
Free and Open Source
Software for FPGA
development

Virtual | Feb | 2021

Rodrigo A. Melo

Joint ICTP-IAEA School on FPGA-based
SoC and its Applications for Nuclear and

Related Instrumentation | (smr 3562)

General-purpose

Outline

Simulation

1

2

3

Introduction

Frameworks and methodologies for
testing and verification4

Implementation5

Other tools/projects6

Boards7

Final words8

Introduction

What means FOSS?

● Free (as freedom) and Open Source (you can access the source code)
Software (programs).

● Solves the disambiguation between free software and open-source
software.

● Anyone is freely licensed to use, copy, study, and change the software.

Why to use FOSS?

General

● Personal control, customization and freedom

● Privacy and security

● Low or no costs (solutions and support)

● Quality, collaboration and efficiency

● High level of flexibility and open-standars adherence

● Innovation

Particular for FPGA development

● Vendor-independence

● Lightweight tools (size and speed)

General-purpose

Command-line shell

● Aka shell, terminal, console, bash, etc.

● Most projects provide one or more
Command-line interface (CLI) tool/s.

● It is common for Linux distributions.

● You can use the Windows Subsytem for
Linux (WSL), which is a compatibility
layer for running Linux binary
executables (probably with some
limitations).

● Is a distributed version control system.

● It was created in 2005 by Linus Torvalds, the Linux
kernel creator, for development of the Linux kernel.

● Is the de facto standard for FOSS projects.

● Allows you to deal with a software repository (repo),
managing versions and multiple users.

Git

“Take Concurrent Versions System (CVS) as an example of what not to do; if in doubt, make the
exact opposite decision” Linux Torvald, 2007

These platforms, which are
tools provided around Git,
are the nowadays online CV.

VM

Docker

App1

Guest
OS

VM

App2

Guest
OS

VM

App3

Guest
OS

Hypervisor

Host OS

Hardware Infrastructure

App1 App2 App3

Docker

Host OS

Hardware Infrastructure

Docker uses OS-level virtualization to deliver software in packages called
containers, which are isolated one from another and bundle their own software,
libraries and configuration files.

All containers are run
by a single OS Kernel and

therefore uses fewer
resources than VM.

Continuous integration, Delivery and
Deployment (CI/CD)

● Is to automatically perform an action based on a repository event (push,
merge, cron, etc).

● Continuous Integration: run linters, unit and/or integration tests,
Hardware-in-the loop simulation.

● Continuous Delivery: build binaries, documentation, packages, etc.

● Continuous Deployment: build and install in production.

Make

● Is a build automation tool.

● A Makefile contains a set of directives (targets, dependencies and rules)
which are used by make to generate a target/goal.

● It works upon the principle that files only needs to be recreated if their
dependencies are newer than the file being re/created.

● There are other newer tools such as CMake and Scons, but make is
definitively the building tool, and sometimes part of the execution, in the
FPGA ecosystem.

Python

● Is an interpreted, high-level and general-purpose programming language
(one of the most used in general, and the main in certain fields such as
Machine/Deep Learning).

● A lot of its libraries are written in C (performance).

● Easy to read and learn.

● Most FOSS FPGA tools are written in Python, or C/C++ with a Python
binding/wrapper.

● There are several HDL languages based on Python.

● Is also being used as verification language.

Simulation

VHDL simulator

● Analyzer, compiler, simulator and (experimental) synthesizer for VHDL.

● Full support for the 1987, 1993, 2002 versions of the IEEE 1076 VHDL standard,
and partial for the latest 2008 revision. Partial support of PSL (Property
Specification Language).

● It generates binaries to perform a simulation.

● Can write waveforms to VCD or GHW (recommended for VHDL) files.

Verilog simulators

● Verilog (IEEE-1364) simulator.

● It generates an intermediate file
format wich is after executed by
a command.

● Verilog/SystemVerilog simulator.

● Compiles into multithreaded C++.

● Performs lint code-quality checks.

Waveforms viewer

GTKWave is a fully featured
wave viewer which reads
LXT, LXT2, VZT, FST, and

GHW files as well as
standard Verilog

VCD/EVCD files and allows
their viewing

Frameworks and
methodologies for testing and
verification

● OSVVM: Open Source VHDL Verification Methodology

● UVVM: Universal VHDL Verification Methodology

● VUnit: unit testing framework for VHDL/SystemVerilog

● SVUnit: unit testing framework for Verilog/SystemVerilog

HDL based frameworks/methodologies

Python based testbenches

● cocotb: Coroutine Co-simulation Test Bench

● A coroutine based cosimulation library for writing VHDL and Verilog
testbenches in Python

● Supported simulators: ghdl, iverilog, verilator, Synopsys VCS, Aldec
Riviera-PRO, Aldec Active-HDL, Mentor Questa, Mentor ModelSim,
Cadence Incisive, Cadence Xcelium, Tachyon DA CVC.

