

Single-lepton final state: the case of t-channel pair-top-quark production

Student: Angie Milena Sánchez Méndez

Supervisors: Dr. Arturo Sánchez & Dr. Luis A. Núñez

Bucaramanga, Colombia.

Outline

- My motivation
- Knowing the project
- What was done by ATLAS collaboration?
- Our contribution

My motivation

Passion

For theoretical and computational elementary particle research (specially quarks), going deeper into its implications in phenomena already known, such as the mass and charge in fundamental particles and beyond the SM.

Collaborate with Atlas experiment

It is one of the most important detectors in particle physics capable of discovering new particles and new phenomena expected from extensions of the Standard Model such as supersymmetry or dark energy/matter.

Help others

Encourage scientific dissemination by making ATLAS data science a few more comprehensible and accessible for students or even teachers and lecturers interested in fundamental research.

Knowing the project

7-8/Oct/2019 - Data Science Workshop lectured by Dr. Arturo Sánchez at Universidad industrial de Santander (UIS), Santander Colombia.

[2]

What was done by ATLAS collaboration?

ATLAS PUB Note PUB-OTRC-2020-01 22nd January 2020

Review of the 13 TeV ATLAS Open Data release

The ATLAS Collaboration

The ATLAS Collaboration is releasing a new set of proton–proton collision data to the public for educational purposes. The data has been collected by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy $\sqrt{s} = 13$ TeV during the year 2016 and corresponds to an integrated luminosity of 10 fb⁻¹. This dataset is accompanied by simulated events describing both several Standard Model processes, as well as hypothetical Beyond Standard Model signal production. Associated computing tools are provided to make the analysis of the dataset easily accessible. This document summarises the properties of the 13 TeV ATLAS Open Data set and the available analysis tools. Several examples intended as a starting point for further analysis work by users are shown. The general aim of the dataset and tools released is to provide user-friendly and straightforward interactive interfaces to replicate the procedures used by high-energy-physics researchers and enable users to experience the analysis of particle-physics data in educational environments.

What was done by ATLAS collaboration?

ERN

Review of the 13 TeV ATLAS Open Data release

The ATLAS Collaboration

The ATLAS Collaboration is releasing a new set of proton–proton collision data to the public for educational purposes. The data has been collected by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy $\sqrt{s} = 13$ TeV during the year 2016 and corresponds to an integrated luminosity of 10 fb⁻¹. This dataset is accompanied by simulated events describing both several Standard Model processes, as well as hypothetical Beyond Standard Model signal production. Associated computing tools are provided to make the analysis of the dataset easily accessible. This document summarises the properties of the 13 TeV ATLAS Open Data set and the available analysis tools. Several examples intended as a starting point for further analysis work by users are shown. The general aim of the dataset and tools released is to provide user-friendly and straightforward interactive interfaces to replicate the procedures used by high-energy-physics researchers and enable users to experience the analysis of particle-physics data in educational environments.

Contents

1

23

	Intro	oduction	-
1	Over	view of 13 TeV ATLAS Open Data	3
	13 T	eV ATLAS Open Data physics analysis examples	6
	3.1	Single-lepton final state: the case of SM W-boson production	8
1	3.2	Single-lepton final state: the case of <i>t</i> -channel single-top-quark production	8
1	3.3	Single-lepton final state: the case of top-quark pair production	10
	3.4	Two-lepton final state: the case of SM Z-boson production	13
	3.5	Two-lepton final state: the case of SM Higgs boson production in the $H \rightarrow WW^*$ decay	
		channel	13
	3.6	Two-lepton final state: the case of a search for supersymmetric particles	16
1	3.7	Three-lepton final state: the case of SM $W^{\pm}Z$ diboson production	16
	3.8	Four-lepton final state: the case of SM ZZ diboson production	19
	3.9	Four-lepton final state: the case of SM Higgs boson production in the $H \rightarrow ZZ^*$ decay	
		channel	19
1	3.10	Two- τ -lepton final state: the case of SM Z-boson production	22
	3.11	Single-lepton boosted final state: the case of a search for BSM $Z' \rightarrow t\bar{t}$	23
	3.12	Two-photon final state: the case of SM Higgs boson production in the $H \rightarrow \gamma \gamma$ decay channel	24

