Application-specific arithmetic with FloPoCo

Florent de Dinechin

DES SCIENCES
APPLOUEES
APPLIQUÉE
LYON

Re UNIVERSITÉ
(UU) DELYON

Outline

Intro: arithmetic operators
FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters

Conclusion

Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Intro: arithmetic operators

Intro: arithmetic operators
FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters

Conclusion

Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

What's nice with arithmetic operators

- An arithmetic operation is a function (in the mathematical sense)
- few well-typed inputs and outputs
- no memory or side effect (usually)
- (even DSP filters are defined by a transfer function)

What's nice with arithmetic operators

- An arithmetic operation is a function (in the mathematical sense)
- few well-typed inputs and outputs
- no memory or side effect (usually)
- (even DSP filters are defined by a transfer function)
- An operator is the implementation of such a function
- IEEE-754 FP standard: operator(x) = rounding(operation(x))
- Let's use the same approach for fixed-point operators, and non-standard ones
\rightarrow Clean mathematic definition, even for floating-point arithmetic

What's nice with arithmetic operators

- An arithmetic operation is a function (in the mathematical sense)
- few well-typed inputs and outputs
- no memory or side effect (usually)
- (even DSP filters are defined by a transfer function)
- An operator is the implementation of such a function
- IEEE-754 FP standard: operator(x) = rounding(operation(x))
- Let's use the same approach for fixed-point operators, and non-standard ones
\rightarrow Clean mathematic definition, even for floating-point arithmetic
An operator, as a circuit...
... is a direct acyclic graph (DAG):
- easy to build and pipeline
- easy to test against its mathematical specification

What's nice with arithmetic operators

- An arithmetic operation is a function (in the mathematical sense)
- few well-typed inputs and outputs
- no memory or side effect (usually)
- (even DSP filters are defined by a transfer function)
- An operator is the implementation of such a function
- IEEE-754 FP standard: operator(x) = rounding(operation(x))
- Let's use the same approach for fixed-point operators, and non-standard ones
\rightarrow Clean mathematic definition, even for floating-point arithmetic
An operator, as a circuit...
... is a direct acyclic graph (DAG):
- easy to build and pipeline
- easy to test against its mathematical specification

And also, operators are small, no FPGA I/O problem, etc...

FloPoCo, the user point of view

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants
Example: FIR filters

Conclusion

Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Here should come a demo

FloPoCo is freely available from
http://flopoco.org/

- Stable version 4.1.2: more operators
- git master version (will be 5.0): cleaner code, fewer operators
- used in these slides (mostly)
- several interface differences

Command line syntax

- a sequence of operator specifications
- each with many parameters
- operator parameters (mandatory and optional)
- global optional parameters: target frequency, target hardware, ...
- Output: synthesizable VHDL.

First something classical

A single precision floating-point adder
(8-bit exponent and 23-bit mantissa)
./flopoco FPAdd wE=8 wF=23

Final report:
|---Entity FPAdder_8_23_uid2_RightShifter
|---Entity IntAdder_27_f400_uid7
|---Entity LZCShifter_28_to_28_counting_32_uid14
|---Entity IntAdder_34_f400_uid17
Entity FPAdder_8_23_uid2
Output file: flopoco.vhdl
To probe further:

- ./flopoco FPAdd wE=11 wF=51 double precision
- ./flopoco FPAdd wE=9 wF=36 just right for you

Actually there are two variants

To get a larger but shorter-latency architectural variant:
./flopoco FPAdd wE=8 wF=23 dualpath=true

Here, dualpath is an optional performance option. (different VHDL, same function)

Classical floating-point, continued

A complete single-precision FPU in a single VHDL file:

```
./flopoco FPAdd wE=8 wF=23 FPMult wE=8 wF=23 FPDiv wE=8 wF=23 FPSqrt wE=8
    wF=23
```

 Final report:
 |---Entity FPAdder_8_23_uid2_RightShifter
 |---Entity IntAdder_27_f400_uid7
 |---Entity LZCShifter_28_to_28_counting_32_uid14
 |---Entity IntAdder_34_f400_uid17
 Entity FPAdder_8_23_uid2
 Entity Compressor_2_2
 Entity Compressor_3_2
 | |---Entity IntAdder_49_f400_uid39
 |---Entity IntMultiplier_UsingDSP_24_24_48_unsigned_uid26
 |---Entity IntAdder_33_f400_uid47
 Entity FPMultiplier_8_23_8_23_8_23_uid24
 Entity FPDiv_8_23
 Entity FPSqrt_8_23
 Output file: flopoco.vhdl

Damn lies

It was not a classical single-precision FPU

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

- exponent size w_{E} and mantissa size w_{F} can take arbitrary values

Damn lies

It was not a classical single-precision FPU

12	W_{E}	W_{F}	
s exn	E	F	

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

- exponent size w_{E} and mantissa size w_{F} can take arbitrary values
- $0, \infty$ and NaN flagged in 2 explicit exception bits: exn
- not as special exponent values
- (as a consequence, two more exponent values available in FloPoCo)

Damn lies

It was not a classical single-precision FPU

12	W_{E}	W_{F}	
s exn	E	F	

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

- exponent size w_{E} and mantissa size w_{F} can take arbitrary values
- $0, \infty$ and NaN flagged in 2 explicit exception bits: exn
- not as special exponent values
- (as a consequence, two more exponent values available in FloPoCo)
- subnormal numbers are not supported
- Adding 1 more exponent bit provides them all, and is much more area-efficient
- However we lose $\mathrm{a}-\mathrm{b}==0 \Longleftrightarrow \mathrm{a}==\mathrm{b}$
- HLS compiler writers, beware!
- Conversions operators from/to IEEE floating point available

Number formats in FloPoCo

- The previous floating-point format
- A few operators for IEEE floating-point format
- Posits soon
- Logarithm Number System (LNS) in older versions
- One Obscure Branch contains decimal arithmetic
- Residue Number System (RNS) and other modular arithmetic should come some day
... Plus good old binary fixed-point (integer) for quite a few operators

Fixed-point format

Parameters for an unsigned (positive) fixed-point format

- m is the Most Significant Bit position, and determines the range
- ℓ is the Least Significant Bit position, and determines the precision

Parameters for a fixed-point format in two's complement

$$
X=-2^{m} x_{m}+\sum_{i=\ell}^{m-1} 2^{i} x_{i}
$$

Integers have $\ell=0, m>0$.

Typical interface to a FloPoCo operator

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24
msbOut=3 d=3

Typical interface to a FloPoCo operator

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 msbOut=3 d=3

Output precision $\ell_{\text {out }}$ also specifies the accuracy of the architecture Difference between computed value and $f(x)$ never larger than $2^{\text {lout }}$

Typical interface to a FloPoCo operator

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 msbOut=3 d=3

Output precision $\ell_{\text {out }}$ also specifies the accuracy of the architecture Difference between computed value and $f(x)$ never larger than $2^{\text {lout }}$

Binary for theoretical physicists

- $2^{10} \approx 10^{3}$ (kBytes are actually 1024 bytes).
- Another point of view : $10 \log _{10}(2) \approx 3$
- In other words, 1 bit $\approx 3 \mathrm{~dB}$

I don't count signal/noise ratio in dB , I count accuracy in bits.

Frequency-directed pipelining

The same FPAdder, pipelined for 300 MHz :
./flopoco frequency=300 FPAdd wE=8 wF=23

Frequency-directed pipelining

The same FPAdder, pipelined for 300 MHz :

```
./flopoco frequency=300 FPAdd wE=8 wF=23
```

FloPoCo interface to pipeline construction "Please pipeline this operator to work at 200 MHz "

Frequency-directed pipelining

The same FPAdder, pipelined for 300 MHz :

```
./flopoco frequency=300 FPAdd wE=8 wF=23
```

FloPoCo interface to pipeline construction "Please pipeline this operator to work at 200 MHz "

Not the choice made by other core generators...

Frequency-directed pipelining

The same FPAdder, pipelined for 300 MHz :

```
./flopoco frequency=300 FPAdd wE=8 wF=23
```

FloPoCo interface to pipeline construction
"Please pipeline this operator to work at 200 MHz "
Not the choice made by other core generators...
... but better because compositional
When you assemble components working at frequency f, you obtain a component working at frequency f.

Frequency-directed pipelining

The same FPAdder, pipelined for 300 MHz :

```
./flopoco frequency=300 FPAdd wE=8 wF=23
```

FloPoCo interface to pipeline construction
"Please pipeline this operator to work at 200 MHz "

Not the choice made by other core generators...
... but better because compositional
When you assemble components working at frequency f, you obtain a component working at frequency f.

Remark: automatic pipeline framework improved from version 4 to (future) version 5, but all the operators need to be ported.

Examples of pipeline

```
./flopoco frequency=400 FPAdd wE=8 wF=23
```

```
Final report:
|---Entity FPAdder_8_23_uid2_RightShifter
| Pipeline depth = 1
|---Entity IntAdder_27_f400_uid7
| Pipeline depth = 1
|---Entity LZCShifter_28_to_28_counting_32_uid14
| Pipeline depth = 4
|---Entity IntAdder_34_f400_uid17
| Pipeline depth = 1
Entity FPAdder_8_23_uid2
        Pipeline depth = 9
```

```
./flopoco frequency=200 FPAdd wE=8 wF=23
```

Final report:

```
(...)
    Pipeline depth = 4
```


Of course the frequency depends on the target FPGA

```
./flopoco target=Zynq7000 frequency=200 FPAdd wE=8 wF=23
```

Final report:
(...)
Pipeline depth $=5$
./flopoco target=VirtexUltrascalePlus frequency=200 FPAdd wE=8 wF=23
Final report:
(...)
Pipeline depth = 1

Altera and Xilinx targets supported in the stable branch (at various levels of accuracy, in various versions): Spartan3, Zynq7000, Virtex4, Virtex5, Virtex6, Kintex7, VirtexUltrascalePlus, StratixII, StratixIII, StratixIV, StratixV, CyclonelI, CycloneIII, CycloneIV, CycloneV.

Frequency-directed pipelining in practice

We do our best but we know it's hopeless

The actual frequency obtained will depend on the whole application (placement, routing pressure etc)...

- best-effort philosophy,
- aiming to be accurate to 10% for an operator synthesized alone
- asking a higher frequency provides a deeper pipeline

Frequency-directed pipelining in practice

We do our best but we know it's hopeless

The actual frequency obtained will depend on the whole application (placement, routing pressure etc)..

