

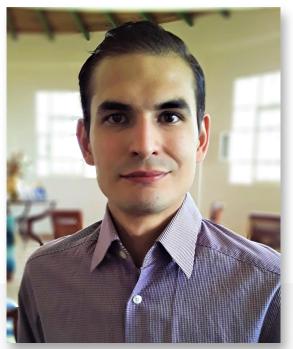
University of the Andes - CEVALE2VE Mérida, Venezuela

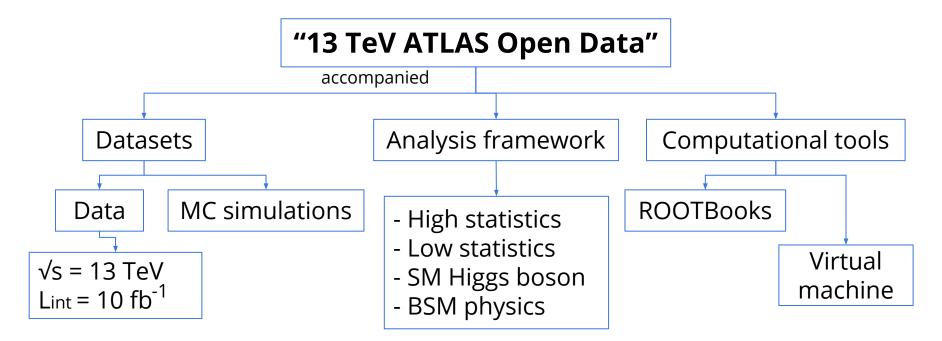
Overview: Optimization proposal to computational analysis of the Higgs boson in the decay channel $H \rightarrow ZZ^* \rightarrow 4I$ at $\sqrt{s} = 13$ TeV using ATLAS Open Data

> Br. Oscar Alejandro Altuve Pabón Supervisor: Dr. Arturo Sánchez Pineda

October 22, 2020

About me...




Oscar Alejandro, Altuve Pabón Venezuelan, born in Mérida

Physics student Faculty of Science University of the Andes Mérida, Venezuela

IFP, CEVALE2VE Course in 2019

Online documentation:

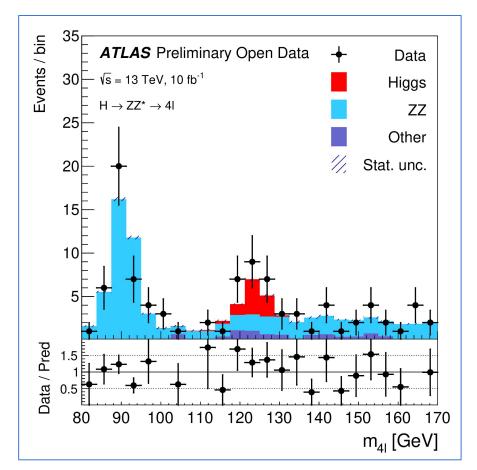


Figure 1: The 13 TeV ATLAS Open Data, hosted on the CERN and ATLAS Open Data online portals [1].

Four-lepton final state

The case of SM Higgs boson production in the $H \rightarrow ZZ^* \rightarrow 4I$ decay channel

- The so-called "golden channel" of the Higgs boson.
- 0.0124% branching fraction into final states with electrons or muons.
- Small background contamination.

Figure 2: The four-lepton invariant mass m₄ distribution in selected events are shown. [2]

Research objectives

Overall objective

Propose an optimization to the computational analysis of the Higgs boson in the decay channel $H \rightarrow ZZ^* \rightarrow 4l$ at $\sqrt{s}=13$ TeV using ATLAS Open Data in Jupyter Notebook with ROOT C++ kernel.

Specific objectives

- Reproduce the computational analysis of the Higgs boson in the decay channel $H \rightarrow ZZ^* \rightarrow 4l$ at $\sqrt{s}=13$ TeV of ATLAS Open Data in Jupyter Notebook with ROOT C++ kernel.
- Discuss the results obtained in Jupyter Notebook with ROOT C++ kernel with the computational analysis of the Higgs boson from ATLAS Open Data in the decay channel $H\rightarrow$ ZZ* \rightarrow 4l at \sqrt{s} =13 TeV.
- Optimize the computational analysis of the Higgs boson in the decay channel $H \rightarrow ZZ^* \rightarrow 4l$ at $\sqrt{s}=13$ TeV based on the discussion of results.

Scope

In accordance with: ATLAS Open Data's overall goal for the published dataset and tools [2].

Via: The "Jupyter Notebooks" software tool.

With: "ROOT C++" analysis framework.

The proposed research will contribute to the reproduction of the software tool and will also propose an optimization to "C++ framework for the 13 TeV ATLAS Open Data analysis" [3], for the example of the Higgs boson in the decay channel $H \rightarrow ZZ^* \rightarrow 4l$ in Jupyter Notebooks with ROOT C++ kernel.

References

[1] ATLAS Collaboration, "ATLAS Open Data 13 TeV Documentation," ATLAS Experiment, [Online]. Available: http://opendata.atlas.cern/release/2020/documentation/index.html. [Accessed 13 October 2020].

[2] ATLAS Collaboration, "Review of the 13 TeV ATLAS Open Data release," CERN, January 2020. [Online]. Available: https://cds.cern.ch/record/2707171. [Accessed 13 October 2020].

[3] ATLAS Outreach data and tools, "C++ framework for the 13 TeV ATLAS Open Data analysis," atlas-outreach-data-tools, 28 April 2020. [Online]. Available: https://github.com/atlas-outreach-data-tools/atlas-outreach-cpp-framework-1 3tev. [Accessed 13 October 2020].

References

[4] ATLAS Collaboration, "Exploring the Higgs boson "discovery channels"," ATLAS Experiment, 12 July 2019. [Online]. Available: https://atlas.cern/updates/physics-briefing/exploring-higgs-discovery-channels . [Accessed 13 October 2020].

[5] J. M. Perkel, "Why Jupyter is data scientists' computational notebook of choice," Springer Nature Limited, 30 October 2018. [Online]. Available: https://www.nature.com/articles/d41586-018-07196-1. [Accessed 13 October 2020].

[6] "About ROOT," ROOT Team, [Online]. Available: https://root.cern/about/. [Accessed 13 October 2020].