What was done by ATLAS collaboration?: Specific example

ATLAS Open Data C++ framework for 13 TeV analyses

artfisica input path to public repo		d148200 on 27 Jan 🕚 History
HWWAnalysis	input path to public repo	9 months ago
HZZAnalysis	input path to public repo	9 months ago
HyyAnalysis	input path to public repo	9 months ago
SUSYAnalysis	input path to public repo	9 months ago
SingleTopAnalysis	input path to public repo	9 months ago
TTbarAnalysis	input path to public repo	9 months ago
WBosonAnalysis	input path to public repo	9 months ago
WZDiBosonAnalysis	input path to public repo	9 months ago
ZBosonAnalysis	input path to public repo	9 months ago
ZPrimeBoostedAnalysis	input path to public repo	9 months ago
ZTauTauAnalysis	input path to public repo	9 months ago
ZZDiBosonAnalysis	input path to public repo	9 months ago
clean.sh	general cleaning	9 months ago

[2]

GitHub

₿ master - atlas-outreach-cpp-	framework-13tev / Analysis / TTbarAnalysis /	Go to file Add file *
This branch is 16 commits behind atlas-o	utreach-data-tools:master.	🖏 Pull request 🗈 Compare
artfisica input path to public repo		d148288 on 27 Jan 🕚 History
TTbarAnalysis.C	general cleaning	9 months ago
TTbarAnalysis.h	general cleaning	9 months ago
TTbarAnalysisHistograms.h	general cleaning	9 months ago
🗅 main_TTbarAnalysis.C	input path to public repo	9 months ago
🗅 run.sh	general cleaning	9 months ago

What was done by ATLAS collaboration? Specific example: Important remark

[1]

General selection criteria

Electron (e)	Muon (μ)	Photon (γ)
InDet & EMCAL rec.	InDet & MS rec.	InDet & EMCAL rec.
loose identification	loose identification	tight identification
loose isolation	loose isolation	loose isolation
$p_{\rm T} > 7 { m GeV}$	$p_{\rm T} > 7 { m ~GeV}$	$E_{\rm T} > 25 { m GeV}$
$ \eta < 2.47$	$ \eta < 2.5$	$ \eta < 2.37$
Hadronically decaying τ -leptons	(τ_h) Small- <i>R</i> jets	Large-R jets
Hadronically decaying τ -leptons InDet & EMCAL rec.	(τ_h) Small- <i>R</i> jets	0 0
		0 0
InDet & EMCAL rec.	Herramienta EMCAL & HCAL rec.	EMCAL & HCAL rec.
InDet & EMCAL rec. medium identification	Heramieta EMCAL & HCAL rec. anti- k_t , R = 0.4	EMCAL & HCAL rec. anti- k_t , R = 1.0

Figure a)

Specific criteria for Top quark pair production

- Single-electron or single-muon satisfied
 Exactly one lepton (electron/muon) with P_T > 30 Gev
 Missing transverse momentum E_T^{Miss} larger than 30 Gev
 Transverse mass of the W-boson M_T^W larger than 30 Gev
 - At least four jets with $P_T > 30$ Gev, where at least two are b-tagged

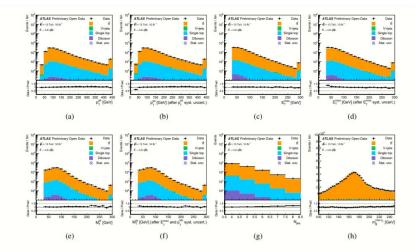


Figure 3: Comparison between data and MC prediction for several distributions in the $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell\nu q\bar{q}'b\bar{b}$ selection. Distributions of the leading selected jet transverse momentum (a) before and (b) after a jet energy scale systematic uncertainty variation, missing transverse momentum (c) before and (d) after E_T^{miss} scale and resolution systematic uncertainty variation, transverse mass of the W-boson (e) before and (f) after E_T^{miss} and lepton scale and resolution systematic uncertainty variatios, (g) number of selected jets and (h) invariant mass of the three-jets combination with the highest vector p_T sum are shown. The points represent experimental data. The filled histograms show the prediction from different MC simulations. The contributions are stacked. The statistical uncertainty is represented by the error bars on the data points and the hashed area on the MC prediction. The last bin in all figures contains the overflow. The lower panels in each figure show the ratio of the data points to the stacked histogram.