- best-effort philosophy,
- aiming to be accurate to 10% for an operator synthesized alone
- asking a higher frequency provides a deeper pipeline

And a big TODO: VLSI targets.

Also match the architecture to the target FPGA

Compare the VHDL produced with FloPoCo 4.1.2 for

```
flopoco target=Virtex4 IntConstDiv wIn=16 d=3
flopoco target=Virtex6 IntConstDiv wIn=16 d=3
```


Also match the architecture to the target FPGA

Compare the VHDL produced with FloPoCo 4.1.2 for

```
flopoco target=Virtex4 IntConstDiv wIn=16 d=3
flopoco target=Virtex6 IntConstDiv wIn=16 d=3
```


Also match the architecture to the target FPGA

Compare the VHDL produced with FloPoCo 4.1.2 for

```
flopoco target=Virtex4 IntConstDiv wIn=16 d=3
flopoco target=Virtex6 IntConstDiv wIn=16 d=3
```


Architecture specificities

- LUTs
- DSP blocks
- memory blocks

Parenthesis: minimalist interfaces

In the previous example (an integer divider by 3) we didn't specify output size: FloPoCo computes it, too.

Parenthesis: minimalist interfaces

In the previous example (an integer divider by 3) we didn't specify output size: FloPoCo computes it, too.

More importantly,
When lsbOut is given, it also specifies the accuracy of the operator
Compute just right!

- No need to compute more accurately than $2^{\text {lsbout }}$,
we couldn't output it
- No sense in computing less accurately than $2^{\text {lsbOut }}$, we don't want to output garbage bits

Non-standard operators

- Correctly rounded divider by 3 :

```
flopoco FPConstDiv wE=8 wF=23 d=3
```

- Floating-point exponential:

```
flopoco FPExp wE=8 wF=23
```

- Multiplication of a 32-bit signed integer by the constant 1234567 (two algorithms, your mileage may vary):

```
flopoco IntIntKCM
flopoco IntConstMult
```

Full list in the documentation, or by typing just
flopoco
Sorry for the sometimes incomplete or inconsistent interface.

Don't trust us

TestBench generates a test bench for the operator preceding it on the command line

- flopoco FPExp wE=8 wF=23 TestBench n=10000
generates 10000 random tests
- flopoco IntConstDiv wIn=16 d=3 TestBench generates an exhaustive test

Don't trust us

TestBench generates a test bench for the operator preceding it on the command line

- flopoco FPExp wE=8 wF=23 TestBench n=10000 generates 10000 random tests
- flopoco IntConstDiv wIn=16 d=3 TestBench generates an exhaustive test

Specification-based test bench generation
Not by simulation of the generated architecture!

Don't trust us

TestBench generates a test bench for the operator preceding it on the command line

- flopoco FPExp wE=8 wF=23 TestBench n=10000 generates 10000 random tests
- flopoco IntConstDiv wIn=16 d=3 TestBench generates an exhaustive test

Specification-based test bench generation
Not by simulation of the generated architecture!

Helper functions for encoding/decoding FP format, if you want to check the testbench...

- fp2bin 9363.1415926
- bin2fp 936010100000000100100100001111110110100110100010011

Example: fixed-point functions

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants
Example: FIR filters

Conclusion

Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Generic generator of fixed-point functions

The sine function

The sine function

Input format is in fixed point
Arbitrary choice in FloPoCo: the input domain will be $[0,1)$ or $[-1,1)$.

$$
\xrightarrow{\sin (x) \text { on }[-1,1)}
$$

Discretization issues

Inputs and outputs in $[0,1)$ (4-bit fixed-point) :

Possible fixes for corner-case discretization issues

FixFunctionByTable

```
flopoco FixFunctionByTable f="sin(pi/2*x)" signedIn=0 lsbIn=-6 lsbOut=-6
```


Go check in the VHDL which solution is used... (Hint: remember that msbOut is computed.)

```
flopoco FixFunctionByTable f="63/64*sin(pi/2*x)" signedIn=0 lsbIn=-6 lsbOut=-6
```


Go check the VHDL...

Tables can hold functions that are arbitrarily ugly

$$
\sin \left(\frac{\pi}{2 x}\right) \text { on }[0,1)
$$

flopoco FixFunctionByTable f="sin(pi/2/x)" signedIn=0 lsbIn=-16 lsbOut=-16

Tables scaling

The previous example was a 16 -bit in, 16 -bit out.

Tables scaling

The previous example was a 16 -bit in, 16 -bit out. (you just added 64 KLOC to your project)

Tables scaling

The previous example was a 16 -bit in, 16 -bit out.
(you just added 64 KLOC to your project)

Practical sizes

- The generated VHDL: $2^{-1 \text { sbIn }}$ lines of 1 sbOut bits each
- LUT cost: $2^{-1 \text { sbIn-6 }} \times 1$ sbOut
- A table of $2^{6} \times 6$ bits costs exactly 6 LUTs.

- A 20 Kb dual-port BlockRAM can hold two tables of $2^{10} \times 10$ bits.

When plain tables won't scale

This is where FloPoCo can do clever stuff.

- The multipartite table + additions method: FixFunctionByMultipartiteTable
- rule of thumb: cost grows as $2^{p / 2} \times p$ instead of $2^{p} \times p$
- but only works for functions that are continuous, derivable, and even monotonic on the domain.
- A generic piecewise polynomial approximation method: FixFunctionByPiecewisePoly
- requires higher-order derivability, but scales to 64 bits.
- One more parameter: the degree of the polynomials, trades-off memory and multipliers

Example: multiplication and division by constants

Intro: arithmetic operators
FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters
Conclusion
Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Multiplication by a constant, first method

FPGA-specific LUT-based methods

- Write x in radix $2^{\alpha}: x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$ with $0 \leq x_{i}<2^{\alpha}$

$$
\alpha \text { bits }
$$

Ex: good old hexadecimal is $\alpha=4: \left.\quad x=$| x_{11} | x_{10} | x_{9} | x_{8} | x_{7} | x_{6} | x_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$x_{4} \right\rvert\, x_{3} x_{2} x_{1} x_{0}$

- then $C x=\sum_{i=0}^{n} 2^{\alpha i}\left(C x_{i}\right)$
- and tabulate the products $C x_{i}$ in α-input LUTs
- (also works if C is a real number like, say, $1 / \log (2)$)

Extremely efficient for small n (input size) on LUT-based FPGAs.

An architecture for 6-input LUTs

Multiplication by a constant, second method

Shift-and-add methods for integer constants

- $17 x=16 x+x=(x \ll 4)+x$
- $15 x=16 x-x$
- $7697 x=15 x \ll 9+17 x$
(Booth recoding)
(open problem here)
- very good recent ILP-based heuristics
- In FPGAs, take into account the size of each addition (demo?)

Extremely efficient for some constants such as 17.

Multiplication by a constant, second method

Shift-and-add methods for integer constants

- $17 x=16 x+x=(x \ll 4)+x$
- $15 x=16 x-x$
(Booth recoding)
- $7697 x=15 x \ll 9+17 x$
- very good recent ILP-based heuristics
- In FPGAs, take into account the size of each addition (demo?)

Extremely efficient for some constants such as 17 .

FloPoCo offers both methods (and the exponential uses both).

Motivation

divisions by 3 and by 9 in stencil applications

Motivation

divisions by 3 and by 9 in stencil applications

$1 / 3=0.0101010101010101010101010101010 \cdots$
$1 / 9=0.000111000111000111000111000111 \cdots$
Two specificities

- The binary representation of the constant is periodic \longrightarrow specific optimisation of the shift-and-add approach
- Precision required for correct rounding

Computing periodicity

A lemma adapted from 19th century number theory

Let a / b be an irreductible rational such that

- $a<b$
- 2 divides neither a nor b (powers of two are a matter of exponent)

Then

- a / b has a purely periodic binary representation
- The period size s is the multiplicative order of 2 modulo b
- (the smallest integer such that $2^{s} \bmod b=1$)
- The periodic pattern is the integer $p=\left\lfloor 2^{5} a / b\right\rfloor$

Computing periodicity

A lemma adapted from 19th century number theory

Let a / b be an irreductible rational such that

- $a<b$
- 2 divides neither a nor b (powers of two are a matter of exponent)

Then

- a / b has a purely periodic binary representation
- The period size s is the multiplicative order of 2 modulo b
- (the smallest integer such that $2^{s} \bmod b=1$)
- The periodic pattern is the integer $p=\left\lfloor 2^{s} a / b\right\rfloor$

Example: 1/9

- $b=9$; period size is $s=6$ because $2^{6} \bmod 9=1$.
- The periodic pattern is $\left\lfloor 1 \times 2^{6} / 9\right\rfloor=7$, which we write on 6 bits 000111 , and we obtain that $1 / 9=0 .\left(000111_{2}\right)^{\infty}$.

Optimal architecture for precision p_{c}

Correct rounding of a floating-point x by a rational a / b

A lemma adapted from the exclusion lemma of FP division

- Correct rounding on n bits needs $n+1+\left\lceil\log _{2} b\right\rceil$ bits of the constant

In practice, it is for free if b is small.

This work was motivated by divisions by 3 and by 9

constant	p	This work		previous SotA		
		p_{c}	\#FA	p_{c}	\#FA	depth
$\mathbf{1 / 3}$	24	32	118	27	190	4
	53	64	317	56	368	5
	113	128	792	116	1026	6
$\mathbf{1 / 9}$	24	30	132	29	131	5
	53	60	356	58	408	6
	113	120	885	118	1116	7

(The precisions chosen here are those of the IEEE754-2008 formats)
... But the FloPoCo code manages arbitrary a / b (including $a>b$).

And now for something completely different

Instead of specializing multiplication, let us try and specialize division.

Anybody here remembers how we compute divisions?

Anybody here remembers how we compute divisions?

- iteration body: Euclidean division of a 2-digit decimal number by 3
- The first digit is a remainder from previous iteration: its value is 0,1 or 2
- Possible implementation as a look-up table that, for each value from 00 to 29, gives the quotient and the remainder of its division by 3.

