QCD Physics for Colliders Hetteo Cacclari LPTHE and Université de PJis

Lecture 2
Collider kinematics QCD Lagrangian

Kinematical variables at hadron colliders
The variables that we use are suggestad/constrained by the geometry of the unachine/detectors
Pp beams collide herd-on at the center of cylindrical detectors (exapt LHCs , beam on fixed target in order to boost the collision frame and cave longest decay lengths)

- we detect partides on the surface of a cylinder
- we cannot look down the beam pipe, so we privilege "Tromshesse" quantities

We start by defining a polar angle θ

and ven azimuthal angle φ

We often measure transverse emuggy

$$
E_{T} \equiv E \sin \theta
$$

or a transverse momentum $\left|\vec{P}_{T}\right|$

We write the momenta of the incoming protons as

$$
P_{A}=\frac{\sqrt{5}}{2}(1,0,0,1) \quad P_{B}=\frac{\sqrt{5}}{2}(1,0,0,1)
$$

and of course $\left(P_{A}+P_{B}\right)^{2}={ }^{2} P_{A} \cdot P_{1}=S$ centre-ofsquared.
we also anticipate that what collides are constituents of the protons with momenta

$$
P_{a}=x_{1} P_{A} \quad P_{b}=x_{2} P_{B}
$$

so the can energy of the collision is in fact

$$
\sqrt{\hat{s}}=\sqrt{\left(x_{1} P_{A}+x_{2} P_{B}\right)^{2}}=\sqrt{x_{1} x_{2} 2 P_{A} P_{B}}=\sqrt{x_{1} x_{2} S}
$$

An outgoing momentern p^{μ} cam be written as

$$
P^{\mu}=(E, \underbrace{|\vec{p}| \sin \theta \cos \varphi,|\vec{p}| \sin \theta \sin \varphi}_{\vec{P}_{T}}, \underbrace{|\vec{P}| \cos \theta}_{P_{11}=P_{z}})
$$

with $E^{2}=P_{T}^{2}+P_{11}^{2}+m^{2}$

We introduce
Transverse mass $\quad m_{t} \equiv \sqrt{P_{T}^{2}+m^{2}}$
and
Rapidity $y \equiv \frac{1}{2} \log \frac{E+P_{z}}{E-P_{z}}$
and $a\left(\delta 0 \quad y=\frac{1}{2} \log \frac{\left(E+p_{z}\right)}{\left(E-P_{z}\right)} \frac{\left(E+p_{z}\right)}{\left(E+P_{z}\right)}=\frac{1}{2} \log \frac{\left(E+P_{z}\right)^{2}}{E-P_{z}^{2}}\right.$

$$
=\frac{1}{2} \log \frac{E+P_{z}}{m_{T}^{2}}=\log \frac{E+P_{z}}{m_{T}}
$$

One can slow that one can rewrite

$$
P^{\mu}=(\underbrace{\left(m_{T} \cosh g\right.}_{E}, P_{T} \cos \varphi, P_{T} \sin \varphi, \underbrace{m_{T} \sinh y}_{P_{z}})
$$

[see explicit calculation in next page]

Proof

$$
\begin{align*}
& y=\frac{1}{2} \log \frac{E+P_{z}}{E-P_{7}} \\
& \Rightarrow \quad e^{2 g}=\frac{E+P_{z}}{E-P_{t}}=\frac{\left(E+P_{t}\right)^{2}}{E^{2}-P_{t}^{2}}=\frac{\left(E+P_{t}\right)^{2}}{P_{T}^{2}+m^{2}} \\
& \Rightarrow \quad e^{y}=\frac{E+p_{z}}{m_{T}} \\
& \text { Also, } e^{2 g}=\frac{E+p_{z}}{E-p_{t}}=\frac{E^{2}-p_{t}^{2}}{\left(E-p_{z}\right)^{2}}=\frac{m_{t}^{2}}{\left(E-P_{z}\right)^{2}} \\
& \Rightarrow e^{y}=\frac{m_{T}}{E-p_{t}} \Rightarrow D e^{-y}=\frac{E-p_{z}}{m_{T}} \\
& \begin{aligned}
\Rightarrow D \quad \begin{array}{l}
m_{T} e^{y}=E+P_{t} \\
m_{T} e^{-y}=E-P_{t}
\end{array} \left\lvert\,+\quad \begin{array}{l}
m_{T} e^{y}=E+P_{t} \\
\frac{m_{T}\left(e^{y}+e^{-y}\right)=2 E}{e^{-y}=E-P_{+}}
\end{array} \quad-\right. \\
m_{T}\left(e^{y}-e^{-y}\right)=2 P_{t}
\end{aligned} \\
& E=m_{T} \frac{\frac{11}{\nu}}{2} \\
& P_{t}=\frac{e^{y}-e^{-y}}{2} \\
& =m_{T} \cosh g \quad=m_{T} \sinh y
\end{align*}
$$

