Representing Numbers

How values can be coded?
\square Digital CMOS design
In a digital circuit each signal can take 2 values $(0,1)$ (Boolean world)

A vector of n bits can represent up to 2^{n} values

46

| Pirouz Bazargan Sabet \quad Digital Dessign |
| :--- | :--- | February 2010

\square	6		
Pirouz Bazargan Sabet	Digital Dessign	February 2010	

How values can be coded ?
How values can be coded?
What is the meaning of 01000110 ?
The character ' F ',
The character ' Φ '
The number 46
The number 70
The number 123
Any symbol in a set where the Card $=256$
46
Pirouz Bazargan Sabet
Digital Dessign February 2010

Representing Numbers

How can I represent a Natural number ?
I need at least n bits for a Natural ranging from 0 to $2^{n}-1$
Standards

LiP
Pirouz Bazargan Sabet Digital Dessign
February 2010

Representing Numbers

Representing Numbers

How can I represent a Natural number ?
How can I represent a Natural number ?
Natural Binary Code :
Binary Coded Decimal :
The bits represent the successive powers of 2
The bits represent the successive powers of 2
The quartets represent the successive powers of 10

4
Pirouz Bazargan Sabet
Digital Dessign
February 2010

Representing Numbers
How can I represent a Relative number ?

Sign + Value

The bits represent the successive powers of 2
The Msb represents the sign (1 means negative)
The bytes represent the successive powers of 10
In each byte the 4 Msb are 0
$01000110=$ Illegal $\underbrace{00000110}_{10^{0}}=6$
นீ
Pirouz Bazargan Sabet
Digital Dessign
February 2010
LiP
Pirouz Bazargan Sabet
Digital Dessign February 2010

How can I represent a Relative number ?
How can I represent a Relative number ?
Sign+Value :

2's complemented
The bits represent the successive powers of 2
The Msb represents -2^{n-1}
LiP
Pirouz Bazargan Sabet
Digital Dessign
February 2010

Representing Numbers
How can I represent a Relative number ?
2's complemented :

$$
11000110=2^{1}+2^{2}+2^{6}-2^{7}=-58
$$

Lீ
Pirouz Bazargan Sabet

Pirouz Bazargan Sabet	Digital Dessign

February 2010

Representing Numbers

How can I represent a Relative number ?

2's complemented :

$01000110=2^{1}+2^{2}+2^{6}=70$
$2^{7}=1+2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}$
$2^{7}=1+2^{0}+$
$-70=1+2^{0}+$
$-70=$
$2^{3}+2^{4}+2^{5}$
$2^{3}+2^{4}+2^{5}$
$2^{3}+2^{4}+2^{5}$

Pirouz Bazargan Saber
Digital Dessign February 2010

Representing Numbers
How can I represent a Real number?
2's complement Fixed Point:
The bits represents the successive powers of 2

$4 \square^{0} 6$
Pirouz Bazargan Sabet
Digital Dessign

Representing Numbers
How can I represent a Real number ?
How can I represent a Real number ?

Normalized scientific representation
Wide range
High precision
$R=(-1)^{S} \times M \times: 2^{E}$
$\mathrm{S}:$ Sign (1 if negative)
M: Mantissa $\quad(\in[1,2[\quad)$
E: Exponent (relative number)
46

| Pirouz Bazargan Sabet | Digital Dessign |
| :--- | :--- | February 2010

46
Pirouz Bazargan Sabet
Digital Dessign
February 2010

Single precision : Special cases

(128) means $\pm \infty$ or
$000 \ldots 000$ means $\pm \infty$ other values mean error (NaN)
LiP \qquad February 2010
Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Single precision : Special cases

LீP
Pirouz Bazargan Sabet