The same, but in binary-friendly radix

Writing an integer x in radix 2^{α}
$x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$
(split of the bits of x into chunks of α bits)

The same, but in binary-friendly radix

Writing an integer x in radix 2^{α}
$x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$
(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha=4$

| x_{2} | | x_{1} | | x_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

F 2 D

The same, but in binary-friendly radix

Writing an integer x in radix 2^{α}
$x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$
(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha=4$

| x_{2} | | x_{1} | | | x_{0} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The same, but in binary-friendly radix

Writing an integer x in radix 2^{α}
$x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$
(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha=4$

| x_{2} | | x_{1} | | | x_{0} | \vdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The same, but in binary-friendly radix

Writing an integer x in radix 2^{α}
$x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$
(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha=4$

| x_{2} | | x_{1} | | | x_{0} | \vdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The same, but in binary-friendly radix

Writing an integer x in radix 2^{α}
$x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$
(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha=4$

| x_{2} | | x_{1} | | | x_{0} | \vdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The same, but in binary-friendly radix

Writing an integer x in radix 2^{α}
$x=\sum_{i=0}^{n} 2^{\alpha i} x_{i}$
(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha=4$

| x_{2} | | x_{1} | | | x_{0} | \vdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

And now for some mathematical obfuscation

```
procedure ConstantDiv \((x, d)\)
    \(r_{k} \leftarrow 0\)
    for \(i=k-1\) down to 0 do
        \(y_{i} \leftarrow x_{i}+2^{\alpha} r_{i+1}\)
        \(\left(q_{i}, r_{i}\right) \leftarrow\left(\left\lfloor y_{i} / d\right\rfloor, y_{i} \bmod d\right)\)
    end for
    return \(q=\sum_{i=0}^{k} q_{i} \cdot 2^{-\alpha i}, r_{0}\)
end procedure
```


And now for some mathematical obfuscation

procedure ConstantDiv (x, d)
$r_{k} \leftarrow 0$
for $i=k-1$ down to 0 do

$$
\begin{aligned}
& y_{i} \leftarrow x_{i}+2^{\alpha} r_{i+1} \\
& \left(q_{i}, r_{i}\right) \leftarrow\left(\left\lfloor y_{i} / d\right\rfloor, y_{i} \bmod d\right)
\end{aligned}
$$

$$
\text { (this }+ \text { is a concatenation) }
$$

(read from a table)
end for
return $q=\sum_{i=0}^{k} q_{i} .2^{-\alpha i}, r_{0}$
end procedure

Each iteration

- consumes α bits of x, and a remainder of size $\gamma=\left\lceil\log _{2} d\right\rceil$
- produces α bits of q, and a remainder of size γ
- implemented as a table with $\alpha+\gamma$ bits in, $\alpha+\gamma$ bits out

At this point nobody wants to see the proof

(if you're convinced the decimal version works...)

- prove that we indeed compute the Euclidean division
- prove that the result is indeed a radix- 2^{α} number

Sequential implementation

Unrolled implementation

Logic-based version

For instance, assuming a 6 -input LUTs (e.g. LUT6)

- A 6-bit in, 6-bit out consumes 6 LUT6
- Size of remainder is $\gamma=\log _{2} d$
- If $d<2^{5}$, very efficient architecture: $\alpha=6-\gamma$
- The smaller d, the better
- Easy to pipeline (one register behind each LUT)

Dual-port RAM-based version?

For larger d?

(not really studied, waiting for the demand)

Synthesis results on Virtex-5 for combinatorial Euclidean division

	$n=32$ bits		
constant	LUT6	(predicted)	latency
$d=3(\alpha=4)$	47	$\left(6^{*} 8=48\right)$	7.14 ns
$d=5(\alpha=3)$	60	$\left(6^{*} 11=66\right)$	6.79 ns
$d=7(\alpha=3)$	60	$\left(6^{*} 11=66\right)$	7.30 ns
	$n=64$ bits		
constant	LUT6	(predicted)	latency
$d=3(\alpha=4)$	95	$\left(6^{*} 16=96\right)$	14.8 ns
$d=5(\alpha=3)$	125	$\left(6^{*} 22=132\right)$	13.8 ns
$d=7(\alpha=3)$	125	$\left(6^{*} 22=132\right)$	15.0 ns

Synthesis results on Virtex-5 for combinatorial Euclidean division

	$n=32$ bits		
constant	LUT6	(predicted)	latency
$d=3(\alpha=4)$	47	$\left(6^{*} 8=48\right)$	7.14 ns
$d=5(\alpha=3)$	60	$\left(6^{*} 11=66\right)$	6.79 ns
$d=7(\alpha=3)$	60	$\left(6^{*} 11=66\right)$	7.30 ns
	$n=64$ bits		
constant	LUT6	(predicted)	latency
$d=3(\alpha=4)$	95	$\left(6^{*} 16=96\right)$	14.8 ns
$d=5(\alpha=3)$	125	$\left(6^{*} 22=132\right)$	13.8 ns
$d=7(\alpha=3)$	125	$\left(6^{*} 22=132\right)$	15.0 ns

Logic optimizer even finds something to chew: don't care lines in the tables.

Synthesis results on Virtex-5 for pipelined Euclidean division by 3

$n=32$ bits	
FF + LUT6	performance
33 Reg + 47 LUT	1 cycle @ 230 MHz
58 Reg + 62 LUT	2 cycles @ 410 MHz
68 Reg + 72 LUT	3 cycles @ 527 MHz
$n=64$ bits	
FF + LUT6	
122 Reg + 112 LUT	performance
168 Reg + 198 LUT	5 cycles @217 MHz 410 MHz
172 Reg + 188 LUT	7 cycles @ 527 MHz

Floating-point version is cheap, too

- pre-normalisation and pre-rounding:

$$
\left\lfloor\frac{2^{s+\epsilon} m}{d}\right\rceil=\left\lfloor\frac{2^{s+\epsilon} m}{d}+\frac{1}{2}\right\rfloor=\left\lfloor\frac{2^{s+\epsilon} m+d / 2}{d}\right\rfloor
$$

Synthesis results on Virtex-5 for pipelined floating-point division by 3

single precision

FF + LUT6	performance
35 Reg + 69 LUT	1 cycle @ 217 MHz
$105 \mathrm{Reg}+83 \mathrm{LUT}$	3 cycles @ 411 MHz

standard correctly rounded divider
1122 Reg +945 LUT 17 cycles @ 290 MHz
double precision

FF + LUT6	performance
122 Reg + 166 LUT	2 cycles @ 217 MHz
245 Reg + 250 LUT	6 cycles @ 410 MHz
using shift-and-add	
282 Reg + 470 LUT	5 cycles @ 307 MHz

Was it worth to spend so much time on division by 3 ?

Was it worth to spend so much time on division by 3 ?

(this slide intentionally left blank)

Was it worth to spend so much time on division by 3 ?

(this slide intentionally left blank)
(three years later, Ugurdag et al spent more time on a parallel version)

My personal record

Two weeks from the first intuition of the algorithm
to complete pipelined FloPoCo implementation + paper submission.
Implementation time

- 10 minutes to obtain a testbench generator
- $1 / 2$ day for the integer Euclidean division
- 20 mn for its flexible pipeline
- $1 / 2$ day for the FP divider by 3
- and again 20 mn

This was advertising for the FloPoCo framework.

Example: FIR filters

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Conclusion

Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

$$
y(t)=\sum_{i=0}^{N-1} b_{i} x(t-i)
$$

- the b_{i} are potentially real numbers (or almost: Matlab numbers)
- the $x(t)$ and $y(t)$ are discrete, fixed-point, low-precision signals
(the lower, the cheaper)

FIR filters, architectural view (abstract)

$$
y(t)=\sum_{i=0}^{N-1} b_{i} x(t-i)
$$

Abtract architecture

FIR filters, arithmetic view

$$
y(t)=\sum_{i=0}^{N-1} b_{i} x(t-i)
$$

$$
\begin{aligned}
& b_{0}=.00001001111111010001010101101 \ldots \\
& b_{1}=.00101110110001000101001110000 \text {. } \\
& b_{2}=.11000001011011010001001100101 \ldots \\
& b_{3}=.00110101000001001110111001111 \ldots \\
& b_{0} x_{0} \quad \text { xxxxxxxxxxxxxxxxxxxxxxxxx... } \\
& +b_{1} x_{1} \quad \text { xXXXXXXXXXXXXXXXXXXXXXXXXXX... } \\
& +b_{2} x_{2} \quad \text { xXXXXXXXXXXXXXXXXXXXXXXXXXXXX. . } \\
& +b_{3} x_{3} \quad \text { xxxxxxxxxxxxxxxxxxxxxxxxxxx... } \\
& y=\text { уууууууууууууууууууууууууууууу... }
\end{aligned}
$$

The b_{i} are reals, therefore the exact result y may be an irrational.

FIR filters, arithmetic view

$$
y(t)=\sum_{i=0}^{N-1} b_{i} x(t-i)
$$

$$
\begin{array}{rr}
b_{0}= & .00001001111110100010101 \\
b_{1}= & .001011101000100010011 \\
b_{2}= & .110000010110110100010011 \\
b_{3}= & .001101010000010011101110 \\
b_{0} x_{0} & \text { xxxxxxxxxxxxxxxxxxxx} \\
+b_{1} x_{1} & \text { xxxxxxxxxxxxxxxxxxxx } \\
+b_{2} x_{2} & \text { xxxxxxxxxxxxxxxxxxxxx } \\
+b_{3} x_{3} & \text { xxxxxxxxxxxxxxxxxxxxx } \\
y= & \text { yyyyyyyyyyyyyyyyyyyyyyyyyy } \\
&
\end{array}
$$

Naive approach: round the b_{i} and the products to the target precision.