Why rapidity?
When $x_{1} \neq x_{2}$, the centre of comas of the collision is boosted with respect to the centre of mass of the pp system.
Rapidity has the property that it transforms additively under a boost:

$$
\begin{aligned}
y^{\prime} & =y+w \\
\rightarrow \quad \Delta y & =y_{1}-y_{2}=\Delta y^{\prime} \text { inlationt }
\end{aligned}
$$

Praof
Boont in positive z disection of 'freme Lorenty transformation

$$
\left\{\begin{array}{l}
\binom{E^{\prime}}{P_{z}^{\prime}}=\left(\begin{array}{cc}
\gamma & -\beta \gamma \\
-\beta \gamma & \gamma
\end{array}\right)\binom{\epsilon}{P_{z}} \\
P_{T}^{\prime}=P_{T}
\end{array}\right.
$$

and one can rewrite the loventy transt. as

$$
\begin{aligned}
& \gamma=\cosh u \\
& \gamma \beta=\sinh u
\end{aligned} \quad\left(\gamma=\frac{1}{\sqrt{1-\beta^{2}}}\right)
$$

$\Rightarrow E^{\prime}=\gamma E-\beta \gamma p_{z}=$
$=(\cosh \omega) E-(\sinh \omega) P_{z}$
$=(\cosh \omega) m_{T} \cosh y-(\sinh \omega) m_{T} \sinh y$
$=m_{T}(\cosh \omega \cosh y-\sinh \omega \sinh y)$
$=m_{T} \cosh (y-w)$
and $P_{z}^{\prime}=m_{T}(\sinh y \cosh w-\cosh y \sinh w)$

$$
=m_{T} \sinh (y-w r)
$$

\Rightarrow the boosted monoutans

$$
P^{\mu^{\prime}}=\left(m_{T} \cosh (y-w), \vec{P}_{T}, m_{T} \sinh (y-w)\right)
$$

corresponds, as said, to a rapidity y-w.

Ropidity is useful because we can use it to semite the losentt-invariant phase space

$$
d^{4} p \delta^{+}\left(p^{2}-m^{2}\right)=\frac{d^{3} p}{2 E}=\frac{1}{2} d p_{T}^{2} d y d \varphi
$$

One can show that, in the can. free of a collision,

$$
\left(y_{c m}\right)_{m 2 k}=\log \left(\frac{\sqrt{s}}{m}\right)
$$

For the $\angle H C, \sqrt{s}=14 \mathrm{Ter}$, and 1 Ger particle (typical hadron),' $\left.y_{\text {cm }}\right)_{\text {uzi }} \approx 9$
In practice, less, because not all the energy of the machine goes into the collision

Psendorepidity y
For a masslars particle, $m=0$, we have

$$
m_{T}=\sqrt{y n^{2}+P_{T}^{2}}=P_{T} \quad \text { and } E=|\vec{P}|
$$

$\Rightarrow E=P_{T} \cosh y$ and $P_{z}=P_{T} \sinh y$

$$
=D E+P_{t}=P_{T}(\cosh y+\sinh y)=P_{T} e^{y}
$$

This means that, for $m=0$,

$$
\begin{aligned}
y & =\log \frac{E+P_{z}}{P_{T}}=\frac{|\bar{p}|+|\vec{p}| \cos \theta}{|\vec{p}| \sin \theta} \\
& =\log \frac{1+\cos \theta}{\sin \theta}=\log \frac{1+\cos \theta}{\sqrt{1-\cos ^{2} \theta}} \\
& =\log \frac{1+\cos \theta}{\sqrt{(1+\cos \theta)} \sqrt{(1-\cos \theta)}} \\
& =\log \frac{\sqrt{1+\cos \theta}}{\sqrt{1-\cos \theta}}=\log \frac{2 \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}} \\
& =-\log \operatorname{tg} \frac{\theta}{2} \equiv \eta
\end{aligned}
$$

Pseudorapidity is a pusely geometrical variable.
It has no special boost property, but it can be used to locate partides on the detector cylinder.

"Central events" $\left(P_{z} \simeq 0\right)$ correspond to $y \simeq 0$ (i.e. $\theta \simeq \frac{\pi}{2}=90^{\circ}$)
"Forward events" hake large y (at th CHC the undin components of a detector typically go until $\eta \approx 2-3$, i.e. $\left.\theta \simeq 5^{\circ}-15^{\circ}\right)$

When $E \gg \mathrm{~cm}$, one can use psendorap(easily pinpointed in the detector) to apposcimate the rapidity of a particle, $x \simeq y$, while the weagutenent of y tegnites the knowledge of both E and P_{z}

For massive particles these is a Jacobian between rapidity and psendorppidity distributions

$$
\frac{d N}{d v}=\sqrt{1-\frac{m^{2}}{m_{T}^{2} \cosh ^{2} y}} \frac{d N}{d y}
$$

$Q C D$
With a better drawing (from Gavin Solan) we depict the QCD shells as

Sisal state

Lord interaction initial state

We shall describe QCD tads and techniques to address these three stages (which are not fully independent/ independently defined)
Note however that we shall concentrate on the perturbative parts of the description
\rightarrow wont talk about underlying event or hadronizstion