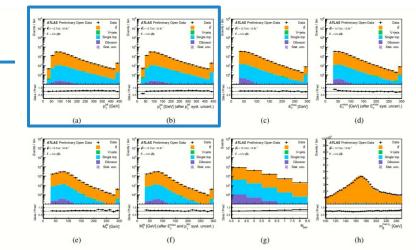
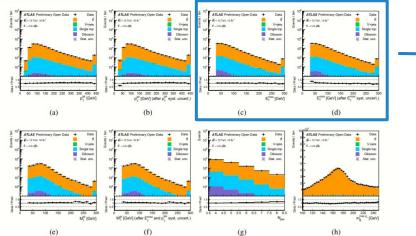



Figure 3: Comparison between data and MC prediction for several distributions in the $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell\nu q\bar{q}'b\bar{b}$ selection. Distributions of the leading selected jet transverse momentum (a) before and (b) after a jet energy scale systematic uncertainty variation, missing transverse momentum (c) before and (d) after E_T^{miss} scale and resolution systematic uncertainty variation, transverse mass of the W-boson (e) before and (f) after E_T^{miss} and lepton scale and resolution systematic uncertainty variatios, (g) number of selected jets and (h) invariant mass of the three-jets combination with the highest vector p_T sum are shown. The points represent experimental data. The filled histograms show the prediction from different MC simulations. The contributions are stacked. The statistical uncertainty is represented by the error bars on the data points and the hashed area on the MC prediction. The last bin in all figures contains the overflow. The lower panels in each figure show the ratio of the data points to the stacked histogram.

Leading selected jet transverse moment

10

(d) y Open Data + Data y Upen Bright poor Singht poor Singht poor Singht poor

[1]

Missing transverse moment

Figure 3: Comparison between data and MC prediction for several distributions in the $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell\nu q\bar{q}'b\bar{b}$ selection. Distributions of the leading selected jet transverse momentum (a) before and (b) after a jet energy scale systematic uncertainty variation, missing transverse momentum (c) before and (d) after E_T^{miss} scale and resolution systematic uncertainty variation, transverse mass of the W-boson (e) before and (f) after the E_T^{miss} and lepton scale and resolution systematic uncertainty variatios, (g) number of selected jets and (h) invariant mass of the three-jets combination with the highest vector p_T sum are shown. The points represent experimental data. The filled histograms show the prediction from different MC simulations. The contributions are stacked. The statistical uncertainty is represented by the error bars on the data points and the hashed area on the MC prediction. The last bin in all figures contains the overflow. The lower panels in each figure show the ratio of the data points to the stacked histogram.

11

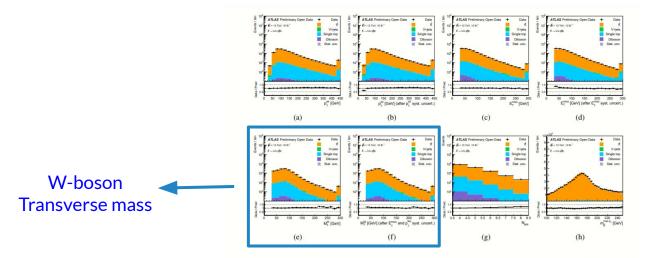


Figure 3: Comparison between data and MC prediction for several distributions in the $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell\nu q\bar{q}'b\bar{b}$ selection. Distributions of the leading selected jet transverse momentum (a) before and (b) after a jet energy scale systematic uncertainty variation, missing transverse momentum (c) before and (d) after E_T^{miss} scale and resolution systematic uncertainty variation, transverse mass of the W-boson (e) before and (f) after E_T^{miss} and lepton scale and resolution systematic uncertainty variatios, (g) number of selected jets and (h) invariant mass of the three-jets combination with the highest vector p_T sum are shown. The points represent experimental data. The filled histograms show the prediction from different MC simulations. The contributions are stacked. The statistical uncertainty is represented by the error bars on the data points and the hashed area on the MC prediction. The last bin in all figures contains the overflow. The lower panels in each figure show the ratio of the data points to the stacked histogram.