Verification trends

Source: The 2020 Wilson Research Group Functional Verification Study

https://blogs.sw.siemens.com/verificationhorizons/2020/12/16/part-6-the-2020-wilson-research-group-functional-verification-study/

Formal verification

● SymbiYosys (sby): front-end driver program for Yosys-based formal
hardware verification flows.

● Formal Verification is the act of proving the correctness of intended
algorithms underlying a system with respect to a certain formal
specification or property, using formal methods of mathematics
(assumptions and assertions).

● Supports Verilog (free), VHDL and SystemVerilog (through verific with a
license).

Implementation
(HDL-to-Bitstream)

HDL-to-Bitstream main related tools

The graphic is based on work from Unai Martinez-Corral

Languages

The graphic is based on work from Unai Martinez-Corral

Synthesis - Yosys

The graphic is based on work from Unai Martinez-Corral

Is a framework for RTL
synthesis tools. It currently
has extensive Verilog-2005
support and provides a basic
set of synthesis algorithms
for various application
domains. It was the first
useful FOSS synthesizer.
Supports devices from Lattice
(iCE40 and ECP5), Xilinx
(Series 7, Ultrascale, and
others), Gowin, Achronix,
Intel, Microsemi, etc.

Is a framework for RTL
synthesis tools. It currently
has extensive Verilog-2005
support and provides a basic
set of synthesis algorithms
for various application
domains. It was the first
useful FOSS synthesizer.
Supports devices from Lattice
(iCE40 and ECP5), Xilinx
(Series 7, Ultrascale, and
others), Gowin, Achronix,
Intel, Microsemi, etc.

Is to convert an abstract specification of a
circuit (being an HDL a common input) into a
design implementation in terms of the basic
blocks supported by the chosen technology

(being a netlist the output).

Is to convert an abstract specification of a
circuit (being an HDL a common input) into a
design implementation in terms of the basic
blocks supported by the chosen technology

(being a netlist the output).

Synthesis - GHDL

The graphic is based on work from Unai Martinez-Corral

GHDL: the open-source
analyzer, compiler, simulator
and (experimental, general
purpose) synthesizer for VHDL.

ghdl-yosys-plugin: VHDL
synthesis, based on GHDL and
Yosys.

GHDL: the open-source
analyzer, compiler, simulator
and (experimental, general
purpose) synthesizer for VHDL.

ghdl-yosys-plugin: VHDL
synthesis, based on GHDL and
Yosys.

Is to convert an abstract specification of a
circuit (being an HDL a common input) into a
design implementation in terms of the basic
blocks supported by the chosen technology

(being a netlist the output).

Is to convert an abstract specification of a
circuit (being an HDL a common input) into a
design implementation in terms of the basic
blocks supported by the chosen technology

(being a netlist the output).

Place & Route

The graphic is based on work from Unai Martinez-Corral

Place and Route is the stage where the logic
elements are placed and interconnected on

the FPGA.

Place and Route is the stage where the logic
elements are placed and interconnected on

the FPGA.

Arachne-pnr

Bitstream Generation

The graphic is based on work from Unai Martinez-Corral

Is to pack the result of the P&R into a FPGA
configuration file.

Is to pack the result of the P&R into a FPGA
configuration file.

Programming

● OpenOCD: Free and Open On-Chip Debugging, In-System
Programming and Boundary-Scan Testing

● UrJTAG: universal JTAG library, server and tools.

● iceprog: programmer of the IceStorm project (FTDI-based
programmers).

● ecpprog: programmer for the Lattice ECP5 series (FTDI-based
programmers).

● openFPGALoader: universal utility for programming FPGA.

● dfu-util: Device Firmware Upgrade Utilities (intended to
download/upload firmware to devices connected over USB).

Others tools/projects

Project Managers

● HDLmake: tool for generating multi-purpose makefiles for FPGA
projects.

● edalize: a Python Library for interacting with EDA tools (was part of
FuseSoC, now its build backend).

● PyFPGA: A Python package to use FPGA development tools
programmatically.

● Supports Synthesis, Implementation, Bitstream generation and
Programming from Python.

● Supports ISE, Vivado, Quartus, Libero-SoC and open-source tools
(Yosys, GHDL, ghdl-yosys-plugin, nextpnr, icestorm, trellis).

● Helpers: hdl2bit, prj2bit & bitprog.

Libraries, Collections, IP Cores

● PoC (Pile of Cores Library): a library of free, open-source and platform
independent IP cores.

● FuseSoC: package manager and build abstraction tool (edalize) for
FPGA/ASIC development.

● Litex: a Migen/MiSoC based SoC builder that provides the infrastructure to
easily create Cores/SoCs

● OpenCores and LibreCores: collections of IP-cores.

