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Adiabatic theorem

If a subspace P(t).5# of eigenstates of H(t) is separated by a gap
A(t) from the rest of the spectrum, then

(1= P(t))e(D)Il = o(1/t) (1)

where ¢(t) is the solution of ¢ = —iH(t)y, ¥(0) = P(0)¢(0).
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Adiabatic theorem

If a subspace P(t).5# of eigenstates of H(t) is separated by a gap
A(t) from the rest of the spectrum, then

I(1—P(&))e (Il = o(1/t) (2)
where (t) is the solution of ¢y = —iH(t)y, ¢(0) = P(0)y(0).
Big-O notation means 36:

I(1— P())¢(D)l < 6/t (3)

This talk is about the adiabatic timescale 6 = 6(H’, A...)
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Our results

We present an explicit expression for 8"", improving on the existing
result 'R [S. Jansen, M.-B. Ruskai, and R. Seiler, (2007)] :

e for an unbounded ||H’|| = o0, 6" = co while 6™ < oo
e for an n-qubit subspace P(t)#, 6°%° ~ 2" while 6™V ~ 1

e First practical application of both bounds to a circuit model of a

flux qubit
11 w
w8 = 4

V2 w-;l:16

(4)
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Unbounded H’ (e.g. Harmonic oscillator)

For 6 < 00, an assumption is needed.

Assumption of ||R’(z = i)H|| < oo [J. E. Avron and A. Elgart, (1999)]:,

where the resolvent is:

Rz=1)= 1H =(i—H)™

No explicit 8(|[R’(z = i)H||, ... ) is presented.

(5)
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Unbounded H’ (e.g. Harmonic oscillator)

For 6 < 00, an assumption is needed.

Assumption of ||R’(z = i)H|| < oo [J. E. Avron and A. Elgart, (1999)]:,
where the resolvent is:

Re=i)= — =~ H)" 5)

No explicit 8(|[R’(z = i)H||, ... ) is presented.

Our assumption: H? < ZEZCC‘)X ckH? (easier to work with)
Explicit 6(cy, ... ) is presented.
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n-qubit low-energy subspace (e.g. D-wave) E}r}}
23

E,Re z
Q
N >24
P r r
g 524
Q
Im z

k2

A replacement

Vd (1/(_1 2r + 2

— — min
A

A 21A2

can be made in 6%, where d = 2"
for n-qubit subspace P .
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Application to superconducting qubits W

~ . 1 "~ 0 1
Hesrq.sin = Ech? + Ejb COS ¢ — E4 Sin Ed) sin Ef ¢ € [—2m, 2m].

e The f and ¢ are canonically conjugate operators.
e The E;, Ec and E, are fabrication parameters.
e The b(t) and f(t) are time dependent controls.

We follow the experimental procedure that aims at implementing:
Hq = wq((1—s+8)X+s2), se€[0,1] (6)

Note that there’s always nonzero tunneling under the barrier wq.
The gap to the non-qubit states A ~ wy| ~ /EJEch  (piasmafrequency. 87



Application to superconducting qubits

~ . 1 n 0 1
Hesrqusin = Ech? + E;b COS ¢ — E4 Sin §¢ sin Ef ¢ € [—2m, 2m].

We find:

— = (7)
1/_(4)5 15 ws—15|n pl1

bWq

where
® wqé - tunneling under the barrier at the end of the anneal
® Wy ~ VEEch - gap to the non-qubit states, plasma frequency
® wq - the qubit frequency
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