

1−min
i
ηi

]

. (110)

Note that this capacity is fully determined by the min-
imum transmissivity in the chain. In particular, consider
an optical fiber with transmissivity η which is split into
N +1 parts by inserting N equidistant repeaters, so that
each part has transmissivity N+1

√
η. Then, we write the

capacity

Kloss(η,N) = − log2 (1− N+1
√
η) . (111)

For a single-repeater lossy chain, this gives exactly the
result of Eq. (82).
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of Gaussian Attacks in Continuous-Variable Quantum
Cryptography,” Phys. Rev. Lett. 97, 190502 (2006).



20
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