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Hydrodynamics for many-body systems 
Consider a one-dimensional interacting many-body systems with 
conservation laws  . 

Hydrodynamics offers a universal language to characterise the long-
wavelength dynamics of it. 

Continuity equations read 

     where   is w.r.t. the initial ensemble. Hydro approximations then tell us       
     to replace   with 
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  governs the ballistic dynamics while   controls the 

diffusive broadening of the ballistic trajectories. 

The eigenvalues of   , which we denote  , plays an important role. 

Consider a weak perturbation to the background ensemble.
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Collision rate ansatz in integrable systems 
In integrable systems, thermodynamic Bethe ansatz (TBA) allows us to 
write   and   as 

The root density   satisfies some integral equation, and can be 
computed by solving it.   is the one-particle eigenvalue of  .   is 
the functional of  , and its exact form is what we are concerned with. 

So far two different proofs of   are available [Vu and Yoshimura, 2019; Borsi, 
Pozsgay, and Pristyák, 2020; Pozsgay, 2020]. 

I will present a new proof that relies neither on the FF expansion nor 
deformations [Spohn, 2020; Yoshimura and Spohn, 2020].
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⟨&j⟩ = ∫ dθρ(θ)hj(θ), ⟨$j⟩ = ∫ dθρ(θ)veff(θ)hj(θ) .

∂tρ(θ) + ∂x(ρ(θ)veff(θ)) = 0 [Bertini, Collura, De Nardis, Fagotti, 2016; 
Castro-Alvaredo, Doyon, Yoshimura, 2016]  



  admits an intuitive understanding from the scattering picture. 

In a fluid of quasi-particles,    is the mean velocity of a tracer particle 
with the incoming velocity   when traveling over a large distance   
for a long time  , i.e.  .   can be decomposed as follows
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The proof 
Two inputs are needed. First, the charge-charge and charge-current 
susceptibility matrices are defined by 

  is obviously symmetric. Less obvious is that   is actually also 
symmetric. The symmetry of   is the first input to the proof. 

Second one is the existence of a self-conserved current. For instance, in 
Galilean systems, the particle current   ( ) equals the 
momentum   (mass is set to 1). In the XXZ spin 1/2 chain, the energy 
current   coincides with the charge  .
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The starting point of the proof is to write  , for some function  , as 

      which is always possible. We then show that   

Suppose   for a pair  . Then   holds. Using the 
symmetry of   and  , this implies  . Therefore 1) the symmetry of 
  and 2) the existence of a bridging pair   admit the identity 

This (extremely) simple relation is the core identity in the proof.
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In integrable systems, this identity gives rise to 

Elementary manipulations yield   for systems known to 
possess a self-conserved current.   is therefore constant in  . 

For instance, in the Lieb-Liniger model (Galilean invariant integrable field 
theory),   when  . Hence the free constant must be zero, 
yielding   

A similar reasoning is also possible in the XXZ spin-1/2 chain, and more 
broadly, in the XYZ spin-1/2 chain. 

The symmetry of   is always guaranteed so long as the clustering of 
correlation functions holds. Do we always have a self-conserved current 
in integrable systems?

∂μbρ = ∂μa(ρveff)
ρ(v̄ − veff) μa

ρ(θ) → 0 μa → ∞
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B

∂μa(ρv̄) = ∂μbρ .

Quite often yes, but not always  
(one exception is the Fermi-Hubbard model).



Conclusion and outlook 
The effective velocity   governs the ballistic transport. 

The symmetry of   matrix and the existence of a self-conserved current 
fixes the functional form of   completely in integrable systems. 

Probably it is possible to extend our approach to the Fermi-Hubbard 
model upon appropriate generalisations. 

Our approach can also be applied to prove the form of generalised 
currents, which are currents generated by other conserved charges. 

Boost operators are also used to perform a long-range deformation to 
integrable spin chains [Pozsgay, 2020], from which the collision rate ansatz 
was also established. It is highly desired to understand the role of boost 
operators in GHD.
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The boost operator 
It turns out that the boost operator gives a self-conserved current. 

Consider the XYZ spin-1/2 chain 

The boost operator is defined for any local observable   as 
 . In particular the boost operator associated to 
  generates conserved charges in a recursive fashion 

The algebra generated by such commutation relations can be thought of 
as the Lattice Lorentz algebra. 

Such a boost operator also exists in other models as well, such as the 
quantum and classical Toda lattice.
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Recall the lattice continuity equation  . This 
implies then 

Combining with the boost commutation relation, we find a self-conserved 
current  . 

In the XYZ spin-1/2 chain, we can take the scaling limit, under which the 
model becomes the massive sine-Gordon model, which is relativistic. In 
this case the first few boost commutation relations reduce to the usual 
Poincaré algebra 

     which obviously implies  . 

Similarly, Galilean invariant systems that conserve the particle number 
possess a bridging pair  .
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A natural question is if there is any integrable system that fails to have a 
self-conserved current. 

A notable example of such integrable system is the Fermi-Hubbard model 
(FHM),  in which even the energy current is not conserved unlike the XXZ 
spin-1/2 chain [Karrasch, Kennes, Heidrich-Meisner, 2016]. But to my knowledge the 
fact that there is no self-conserved current in FHM has not been proven 
yet. 

But the boost operator that satisfies the boost commutation relations 
does exist in FHM [Links, Zhou, Mckenzie, Gould; 2001]. The point is that the boost 
operator cannot be written as  . 

Finally, the collision rate ansatz for other flows that are generated by other 
conserved charges can also be proved in a similar manner.

K[H] = ∑j∈ℤ j&1