FIR filters, arithmetic view

$$
y(t)=\sum_{i=0}^{N-1} b_{i} x(t-i)
$$

$$
\begin{array}{rr}
b_{0}= & .000010011111110100010101 \\
b_{1}= & .001011101100010001010011 \\
b_{2}= & .110000010110110100010011 \\
b_{3}= & .0011010100001001101110 \\
b_{0} x_{0} & \text { xxxxxxxxxxxxxxxxxxxx } \\
+b_{1} x_{1} & \text { xxxxxxxxxxxxxxxxxxxxxx} \\
+b_{2} x_{2} & \text { xxxxxxxxxxxxxxxxxxxxxxx } \\
+b_{3} x_{3} & \text { xxxxxxxxxxxxxxxxxxxxx } \\
y= & \text { yyyyyyyyyyyyyyyyyyyyyyyyy } \\
y
\end{array}
$$

... but the accumulation of rounding errors makes the result inaccurate

FIR filters, arithmetic view

$$
y(t)=\sum_{i=0}^{N-1} b_{i} x(t-i)
$$

$$
\begin{array}{rr}
b_{0}= & .00001001111111010001010101101 \cdots \\
b_{1}= & .00101110110001000101001110000 \cdots \\
b_{2}= & .11000001011011010001001100101 \cdots \\
b_{3}= & .00110101000001001110111001111 \cdots \\
b_{0} x_{0} & \text { xxxxxxxxxxxxxxxxxxxxxxx } \\
+b_{1} x_{1} & \text { xxxxxxxxxxxxxxxxxxxxxxxxx } \\
+b_{2} x_{2} & \text { xxxxxxxxxxxxxxxxxxxxxxxxxxx } \\
+b_{3} x_{3} & \text { xxxxxxxxxxxxxxxxxxxxxxxxx } \\
= & \text { zzzzzzzzzzzzzzzzzzzzzzzzzzzz } \\
y= & \text { yyyyyyyyyyyyyyyyyyyyyyyyyy }
\end{array}
$$

Proposed approach: last-bit-accurate architecture with respect to the exact result

Really a matter of interface

Really a matter of interface

- Output precision defines accuracy of the architecture

Really a matter of interface

- Output precision defines accuracy of the architecture
- Accuracy defines the optimal precisions to be used internally

Really a matter of interface

- Output precision defines accuracy of the architecture
- Accuracy defines the optimal precisions to be used internally No point in computing more, no point in computing less

Example of the accuracy/cost tradeoff

8-tap, 12 bit Root-Raised Cosine FIR filters

Proposed, $p=9 \quad 4.12$ ns, 380 LUT $\quad \bar{\epsilon}<2^{-9}$

y_{1}	y_{0}	y_{-1}	y_{-2}	y_{-3}	y_{-4}	y_{-5}	y_{-6}	y_{-7}	y_{-8}	y_{-9}

Demo

- Coefficients entered as math. formulae
- FPGA-specific optimizations
- Frequency-directed pipeline
- Test-driven design
... and all the other operators

Compute Just Right: Determining $m s b_{0}$

$$
\begin{aligned}
& a_{0}=.00001001111111010001010101101 \ldots \\
& a_{1}=.00101110110001000101001110000 \ldots \\
& a_{2}=.11000001011011010001001100101 \ldots \\
& a_{3}=.00110101000001001110111001111 \ldots
\end{aligned}
$$

$a_{0} x_{0}$	Kxxxxxxxxxxxxxxxxxxxxxxxx.
$+a_{1} x_{1}$	KXXXXXXXXXXXXXXXXXXXXXXXXXX
$+a_{2} x_{2}$	KXXXXXXXXXXXXXXXXXXXXXXXXXXXX
$+a_{3} x_{3}$	Xxxxxxxxxxxxxxxxxxxxxxxxxxx
y	ууууууууууууууууууууууууууууу

The MSB of $a_{i} x_{i}$

- x_{i} bounded (fixed-point number)
- a_{i} known

$$
m s b_{a_{i} x_{i}}=\left\lceil\log _{2}\left(\left|a_{i}\right| v a l_{\max }\left(x_{i}\right)\right)\right\rceil
$$

The MSB of the sum

- $a_{i} x_{i}$ bounded

$$
m s b_{o}=m s b_{y}=\left\lceil\log _{2}\left(\sum_{i=0}^{N-1}\left|a_{i}\right| \operatorname{val}_{\max }\left(x_{i}\right)\right)\right\rceil
$$

Compute Just Right: Determining the LSB

Supose we use perfect multipliers: $\varepsilon_{\text {mult }}<2^{-p-1}$

Compute Just Right: Determining the LSB

Supose we use perfect multipliers: $\varepsilon_{\text {mult }}<2^{-p-1}$

- sum error: $\varepsilon_{y}=\sum_{i=0}^{N} \varepsilon_{m u l t}<N \cdot 2^{-p-1}$

Compute Just Right: Determining the LSB

$$
\begin{aligned}
& a_{0}=.00001001111111010001010101101 \ldots \\
& a_{1}=.00101110110001000101001110000 \\
& a_{2}=.11000001011011010001001100101 \ldots \\
& a_{3}=.00110101000001001110111001111 . . \\
& \begin{array}{rr|r|r}
a_{0} x_{0} & \text { xxxxxxxxxxxxxxxxxxxxxxxxx } & \cdots \\
+a_{1} x_{1} & \text { xxxxxxxxxxxxxxxxxxxxxxxxxxx } & \cdots \\
+a_{2} x_{2} & \text { xxxxxxxxxxxxxxxxxxxxxxxxxxxxx } & \cdots \\
+a_{3} x_{3} & \text { xxxxxxxxxxxxxxxxxxxxxxxxxxx } & \cdots \\
= & \text { zzzzzzzzzzzzzzzzzzzzzzzzzZzzzz } & \cdots \\
y= & \text { yyyyyyyyyyyyyyyyyyyyyyyyy } & & \\
& & 2^{-p} & 2^{-p-g}
\end{array}
\end{aligned}
$$

Supose we use perfect multipliers: $\varepsilon_{\text {mult }}<2^{-p-1}$

- sum error: $\varepsilon_{y_{\text {total }}}=\sum_{i=0}^{N} \varepsilon_{\text {mult }}+\varepsilon_{\text {final_rounding }}<N \cdot 2^{-p-g-1}+2^{-p-1}$

Need for larger intermediary precision

- g guard bits
- such that errors accumulate in the guard bits

$$
\Longrightarrow g=\left\lceil\log _{2}(N)\right\rceil
$$

Perfect constant multipliers in an FPGA

- basic FPGA computing element: look-up table (LUT)

Perfect constant multipliers in an FPGA

- basic FPGA computing element: look-up table (LUT)
- tabulate all the 2^{α} values of $a_{i} x_{i}$
- ... correctly rounded to the output precision

Perfect constant multipliers in an FPGA

- basic FPGA computing element: look-up table (LUT)
- tabulate all the 2^{α} values of $a_{i} x_{i}$
- ... correctly rounded to the output precision
- perfect fit for small sizes:
α-input LUT $+\alpha$-bit input $\Longrightarrow 1$ LUT/output bit
- but doesn't scale:

2 LUT/output bit for ($\alpha+1$)-bit inputs,. . . 2^{k} LUT/output bit for $(\alpha+k)$-bit inputs

KCM multipliers by real constants

$$
\begin{aligned}
& x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} d_{i k} \quad \text { where } \quad d_{i k} \in\left\{0, \ldots, 2^{\alpha}-1\right\}
\end{aligned}
$$

KCM multipliers by real constants

$$
\begin{aligned}
& x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} d_{i k} \quad \text { where } \quad d_{i k} \in\left\{0, \ldots, 2^{\alpha}-1\right\} \\
& \Longrightarrow a_{i} x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} a_{i} d_{i k}
\end{aligned}
$$

KCM multipliers by real constants

$$
\begin{aligned}
& x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} d_{i k} \quad \text { where } \quad d_{i k} \in\left\{0, \ldots, 2^{\alpha}-1\right\} \\
& \Longrightarrow a_{i} x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} a_{i} d_{i k}
\end{aligned}
$$

Each $a_{i} d_{i k}$ tabulated, 1 LUT/output bit

KCM multipliers by real constants

$$
\begin{aligned}
& x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} d_{i k} \quad \text { where } \quad d_{i k} \in\left\{0, \ldots, 2^{\alpha}-1\right\} \\
& \Longrightarrow a_{i} x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} a_{i} d_{i k}
\end{aligned}
$$

Each $a_{i} d_{i k}$ tabulated, 1 LUT/output bit How many output bits?

KCM multipliers by real constants

$$
\begin{aligned}
& x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} d_{i k} \quad \text { where } \quad d_{i k} \in\left\{0, \ldots, 2^{\alpha}-1\right\} \\
& \Longrightarrow a_{i} x_{i}=\sum_{k=1}^{n} 2^{-k \alpha} a_{i} d_{i k}
\end{aligned}
$$

Each $a_{i} d_{i k}$ tabulated, 1 LUT/output bit How many output bits?

KCM multipliers by real constants

Summing it all up

$$
y=\sum_{i=0}^{N-1} a_{i} x_{i}
$$

Summing it all up

$$
y=\sum_{i=0}^{N-1} a_{i} x_{i}=\sum_{i=0}^{N-1} \sum_{k=1}^{n} 2^{-k \alpha} a_{i} d_{i k}
$$

Summing it all up

$$
y=\sum_{i=0}^{N-1} a_{i} x_{i}=\sum_{i=0}^{N-1} \sum_{k=1}^{n} 2^{-k \alpha} a_{i} d_{i k}
$$

- each $a_{i} d_{i k}$ is a perfect multiplier
- therefore $g=\left\lceil\log _{2}(N \cdot n)\right\rceil$

Summing it all up

$$
y=\sum_{i=0}^{N-1} a_{i} x_{i}=\sum_{i=0}^{N-1} \sum_{k=1}^{n} 2^{-k \alpha} a_{i} d_{i k}
$$

- each $a_{i} d_{i k}$ is a perfect multiplier
- therefore $g=\left\lceil\log _{2}(N \cdot n)\right\rceil$

Summing it all up

Bit-heaps (generalization of bit arrays) in FloPoCo (see FPL 2013 article)

- 8-tap, 12-bit FIR filters

Half-Sine

Root-Raised Cosine

Work in progress

- Extension to IIRs done last year (with Paris VI and ENS-Lyon)
- infinite accumulation of rounding errors: how many guard bits?
- link with a trusted library computing the worst-case peak gain of a filter
- Address the combinatorics of filter realizations
- Filter approximation from frequency response
- Remez with an arithmetic focus

Conclusion

Intro: arithmetic operators

FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters

Conclusion

Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Computing just right

In a processor
the choice is between

- an integer SUV, or
- a floating-point SUV.

Computing just right

In a processor
the choice is between

- an integer SUV, or
- a floating-point SUV.

In an FPGA

- If all I need is a bicycle, I have the possibility to build a bicycle
- (and I'm usually faster to destination)

Computing just right

In a processor
the choice is between

- an integer SUV, or
- a floating-point SUV.

In an FPGA

- If all I need is a bicycle, I have the possibility to build a bicycle
- (and I'm usually faster to destination)

Save routing! Save power! Don't move useless bits around!

Busy until retirement (1)

An almost virgin land

Most of the arithmetic literature addresses the construction of SUVs.

Busy until retirement (2)

Designing the flexible parameters was only half of the problem...

- (the easy half)

The difficult half is: how to use them?