 There are lot of FOSS projects at GitHub and GitLab.

Softcores

● Leon 3 (Gaisler):

– Is a synthesisable VHDL model of a 32-bit processor compliant with
the SPARC V8 architecture.

– GNU GPL license for research and education.

– Distributed as part of the GRLIB.

● OpenRISC:

– Specification OpenRISC 1000 (32/64 bits)

– The flagship implementation, the OR1200, is written in Verilog.

– Distributed as part of OpenRISC Reference Platform System-on-Chip
(ORPSoC).

Softcores - Legacy

● Leon 3 (Gaisler):

– Is a synthesisable VHDL model of a 32-bit processor compliant with
the SPARC V8 architecture.

– GNU GPL license for research and education.

– Distributed as part of the GRLIB.

● OpenRISC:

– Specification OpenRISC 1000 (32/64 bits)

– The flagship implementation, the OR1200, is written in Verilog.

– Distributed as part of OpenRISC Reference Platform System-on-Chip
(ORPSoC).

Softcores - RISC V

Softcores - RISC V

Softcores - RISC V

TerosHDL

Icestudio

Boards (Open Hardware)

Kicad

Kicad – CIAA ACC

12 Layers!!! Based on a Zynq-7030

Some ICE40 based boards

FOMU iCEBreaker iCESugar

IceZUM Alhambra / Alhambra II TinyFPGA BX

Some ECP5 based boards

ULX3S

OrangeCrab

TinyFPGA EX

Some other boards

QuickFeather – EOS S3

S7 mini – Spartan 7

Final words

How to find projects and be updated?
Organizations

* Free and Open
Source Silicon

The GCC for FPGAs

Yosys

nextpnr
ICE40

nextpnr
ECP5

nextpnr
others

VTR

Project
IceStorm

Project
Trellis

Other
projects

Project
X-Ray

El Correo
Libre

* Monthly newsletter

SBY

MCY

nMigen

others

How to find projects and be updated?
People

mithro

@mithro

Tim 'mithro' Ansell

umarcor

Unai Martinez-Corral

Verilog, Synthesis, Yosys VHDL, Simulation, GHDL

How to find projects and be updated?
hdl/awesome

https://github.com/hdl/awesome
https://hdl.github.io/awesome

https://github.com/hdl/awesome
https://hdl.github.io/awesome

How to obtain updated tools

● Several projects provide Dockerfiles or nighty builds to test its development.

● YosysHQ/fpga-toolchain: Multi-platform nightly builds of open source FPGA
tools.

● hdl/MINGW-packages: Electronic design automation (EDA) package recipes
for MinGW-w64 (MSYS2).

● hdl/containers: Building and deploying container images for open source
electronic design automation (EDA).

● ghdl/docker: Scripts to build and use docker images including GHDL.

https://github.com/YosysHQ/fpga-toolchain
https://github.com/hdl/MINGW-packages
https://github.com/hdl/containers
https://github.com/ghdl/docker

Docker example

● Install Docker following the instructions for your OS.

● Run: $DOCKER <CONTAINER> <TOOL> <OPTIONS>

$ DOCKER="docker run --rm -v $HOME:$HOME -w $PWD"

$ $DOCKER ghdl/ghdl:buster-mcode ghdl --version
GHDL 2.0.0-dev (v1.0.0-13-gad9906d3) [Dunoon edition]
 Compiled with GNAT Version: 8.3.0
 mcode code generator
Written by Tristan Gingold.

Copyright (C) 2003 - 2021 Tristan Gingold.
GHDL is free software, covered by the GNU General Public License. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

$ $DOCKER hdlc/yosys yosys --version
Yosys 0.9+3894 (git sha1 eff18a2b, clang 7.0.1-8+deb10u2 -fPIC -Os)

The first run of
a tool, or when
outdated, will
produce the pull
of a new image
from Dockerhub.

https://docs.docker.com/engine/install/

rmelo@inti.gob.ar

rodrigoalejandromelo

@rodrigomelo9ok

rodrigomelo9

rodrigomelo9

mailto:rmelo@inti.gob.ar
https://www.linkedin.com/in/rodrigoalejandromelo/
https://twitter.com/rodrigomelo9ok
https://github.com/rodrigomelo9
https://gitlab.com/rodrigomelo9

Thank you www.inti.gob.ar

consulta@inti.gob.ar

0800 444 4004

INTIArg

@INTIargentina

INTI

@intiargentina

canalinti

If you want to know more about
INTI, we wait for you at

Joint ICTP-IAEA School on FPGA-based
SoC and its Applications for Nuclear and

Related Instrumentation | (smr 3562)

This work is licensed under CC BY 4.0

https://creativecommons.org/licenses/by/4.0

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53