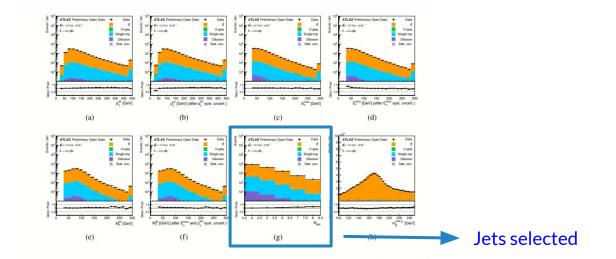


Figure 3: Comparison between data and MC prediction for several distributions in the $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell\nu q\bar{q}'b\bar{b}$ selection. Distributions of the leading selected jet transverse momentum (a) before and (b) after a jet energy scale systematic uncertainty variation, transverse mass of the W-boson (c) before and (d) after E_T^{miss} and lepton scale and resolution systematic uncertainty variation, transverse mass of the W-boson (e) before and (f) after E_T^{miss} and lepton scale and resolution systematic uncertainty variatios, (g) number of selected jets and (h) invariant mass of the three-jets combination with the highest vector p_T sum are shown. The points represent experimental data. The filled histograms show the prediction from different MC simulations. The contributions are stacked. The statistical uncertainty is represented by the error bars on the data points and the hashed area on the MC prediction. The last bin in all figures contains the overflow. The lower panels in each figure show the ratio of the data points to the stacked histogram.

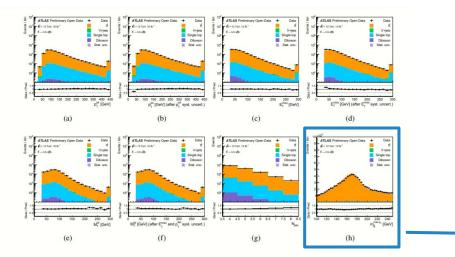


Figure 3: Comparison between data and MC prediction for several distributions in the $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell\nu q\bar{q}'b\bar{b}$ selection. Distributions of the leading selected jet transverse momentum (a) before and (b) after a jet energy scale systematic uncertainty variation, transverse mass of the W-boson (c) before and (d) after E_T^{miss} and lepton scale and resolution systematic uncertainty variation, transverse mass of the W-boson (e) before and (f) after E_T^{miss} and lepton scale and resolution systematic uncertainty variatios, (g) number of selected jets and (h) invariant mass of the three-jets combination with the highest vector p_T sum are shown. The points represent experimental data. The filled histograms show the prediction from different MC simulations. The contributions are stacked. The statistical uncertainty is represented by the error bars on the data points and the hashed area on the MC prediction. The last bin in all figures contains the overflow. The lower panels in each figure show the ratio of the data points to the stacked histogram.

Invariant mass of the three-jets combination

[1]

14

Our contribution in 3 steps

Reproduce

Analyse

Optimize

By compiling the code in order to obtain the same histograms as shown in the review.

The results understanding the phenomena in every histogram result. The computational code and results to make it faster with theoretical step by step description.

References

- [1] Atlas Collaboration. (2020). Review of the 13 TeV ATLAS Open Data release. ATL-OREACH-PUB-2020-001.
- [2] Angélica Blanco Ríos Radio Nacional Bucaramanga, 21 Junio, 2017. Telescopio hecho en Santander estudiará los volcanes de Colombia. Recuperado de:

https://www.radionacional.co/noticia/actualidad/telescopio-hecho-santand er-estudiara-los-volcanes-de-colombia

• [3] Atlas Collaboration. (2020). ATLAS Open Data C++ framework for 13 TeV analyses. Recuperado de:

https://github.com/angie-sanchez/atlas-outreach-cpp-framework-13tev/blo b/master/Analysis/TTbarAnalysis/main_TTbarAnalysis.C

Thank you!