- What precision is required at what point of a computation

Thanks for your attention

The following people have contributed to FloPoCo:
S. Banescu, L. Besème, N. Bonfante,
M. Christ, N. Brunie, S. Collange, J. Detrey,
P. Echeverría, F. Ferrandi, L. Forget, M. Grad,
K. Illyes, M. Istoan, M. Joldes, J. Kappauf, C. Klein,
M. Kleinlein, M. Kumm, D. Mastrandrea, K. Moeller, B. Pasca, B. Popa, X. Pujol, G. Sergent, D. Thomas, R. Tudoran, A. Vasquez.

Example: floating-point exponential

Intro: arithmetic operators
FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters
Conclusion

Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

First, a math proficiency test

Three identities to remember from our happy school days

$$
\begin{gather*}
2^{X}=e^{X \log (2)} \tag{1}\\
e^{A+B}=e^{A} \times e^{B} \tag{2}\\
e^{Z} \approx 1+Z+\frac{Z^{2}}{2} \quad \text { if } Z \text { is small } \tag{3}
\end{gather*}
$$

We want to obtain e^{X} as

$$
e^{X}=2^{E} \cdot 1 . F
$$

We want to obtain e^{X} as

$$
e^{X}=2^{E} \cdot 1 . F
$$

Compute

$$
E \approx\left\lfloor\frac{X}{\log 2}\right\rceil
$$

We want to obtain e^{X} as

$$
e^{X}=2^{E} \cdot 1 . F
$$

Compute

$$
E \approx\left\lfloor\frac{X}{\log 2}\right\rceil
$$

then

$$
Y \approx X-E \times \log 2
$$

We want to obtain e^{X} as

$$
e^{X}=2^{E} \cdot 1 . F
$$

Compute

$$
E \approx\left\lfloor\frac{X}{\log 2}\right\rceil
$$

then

$$
Y \approx X-E \times \log 2
$$

Now

$$
\begin{aligned}
e^{X} & =e^{E \log 2+Y} \\
& =e^{E \log 2} \cdot e^{Y} \\
& =2^{E} \cdot e^{Y}
\end{aligned}
$$

We want to obtain e^{X} as

$$
e^{X}=2^{E} \cdot e^{Y}
$$

Now we have to compute e^{Y}

$$
\text { with } Y \in(-1 / 2,1 / 2)
$$

Split Y :

$Y=$| -1 | $-k$ | $-w_{F}-g$ | |
| :--- | :--- | :--- | :--- |
| | A | Z | |

i.e. write

$$
Y=A+Z \quad \text { with } \quad Z<2^{-k}
$$

We want to obtain e^{X} as

$$
e^{X}=2^{E} \cdot e^{Y}
$$

Now we have to compute e^{Y}

$$
\text { with } Y \in(-1 / 2,1 / 2)
$$

Split Y :

$Y=$| -1 | $-k$ | $-w_{F}-g$ | |
| :--- | :--- | :--- | :--- |
| | A | Z | |

i.e. write

$$
Y=A+Z \quad \text { with } \quad Z<2^{-k}
$$

SO

$$
e^{Y}=e^{A} \times e^{Z}
$$

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

Tabulate e^{A} in a ROM

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

Evaluation of $e^{Z}: \quad Z<2^{-k}$, so
$e^{Z} \approx 1+Z+Z^{2} / 2$

$$
e^{Z} \approx 1+Z+Z^{2} / 2
$$

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Evaluation of } e^{Z}: \quad Z<2^{-k} \text {, so } \\
& \qquad e^{Z} \approx 1+Z+Z^{2} / 2
\end{aligned}
$$

Notice that $e^{Z}-1-Z \approx Z^{2} / 2<2^{-2 k}$

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Evaluation of } e^{Z}: \quad Z<2^{-k} \text {, so } \\
& \qquad e^{Z} \approx 1+Z+Z^{2} / 2
\end{aligned}
$$

Notice that $e^{Z}-1-Z \approx Z^{2} / 2<2^{-2 k}$
Evaluate $e^{Z}-Z-1$ somewhow
(out of Z truncated to its higher bits only)

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

Evaluation of $e^{Z}: \quad Z<2^{-k}$, so

$$
e^{Z} \approx 1+Z+Z^{2} / 2
$$

Notice that $e^{Z}-1-Z \approx Z^{2} / 2<2^{-2 k}$
Evaluate $e^{Z}-Z-1$ somewhow
(out of Z truncated to its higher bits only) then add Z to obtain $e^{Z}-1$

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

Also notice that

$$
e^{z}=1 . \overbrace{000 \ldots-.000}^{k-1 \text { zeroes }} z z z z
$$

Evaluate $e^{A} \times e^{Z}$ as

$$
e^{A}+e^{A} \times\left(e^{Z}-1\right)
$$

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

Also notice that

$$
e^{z}=1 . \overbrace{000 \ldots-.000}^{k-1 \text { zeroes }} z z z z
$$

Evaluate $e^{A} \times e^{Z}$ as

$$
e^{A}+e^{A} \times\left(e^{Z}-1\right)
$$

(before the product, truncate e^{A} to precision of $e^{Z}-1$)

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

And that's it, we have E and e^{Y}

We want to obtain e^{X} as

$$
\begin{gathered}
e^{X}=2^{E} \cdot e^{Y} \\
e^{Y}=e^{A} \times e^{Z}
\end{gathered}
$$

And that's it, we have E and e^{Y} (using only fixed-point computations)

Single-precision magic

Modern FPGAs also have

Single-precision magic

Modern FPGAs also have

- small multipliers with pre-adders and post-adders

Single-precision magic

Modern FPGAs also have

- small multipliers with pre-adders and post-adders
- ... and dual-ported small memories

Single-precision magic

Modern FPGAs also have

- small multipliers with pre-adders and post-adders
- ... and dual-ported small memories

Single-precision accurate exponential on Xilinx

- one block RAM (0.1% of the chip)
- one DSP block (0.1\%)
- < 400 LUTs (0.1%, \approx one FP adder)
to compute one exponential per cycle at 500 MHz (\sim one AVX512 core trashing on its 16 FP32 lanes)

Single-precision magic

Modern FPGAs also have

- small multipliers with pre-adders and post-adders
- ... and dual-ported small memories

Single-precision accurate exponential on Xilinx

- one block RAM (0.1% of the chip)
- one DSP block (0.1\%)
- < 400 LUTs (0.1%, \approx one FP adder)
to compute one exponential per cycle at 500 MHz (\sim one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k! (over-parameterization is cool)

Example: fixed-point sine/cosine

Intro: arithmetic operators
FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters
Conclusion
Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Introduction

- Sine and cosine functions
- fundamental in signal processing and signal processing applications like FFT, modulation/demodulation, frequency synthesizers, ...
- How to compute them ? In this work:

1. the classical CORDIC algorithm, based on additions and shifts
2. a method based on tables and multipliers, suited for modern FPGAs
3. a generic polynomial approximation

Which is best on FPGAs?

- What is the cost of w bits of sine and cosine?

Which method is best on FPGAs?

A fair comparison of methods computing sine and cosine:

- same specification (the best possible one)
- Fixed-point inputs and outputs compute $\sin (\pi x)$ and $\cos (\pi x)$ for $x \in[-1,1)$
- Faithful rounding: all the produced bits are useful, no wasted resources

- same effort (the best possible one)
- open-source implementations in FloPoCo
- state-of-the-art?

Computing just one, or both?

- some applications need both sine and cosine (e.g. rotation)
- some methods compute both

Textbook Stuff

- Decomposition of the exponential in two
exponentials

$$
e^{i(a+b)}=e^{i a} \times e^{i b}
$$

- From complex to real

$$
e^{i \varphi}=\cos (\varphi)+i \sin (\varphi)
$$

- Decompose a rotation in smaller sub-rotations

$$
\left\{\begin{array}{l}
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \\
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
\end{array}\right.
$$

Argument Reduction

- based on the 3 MSBs of the input angle x
- s-sign
- q-quadrant
- o-octant
- remaining argument $y \in[0,1 / 4)$

$$
y^{\prime}=\left\{\begin{array}{c}
\frac{1}{4}-y \text { if } o=1 \\
y \text { otherwise }
\end{array}\right.
$$

- compute $\cos \left(\pi y^{\prime}\right)$ and $\sin \left(\pi y^{\prime}\right)$
- reconstruction:

sqo	Reconstruction
000	$\left\{\begin{array}{l}\sin (\pi x)=\sin \left(\pi y^{\prime}\right) \\ \cos (\pi x)=\cos \left(\pi y^{\prime}\right)\end{array}\right.$
001	$\left\{\begin{array}{l}\sin (\pi x)=\cos \left(\pi y^{\prime}\right) \\ \cos (\pi x)=\sin \left(\pi y^{\prime}\right)\end{array}\right.$
010	$\left\{\begin{array}{l}\sin (\pi x)=\cos \left(\pi y^{\prime}\right) \\ \cos (\pi x)=-\sin \left(\pi y^{\prime}\right)\end{array}\right.$
011	$\left\{\begin{array}{l}\sin (\pi x)=\sin \left(\pi y^{\prime}\right) \\ \cos (\pi x)=-\cos \left(\pi y^{\prime}\right)\end{array}\right.$

CORDIC Architecture

$$
\begin{aligned}
& \left\{\begin{aligned}
c_{0} & =\frac{1}{\Pi_{i=1}^{n} \sqrt{1+2^{-i}}} \\
s_{0} & =0 \\
\alpha_{0} & =y \quad \text { (the reduced argument) }
\end{aligned}\right. \\
& \left\{\begin{aligned}
d_{i} & =+1 \text { if } \alpha_{i}>0, \text { otherwise }-1 \\
c_{i+1} & =c_{i}-2^{-i} d_{i} s_{i} \\
s_{i+1} & =s_{i}+2^{-i} d_{i} c_{i} \\
\alpha_{i+1} & =\alpha_{i}-d_{i} \arctan \left(2^{-i}\right)
\end{aligned}\right.
\end{aligned}
$$

$$
\left\{\begin{aligned}
c_{n \rightarrow \text { inf }} & =\cos (y) \\
s_{n \rightarrow \text { inf }} & =\sin (y) \\
\alpha_{n \rightarrow \text { inf }} & =0
\end{aligned}\right.
$$

CORDIC Improvements

Reduced α-Datapath

- $\alpha_{i}<2^{-i}$
- decrement the α-datapath by 1 bit per iteration
- benefits
- saves space
- saves latency

CORDIC Improvements

Reduced Iterations

- stop iterations when they can be replaced by a single rotation, with enough accuracy

$$
\left\{\begin{array}{l}
\sin (\alpha) \simeq \alpha \\
\cos (\alpha) \simeq 1
\end{array}\right.
$$

- half the iterations replaced by

$$
\left\{\begin{array}{l}
x_{i+1}=x_{i}+\alpha \cdot y_{i} \\
y_{i+1}=y_{i}-\alpha \cdot x_{i}
\end{array}\right.
$$

CORDIC Improvements

Reduced Iterations

- stop iterations when they can be replaced by a single rotation, with enough accuracy

$$
\left\{\begin{array}{l}
\sin (\alpha) \simeq \alpha \\
\cos (\alpha) \simeq 1
\end{array}\right.
$$

- half the iterations replaced by

$$
\left\{\begin{array}{l}
x_{i+1}=x_{i}+\alpha \cdot y_{i} \\
y_{i+1}=y_{i}-\alpha \cdot x_{i}
\end{array}\right.
$$

- only 2 multiplications
- 2 DSPs for up to 32 bits
- truncated multiplications for larger sizes

CORDIC Error Analysis

Goal: last-bit accuracy of the result

- the result is within 1ulp of the mathematical result
- ulp $=$ weight of least significant bit Intermediate precision
- approximations and roundings \rightarrow computations on $\mathbf{w}+\mathbf{g}$ bits internally
- guard bits \mathbf{g}

Error budget: total of $1 \mathbf{u l p}$

- $\frac{1}{2} \mathbf{u l p}$ for the final rounding error
- $\frac{1}{4} \mathbf{u l p}$ for the method error
- $\frac{1}{4} \mathbf{u l p}$ for the rounding errors

CORDIC Error Analysis (1)

Analysis: method error ($\varepsilon_{\text {method }}$)

- $\varepsilon_{\text {method }}$ of the order of the value of $\alpha_{\text {final }}$
- $\alpha_{\text {final }}$ can be bounded numerically
\rightarrow number of iterations:
smallest number for which $\varepsilon_{\text {method }}<2^{-w-2}$

CORDIC Error Analysis (2)

Analysis: rounding errors $\left(\varepsilon_{\text {round }}\right)$
on the α datapath

- correct rounding of $\arctan \left(2^{-i}\right)$
error bounded by 2^{-w-g-1}
- total error on the α-datapath:

$$
\text { nb_iter } \times 2^{-w-g-1}
$$

on the $\sin ()$ and $\cos ()$ datapath

- for each shift operation, error bounded by 2^{-w-g}
- total error larger than on the α-datapath
- must be smaller than 2^{-w-2} :

$$
\varepsilon \times 2^{-w-g}<2^{-w-2}
$$

- this gives g
- $\varepsilon_{\text {method }}+\varepsilon_{\text {round }}<2^{-w-1}$

CORDIC Error Analysis (2)

Analysis: rounding errors ($\varepsilon_{\text {round }}$)
on the α datapath

- correct rounding of $\arctan \left(2^{-i}\right)$
error bounded by 2^{-w-g-1}
- total error on the α-datapath:

$$
\text { nb_iter } \times 2^{-w-g-1}
$$

on the $\sin ()$ and $\cos ()$ datapath

- for each shift operation, error bounded by 2^{-w-g}
- total error larger than on the α-datapath
- must be smaller than 2^{-w-2} :

$$
\varepsilon \times 2^{-w-g}<2^{-w-2}
$$

- this gives g
- $\varepsilon_{\text {method }}+\varepsilon_{\text {round }}<2^{-w-1}$

CORDIC Error Analysis (2)

Analysis: rounding errors ($\varepsilon_{\text {round }}$)
on the α datapath

- correct rounding of $\arctan \left(2^{-i}\right)$
error bounded by 2^{-w-g-1}
- total error on the α-datapath:

$$
\text { nb_iter } \times 2^{-w-g-1}
$$

on the $\sin ()$ and $\cos ()$ datapath

- for each shift operation, error bounded by 2^{-w-g}
- total error larger than on the α-datapath
- must be smaller than 2^{-w-2} :

$$
\varepsilon \times 2^{-w-g}<2^{-w-2}
$$

- this gives g
- $\varepsilon_{\text {method }}+\varepsilon_{\text {round }}<2^{-w-1}$

Table- and DSP-based method

Algorithm

- angle split: y (the reduced angle) $=t+y_{\text {red }}$
- t on a bits
- $y_{\text {red }}$ such that $y_{\text {red }}<2^{-(a+2)}$
- store $\sin (\pi t)$ and $\cos (\pi t)$ in tables
- evaluate $\sin \left(\pi y_{\text {red }}\right)$ and $\cos \left(\pi y_{\text {red }}\right)$ using a Taylor polynomial approximation
- need to compute first $z=y_{\text {red }} \times \pi$
- $\sin (z) \approx z-z^{3} / 6$
- $\cos (z) \approx 1-z^{2} / 2$
- reconstruct the values of $\sin (\pi y)$ and $\cos (\pi y)$ using

$$
\left\{\begin{array}{l}
\sin \left(\pi\left(t+y_{r e d}\right)\right)=\sin (\pi t) \cos \left(\pi y_{r e d}\right)+\cos (\pi t) \sin \left(\pi y_{r e d}\right) \\
\cos \left(\pi\left(t+y_{r e d}\right)\right)=\cos (\pi t) \cos \left(\pi y_{r e d}\right)-\sin (\pi t) \sin \left(\pi y_{r e d}\right)
\end{array}\right.
$$

Table- and DSP-based method

Algorithm

| $s \mid q$ | o | t | $y_{\text {red }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

- angle split: y (the reduced angle) $=t+y_{\text {red }}$
- t on a bits
- $y_{\text {red }}$ such that $y_{\text {red }}<2^{-(a+2)}$
- store $\sin (\pi t)$ and $\cos (\pi t)$ in tables
- evaluate $\sin \left(\pi y_{r e d}\right)$ and $\cos \left(\pi y_{\text {red }}\right)$ using a Taylor polynomial approximation
- need to compute first $z=y_{\text {red }} \times \pi$
- $\sin (z) \approx z-z^{3} / 6$
- $\cos (z) \approx 1-z^{2} / 2$
- reconstruct the values of $\sin (\pi y)$ and $\cos (\pi y)$ using

$$
\left\{\begin{array}{l}
\sin \left(\pi\left(t+y_{r e d}\right)\right)=\sin (\pi t) \cos \left(\pi y_{r e d}\right)+\cos (\pi t) \sin \left(\pi y_{r e d}\right) \\
\cos \left(\pi\left(t+y_{r e d}\right)\right)=\cos (\pi t) \cos \left(\pi y_{r e d}\right)-\sin (\pi t) \sin \left(\pi y_{r e d}\right)
\end{array}\right.
$$

Table- and DSP-based method

Algorithm

- angle split: y (the reduced angle) $=t+y_{\text {red }}$
- t on a bits
- $y_{\text {red }}$ such that $y_{\text {red }}<2^{-(a+2)}$
- store $\sin (\pi t)$ and $\cos (\pi t)$ in tables

- evaluate $\sin \left(\pi y_{\text {red }}\right)$ and $\cos \left(\pi y_{\text {red }}\right)$ using a Taylor polynomial approximation
- need to compute first $z=y_{\text {red }} \times \pi$
- $\sin (z) \approx z-z^{3} / 6$
- $\cos (z) \approx 1-z^{2} / 2$
- reconstruct the values of $\sin (\pi y)$ and $\cos (\pi y)$ using

$$
\left\{\begin{array}{l}
\sin \left(\pi\left(t+y_{r e d}\right)\right)=\sin (\pi t) \cos \left(\pi y_{r e d}\right)+\cos (\pi t) \sin \left(\pi y_{r e d}\right) \\
\cos \left(\pi\left(t+y_{r e d}\right)\right)=\cos (\pi t) \cos \left(\pi y_{r e d}\right)-\sin (\pi t) \sin \left(\pi y_{r e d}\right)
\end{array}\right.
$$

Table- and DSP-based method

Algorithm

- angle split: y (the reduced angle) $=t+y_{\text {red }}$
- t on a bits
- $y_{\text {red }}$ such that $y_{\text {red }}<2^{-(a+2)}$
- store $\sin (\pi t)$ and $\cos (\pi t)$ in tables

- evaluate $\sin \left(\pi y_{\text {red }}\right)$ and $\cos \left(\pi y_{\text {red }}\right)$ using a Taylor polynomial approximation
- need to compute first $z=y_{\text {red }} \times \pi$
- $\sin (z) \approx z-z^{3} / 6$
- $\cos (z) \approx 1-z^{2} / 2$
- reconstruct the values of $\sin (\pi y)$ and $\cos (\pi y)$ using

$$
\left\{\begin{array}{l}
\sin \left(\pi\left(t+y_{r e d}\right)\right)=\sin (\pi t) \cos \left(\pi y_{r e d}\right)+\cos (\pi t) \sin \left(\pi y_{r e d}\right) \\
\cos \left(\pi\left(t+y_{r e d}\right)\right)=\cos (\pi t) \cos \left(\pi y_{r e d}\right)-\sin (\pi t) \sin \left(\pi y_{r e d}\right)
\end{array}\right.
$$

Table- and DSP-based method

Algorithm

- angle split: y (the reduced angle) $=t+y_{\text {red }}$
- t on a bits
- $y_{\text {red }}$ such that $y_{\text {red }}<2^{-(a+2)}$
- store $\sin (\pi t)$ and $\cos (\pi t)$ in tables
- evaluate $\sin \left(\pi y_{r e d}\right)$ and $\cos \left(\pi y_{r e d}\right)$ using a Taylor polynomial approximation
- need to compute first $z=y_{\text {red }} \times \pi$
- $\sin (z) \approx z-z^{3} / 6$
- $\cos (z) \approx 1-z^{2} / 2$

- reconstruct the values of $\sin (\pi y)$ and $\cos (\pi y)$ using

$$
\left\{\begin{array}{l}
\sin \left(\pi\left(t+y_{r e d}\right)\right)=\sin (\pi t) \cos \left(\pi y_{r e d}\right)+\cos (\pi t) \sin \left(\pi y_{r e d}\right) \\
\cos \left(\pi\left(t+y_{r e d}\right)\right)=\cos (\pi t) \cos \left(\pi y_{r e d}\right)-\sin (\pi t) \sin \left(\pi y_{r e d}\right)
\end{array}\right.
$$

Table- and DSP-based method

Algorithm

- angle split: y (the reduced angle) $=t+y_{\text {red }}$
- t on a bits
- $y_{\text {red }}$ such that $y_{\text {red }}<2^{-(a+2)}$
- store $\sin (\pi t)$ and $\cos (\pi t)$ in tables
- evaluate $\sin \left(\pi y_{\text {red }}\right)$ and $\cos \left(\pi y_{\text {red }}\right)$ using a Taylor polynomial approximation
- need to compute first $z=y_{\text {red }} \times \pi$
- $\sin (z) \approx z-z^{3} / 6$
- $\cos (z) \approx 1-z^{2} / 2$
- reconstruct the values of $\sin (\pi y)$ and $\cos (\pi y)$ using

$$
\left\{\begin{array}{l}
\sin \left(\pi\left(t+y_{r e d}\right)\right)=\sin (\pi t) \cos \left(\pi y_{r e d}\right)+\cos (\pi t) \sin \left(\pi y_{r e d}\right) \\
\cos \left(\pi\left(t+y_{r e d}\right)\right)=\cos (\pi t) \cos \left(\pi y_{r e d}\right)-\sin (\pi t) \sin \left(\pi y_{r e d}\right)
\end{array}\right.
$$

Table- and DSP-based method: Details

- approximating $y^{\prime}=\frac{1}{4}-y_{\text {red }}$ as $\neg y_{\text {red }}$
- choose a such that $\frac{z^{4}}{24} \leq 2^{-w-g}$
- so that a degree-3 Taylor polynomial may be used
- means that $4(a+2)-2 \geq w+g$
- truncated multiplications
- constant multiplication by π
- $z^{2} / 2$
- computed using a squarer
- $z^{3} / 6$
- read from a table for small precisions
- computed with a dedicated architecture for larger precisions (based on a bit heap and divider by 3, see paper)

Table- and DSP-based method: Error Analysis

Error Analysis

- $\frac{1}{2}$ ulp lost per table
- 1ulp per truncation and truncated multiplier/squarer
- 1ulp for computing $\frac{1}{4}-y_{\text {red }}$ (as $\neg y_{\text {red }}$)
- total of 15ulp, independent of the input width
- \rightarrow gives $\mathrm{g}=4$

Polynomial-based method

- using existing software (more details in the reference)
- based on polynomial approximation
- computes only one of the functions, depending on an input

Results - 16-bit Precision

Approach	latency	frequency	Reg. + LUTs	BRAM	DSP
CORDIC	18	478	$969+1131$	0	0
CORDIC	14	277	$776+1086$	0	0
CORDIC	7	194	$418+1099$	0	0
CORDIC	3	97	$262+1221$	0	0
Red. CORDIC	16	273	$657+761$	0	2
Red. CORDIC	13	368	$625+719$	0	2
Red. CORDIC	7	238	$327+695$	0	2
Red. CORDIC	4	238	$106+713$	0	2
SinAndCos	4	298	$107+297$	0	5
SinAndCos	3	114	$168+650$	0	2
SinOrCos (d=2)	9	251	$136+183$	1	2
SinOrCos (d=2)	5	115.3	$87+164$	1	2

Synthesis Results on Virtex5 FPGA, Using ISE 12.1

Results - Highest Frequency

Approach	latency	frequency	Reg. + LUTs	BRAM	DSP
precision $=16$ bits					
CORDIC	18	478	$969+1131$	0	0
Red. CORDIC	13	368	$625+719$	0	2
SinAndCos	4	298	$107+297$	0	5
SinOrCos (d=2)	9	251	$136+183$	1	2

precision $=24$ bits					
CORDIC	28	439.9	$1996+2144$	0	0
Red. CORDIC	20	273.4	$1401+1446$	0	4
SinAndCos	5	262	$197+441$	3	7
SinOrCos (d=2)	9	251	$202+279$	2	2

precision $=32$ bits					
CORDIC	37	403.5	$3495+3591$	0	0
Red. CORDIC	24	256.8	$2160+2234$	0	4
SinAndCos	10	253	$535+789$	3	9
SinOrCos $(\mathrm{d}=3)$	14	251	$444+536$	4	5

precision $=40$ bits					
CORDIC	45	375	$5070+5289$	0	0
Red. CORDIC	37	252	$3695+3768$	0	8
SinAndCos (bit heap)	11	266	$895+1644$	3	12
SinAndCos (table $\left.z^{3} / 6\right)$	8	232	$500+949$	4	12
SinOrCos (d=3)	15	251	$628+725$	4	8

precision $=48$ bits					
SinAndCos (bit heap)	13	232	$1322+2369$	12	17
SinOrCos	15	250	$734+879$	17	10

Results - Options for $\frac{Z^{3}}{6}$

Approach	latency	frequency	Reg. + LUTs	BRAM	DSP
precision $=40$ bits					
CORDIC	45	375	$5070+5289$	0	0
CORDIC	25	149	$2948+5245$	0	0
Red. CORDIC	37	252	$3695+3768$	0	8
Red. CORDIC	9	123	$931+3339$	0	8
SinAndCos (bit heap)	11	266	$895+1644$	3	12
SinAndCos (table z	3 $/ 6)$	8	232	$500+949$	4
SinAndCos (bit heap)	4	154	$612+2826$	0	12
SinAndCos (table $\left.z^{3} / 6\right)$	4	156	$395+2268$	2	12
SinOrCos (d=3)	15	251	$628+725$	4	8
SinOrCos (d=3)	9	132	$376+675$	4	8

precision $=48$ bits					
SinAndCos (bit heap)	13	232	$1322+2369$	12	17
SinAndCos (bit heap)	6	132	$972+2133$	12	17
SinOrCos	15	250	$734+879$	17	10
SinOrCos	9	124	$431+823$	17	10

Conclusions

- A wide range of open-source accurate implementations
- CORDIC implementation on par with vendor-provided solutions
- some tuning still needed on DSP-based methods
- SinAndCos method overall best
- Little point in using unrolled CORDIC for FPGAs

Approach	latency	area
CORDIC 16 bits	30.3 ns	1034 LUTs
SinAndCos 16 bits	15.0 ns	1211 LUTs
CORDIC 24 bits	44.6 ns	2079 LUTs
SinAndCos 24 bits	17.0 ns	2183 LUTs
CORDIC 32 bits	62.1 ns	3513 LUTs
SinAndCos 32 bits	19.4 ns	3539 LUTs

What is the cost of computing w bits of sine/cosine?

Example: floating-point sums and sums of products

Intro: arithmetic operators

FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters
Conclusion
Example: floating-point exponential
Example: fixed point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Floating-point accumulation

Summing a large number of floating-point terms fast and accurately

Crucial for:

- Scientific computations:
- dot-product, matrix-vector product, matrix-matrix product
- numerical integration
- Financial simulations:
- Monte-Carlo simulations

Floating-Point(FP) numbers normalized binary FP number:

$$
x=(-1)^{S} \times 1 . f \times 2^{e}
$$

where:
S - the sign of x
f - the fraction of x.
e - the exponent of x

Floating-Point(FP) numbers normalized binary FP number:

$$
x=(-1)^{S} \times 1 . f \times 2^{e}
$$

where:
S - the sign of x
f - the fraction of x.
e - the exponent of x

- e gives the dynamic range
- IEEE-754 FP double precision, $e_{\text {min }}=-1022$ and $e_{\text {max }}=1023$

Floating-Point(FP) numbers normalized binary FP number:

$$
x=(-1)^{S} \times 1 . f \times 2^{e}
$$

where:
S - the sign of x
f - the fraction of x.
e - the exponent of x

- e gives the dynamic range
- IEEE-754 FP double precision, $e_{\min }=-1022$ and $e_{\max }=1023$
- number of bits of f gives the precision p
- IEEE-754 FP double precision, $\mathrm{p}=52$

Floating-Point(FP) numbers
normalized binary FP number:

$$
x=(-1)^{S} \times 1 . f \times 2^{e}
$$

where:
S - the sign of x
f - the fraction of x.
e - the exponent of x
Graphical representation:

Accumulation

Accuracy:

$$
\begin{array}{ll}
\text { Exact Result } & =50.2017822265625 \\
\text { FP Acc } & =50.125 \\
\text { Fixed-Point Acc } & =50.20166015625
\end{array}
$$

Closer look

Accumulator based on combinatorial floating-point adder

- very low frequency
- must pipeline for larger frequency

Closer look

Accumulator based on pipelined floating-point adder

- loop's critical path contains 2 shifters
- shifters are deeply pipelined
- produces k accumulation results
- these results have to be added somehow
- adder tree
- multiplexing mechanism on accumulation loop

Closer look

Accumulator based on proposed long accumulator

- no shifts on the loop's critical path
- returns the result of the accumulation in fixed point
- the alignment shifter pipeline depth does not concern the result

Accumulator Architecture

- the sum is kept as a large fixed-point number
- one alignment shift (size depends on $M a x M S B_{X}$ and $L S B_{A}$)
- the loop's critical path contains a fixed-point addition
- fixed-point addition is fast on current FPGAs

Fast Accumulator Design

The accumulator should run at a target frequency

Fast Accumulator Design

The accumulator should run at a target frequency

- 64 -bit addition works at 220 MHz on Xilinx Virtex4 FPGA due to fast-carry chains

Fast Accumulator Design

The accumulator should run at a target frequency

- 64 -bit addition works at 220 MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?

Fast Accumulator Design

The accumulator should run at a target frequency

- 64 -bit addition works at 220 MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
- cut large carry-propagation into chunks of k bits
- critical path $=k$-bit addition
- small cost: $\left\lfloor\right.$ width $\left._{\text {accumulator }} / k\right\rfloor$ registers

Fast Accumulator Design

The accumulator should run at a target frequency

- 64 -bit addition works at 220 MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
- cut large carry-propagation into chunks of k bits
- critical path $=k$-bit addition
- small cost: $\left\lfloor\right.$ width $\left._{\text {accumulator }} / k\right\rfloor$ registers

- shifters can be arbitrarily pipelined for a given frequency

We advocate:

An application tailored fixed-point accumulator for floating-point inputs

Ensuring that:

1. accumulator significand never needs to be shifted
2. it never overflows
3. provides a result as accurate as the application requires

Accumulator Parameters

The designer must provide values for these parameters.

Accumulator Parameters

$M S B_{A}$ the weight of the MSB of the accumulator

- must to be larger than max. expected result

The designer must provide values for these parameters.

Accumulator Parameters

$M S B_{A}$ the weight of the MSB of the accumulator

- must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

The designer must provide values for these parameters.

Accumulator Parameters

$M S B_{A}$ the weight of the MSB of the accumulator

- must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand
$L S B_{A}$ weight of the LSB of the accumulator

- determines the final accumulation accuracy

The designer must provide values for these parameters.

Application Tailored

Application dictates parameter values

Application Tailored

Application dictates parameter values
Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

Application Tailored

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

Application Tailored

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?
$M S B_{A} \bullet$ know an actual maximum +10 bits safety margin

- consider the number of terms to sum

Application Tailored

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?
$M S B_{A} \quad$ - know an actual maximum +10 bits safety margin

- consider the number of terms to sum
$M_{a x M S B}$ - exploit input properties + safety margin
- worst case: $M a x M S B_{X}=M S B_{A}$

Application Tailored

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?
$M S B_{A} \bullet$ know an actual maximum +10 bits safety margin

- consider the number of terms to sum
$M a x M S B X_{X}$
- exploit input properties + safety margin
- worst case: $M^{2} M S B_{X}=M S B_{A}$
$L S B_{A}$ precision vs. performance
- consider the desired final precision
- sum n terms, at most $\log _{2} n$ bits are invalid

Post-normalization unit, or not

- converts fixed-point accumulator format to floating-point
- pipelined unit may be shared by several accumulators
- less useful:
- many applications do not need the running sum
- better to do conversion in software, use FPGA to accelerate the computation

Performance results

Performance results

Relative error results

Accumulation of $\operatorname{FP}\left(w_{E}=7, w_{F}=16\right)$ in unif. $[0,1]$

- LongAcc $\left(M S B_{A}=20, L S B_{A}=-11\right)$

Accurate Sum-of-Products

Ideea

Accumulate exact results of all multiplications

1. Use exact multipliers:

- return all the bits of the exact product
- contain no rounding logic
- are cheaper to build

2. Feed the accumulator with exact multiplication results

Cost: Input shifter of accumulator is twice as large

Operator Performance

Operator Performance

The universal bit heap

Intro: arithmetic operators

FloPoCo, the user point of view
Example: fixed-point functions
Example: multiplication and division by constants
Example: FIR filters
Conclusion
Example: floating-point exponential
Example: fixed-point sine/cosine
Example: floating-point sums and sums of products
The universal bit heap

Introduction and motivation

So much VHDL to write, so few slaves to write it FPGA arithmetic the way it should be:

- An infinite number of application-specific operators
- Each heavily parameterized (bit-size, performance, etc)
- Portable to any FPGA, and even ASIC

How to ensure performance across all this range?

- object-oriented abstraction of vendor-specific features
- ... not enough

Portable versus optimized

I know how to optimize by hand each operator on each target

Portable versus optimized

I know how to optimize by hand each operator on each target
... But I don't want to do it.

Reducing the combinatorics

What is a bit heap?

- A data-structure
- capturing bit-level descriptions of a wide class of operators
- exposing bit-level parallelism and optimization opportunities
- An associated architecture generator

Reducing the combinatorics

Reducing the combinatorics

What is a bit heap?

- A data-structure
- capturing bit-level descriptions of a wide class of operators

Reducing the combinatorics

What is a bit heap?

- A data-structure
- capturing bit-level descriptions of a wide class of operators
- exposing bit-level parallelism and optimization opportunities

Reducing the combinatorics

What is a bit heap?

- A data-structure
- capturing bit-level descriptions of a wide class of operators
- exposing bit-level parallelism and optimization opportunities
- An associated architecture generator
which can be optimized for each target

Operations as bit heaps

Weighted bits

- Integers or real numbers represented in binary fixed-point

$$
x=\sum_{i=i_{\text {min }}}^{i_{\text {max }}} 2^{i} x_{i}
$$

- 2^{i} : "weight" $\Longrightarrow X$ "sum of weighted bits"

Representation as a dot diagrams

Example: 42 written in binary

Example: 17.42 written in binary

$$
\begin{aligned}
X Y & =\left(\sum_{i=i_{\min }}^{i_{\max }} 2^{i} x_{i}\right) \times\left(\sum_{j=j_{\min }}^{j_{\max }} 2^{j} y_{j}\right) \\
& =\sum_{i, j} 2^{i+j} x_{i} y_{j}
\end{aligned}
$$

The historical bit heap

The historical bit heap

A multiplier is an architecture that computes this sum.
Historical motivation for bit heaps
$\sum_{i, j} 2^{i+j} x_{i} y_{j}$ expresses the bit-level parallelism of the problem

The historical bit heap

A multiplier is an architecture that computes this sum.
Historical motivation for bit heaps
$\sum_{i, j} 2^{i+j} x_{i} y_{j}$ expresses the bit-level parallelism of the problem
(freedom thanks to addition associativity and commutativity)

Beyond product

$$
X Y=\sum_{i, j} 2^{i+j} x_{i} y_{j}
$$

Beyond product

Beyond product

$$
A+X Y=\sum_{w, h} 2^{w} b_{w, h}
$$

Beyond product

$$
A+X Y=\sum_{w, h} 2^{w} b_{w, h}
$$

When generating an architecture
consider only one big sum of weighted bits

- get rid of artificial sequentiality
(inside operators, and between operators)
- focus on true timing information (e.g. critical path delay of each weighted bit)
- A global optimization instead of several local ones (and solved by ILP)

Well beyond product

A bit heap is anything that can be developed as $\sum_{w, h} 2^{w} b_{w, h}$

- the sum of two bit heaps is obviously a bit heap
- the product of two bit heaps is also a bit heap

Well beyond product

A bit heap is anything that can be developed as $\sum_{w, h} 2^{w} b_{w, h}$

- the sum of two bit heaps is obviously a bit heap
- the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap
... where each $b_{w, h}$ is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

Well beyond product

A bit heap is anything that can be developed as $\sum_{w, h} 2^{w} b_{w, h}$

- the sum of two bit heaps is obviously a bit heap
- the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap
... where each $b_{w, h}$ is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

- A huge class of function may be approximated by polynomials
- The $b_{w, h}$ may be read from arbitrary look-up tables
- An operator may include several bit heaps

When you have a good hammer, you see nails everywhere

A sine/cosine architecture (HEART 2013)

When you have a good hammer, you see nails everywhere

A sine/cosine architecture (HEART 2013) with 5 bit heaps

A bit heap for $Z-Z^{3} / 6$ in the previous architecture

The constant vector

Quite often you need to add a constant to a bit heap:

- Rounding bit
- Constant coefficient
- Sign extension for two's complement (generalizating a classical multiplier trick)

To replicate bit s from weight p to weight q

- add \bar{s} at weight p.
- then add $2^{q}-2^{p}$ to the constant bit vector (a string of 1 's stretching from bit p to bit q)

This performs the sign extension both when $s=0$ and $s=1$.
All these constants may be pre-added, and only their sum added to the bit heap. Managing signed number costs at most one line in the bit heap.

Generating an architecture

Architecture computing the value of a bit heap

Elementary case 1: the compressor
A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

- archetype: the full adder is a 3 to 2 compressor

Architecture computing the value of a bit heap

Elementary case 1: the compressor
A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

	0
	0
0	0
0	0
0	0
1	1
00	000

- archetype: the full adder is a 3 to 2 compressor
- on a recent FPGA: a 6 to 3 compressor tabulated in 3 6-input LUTs.
- survey and refs in the FPL 2013 paper, see also papers by M. Kumm.

Architecture computing the value of a bit heap

Elementary case 1: the compressor
A compressor replaces a column of bits
by its sum written in binary (on fewer bits)

	0
	0
0	0
0	0
0	0
1	1
1	1
00	000

- archetype: the full adder is a 3 to 2 compressor
- on a recent FPGA: a 6 to 3 compressor
tabulated in 3 6-input LUTs.
- survey and refs in the FPL 2013 paper, see also papers by M. Kumm.

Elementary case 2: the adder

	An adder replaces two n-bit lines, and a carry	by a line of $n+1$ bits

Architecture computing the value of a bit heap

1. Compression

- Tile the bit heap with compressors
- use as many compressors in parallel as possible
- this produces a new, smaller bit heap
- ... in one LUT delay

- Start again on the compressed bit heap Stop when bit heap height equal to two

1000000
00000
\qquad

Architecture computing the value of a bit heap

1. Compression

- Tile the bit heap with compressors
- use as many compressors in parallel as possible
- this produces a new, smaller bit heap
- ... in one LUT delay

- Start again on the compressed bit heap

Stop when bit heap height equal to two

100000
000000
2. Final fast addition

- add the remaining two lines

Architecture computing the value of a bit heap

1. Compression

- Tile the bit heap with compressors
- use as many compressors in parallel as possible
- this produces a new, smaller bit heap
- ... in one LUT delay
- Start again on the compressed bit heap

Stop when bit heap height equal to two

- -000

2. Final fast addition

- add the remaining two lines

Both steps can be done in $\log n$ time and $n \log n$ area

Bit heaps and DSP blocks

Elementary case: the DSP block?

- Xilinx DSP blocks compute A + XY ($48+18 \times 25)$
- Altera DSP blocks compute XY (36×36)

$$
\text { or } \mathrm{AB} \pm \mathrm{CD}(18 \times 18+18 \times 18) \text { or } \ldots
$$

Really different architectures here

Bit heaps and DSP blocks

Elementary case: the DSP block?

- Xilinx DSP blocks compute A + XY ($48+18 \times 25$)
- Altera DSP blocks compute XY (36×36)

$$
\text { or } \mathrm{AB} \pm \mathrm{CD}(18 \times 18+18 \times 18) \text { or } \ldots
$$

Really different architectures here
Exemple: 53-bit truncated multiplier

Reconciling bit heaps and DSP blocks

Instanciating DSP blocks is part of the compression

- merge operands from various sources in a DSP
- unused DSP adders may remove random bits from the heap

Current status

So, does it work?

Benefits in terms of software engineering

- Reduction of FloPoCo code size
- Fewer obscure bugs hidden in obscure operators
- (I didn't say fewer bugs)

So, does it work?

Benefits in terms of software engineering

- Reduction of FloPoCo code size
- Fewer obscure bugs hidden in obscure operators
- (I didn't say fewer bugs)

Benefits in terms of performance
... thanks to operator fusion

- Already a few examples
- complex product
- cosine transforms
- Still work in progress
- improve compression heuristics
- fuse in all the integer adder variants
- rework the polynomial evaluator

Procress in the RitHean class henefits to manv nnerators

Generate VHDL, test bench, and nice clickable SVG graphics

Future work, from short-term to hopeless

- Adapt all the remaining operators to take advantage of bit heaps
- Improve the compression heuristics
done, thanks to Martin Kumm
- Automate some of the algebraic optimisations done by hand so far
- Answer open questions like:

How many bits must flip to compute 16 bits of $\sin (x)$?