Also note that the fact that we can calculate anything at all in strong interactions should not be underestimated:

In the '50s/'60s: aFT
"We are driven to the conclusion that the Hamiltonian method for strong interactions is dead and must be buried, although of course with deserved honor"

Lev Landau
"The correct theory [of strong interactions] will not be found in the next hundred years"

Freeman Dyson

The fact that today we have QCD and can calculated at least some selected observables with an o(1%) accuracy is nothing. Short of a huge achievent in HEP

What is QCD?
It is a non-abelian local gauge theory, with matter fermions in the fundamental representation of the SU(3) colour group (the quarks) and bought of inge fields (the g(coons) in the adjoint representation
The lagrangian is invariant under the local grange transformations

$$
\begin{aligned}
& \psi_{b} \rightarrow \psi_{a}=e^{i \theta^{c}(x) t_{a b}^{c}} \psi_{b} \\
& A_{\mu}^{c} t^{c} \rightarrow A_{\mu}^{c} t_{g^{c}}+1\left(\partial_{\mu} \theta^{c}(x)\right) t^{c}+i\left[t^{c}, t^{D}\right] \theta^{c}(x) A_{\mu}^{D}
\end{aligned}
$$

The $t_{a b}^{c}$ unstrices are the 8 generators of the fundamental representation of the SU(3) group

The group is defined by the Lie algebra of its geneverors:

$$
\left[t^{A}, t^{B}\right]=i \underbrace{f^{A B C}}_{\substack{\text { structure } \\ \text { constants }}} t^{c}
$$

Problem 9.2 Gell-Mann matrices. The Gell-Mann matrices,

$$
\begin{array}{lll}
\lambda_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] & \lambda_{2}=\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right] & \lambda_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\lambda_{4}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] & \lambda_{5}=\left[\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right] & \lambda_{6}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
\lambda_{7}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right] & & \lambda_{8}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right],
\end{array}
$$

are the generalization to $\operatorname{SU}(3)$ of the Pauli matrices. The quantities $\frac{1}{2} \lambda_{i}$ are the generators of the $\mathfrak{s u}(3)$ Lie algebra (ie. they form a basis for this algebra).

The (conventional) normalisation of the generators is such that

$$
\begin{aligned}
& \operatorname{Tr}\left(t^{A} t^{B}\right)=\frac{1}{2} \delta^{A B} \equiv T_{F} \delta^{A B} \\
\Rightarrow \quad t^{A} \equiv & \frac{\lambda^{A}}{2}
\end{aligned}
$$

This also fixes the $f^{A B C}$ (or viceversa)

The QCD Lagrangian is similar to QED, Sit with crucial differences

$$
\begin{aligned}
& \mathcal{L}_{\text {QED }}=\bar{\psi}(i \gamma-m) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-e \bar{\psi} \gamma_{\mu} A^{\mu} \psi \\
& \text { with } F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
& \mathcal{L}_{\alpha C D}=\sum_{\text {f(sbanss }} \bar{\psi}_{i}\left(i \gamma-m_{i}\right) \psi_{i}-\frac{1}{4} F_{\mu \nu}^{c} F^{c, \mu \nu}-\sum g \bar{\psi}_{i} \gamma_{\mu} A^{c} \mu \epsilon^{c} \psi_{i} \\
& \text { with } F_{\mu \nu}^{c}=\partial_{\mu} A_{\nu}^{c}-\eta_{\nu} A_{\mu}^{c}+g f^{C A B} A_{\mu}^{A} A_{\nu}^{B}
\end{aligned}
$$

and $f^{A B C}$ are the structure constants of the lie group defined by the commutation gules of its generators
Note that the generator matrix $t_{a b}^{c}$ acts onto the colour indics of a fermion:

$$
t^{c} \psi_{i}=\left(t^{c}\right)_{a b} \psi_{b i}=\left(\begin{array}{ll}
\cdots & \cdot \\
\cdots & \cdot \\
\cdots
\end{array}\right)\left(\begin{array}{l}
\cdot \\
i \\
i n d o u r \\
\text { index }
\end{array}\right)
$$

What ase the differnuas with QED? Expanding the QCD Lagrangian we get

$$
\begin{aligned}
\Rightarrow \mathcal{L} & =\sum \bar{\psi}_{i}\left(i \partial-m_{i}\right) \psi_{i} \\
& -\frac{1}{4} \sum\left(\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}\right)^{2} \\
& +g \bar{\psi}_{i} \gamma^{\mu} \omega_{m} A_{\mu}^{c} t^{c} \psi_{i} \\
& -g f^{A B C}\left(\rho_{\mu} A_{\nu}^{A}\right) A^{\mu B} A^{\nu c} \\
& -\frac{g^{2}}{4} f^{E A B} A_{\mu}^{A} A_{\nu}^{B} f^{E C D} A^{\mu C} A^{\mu \Delta}
\end{aligned}
$$

\qquad
(tghonts...) Frodeer-Popor

$$
\mathcal{L}_{\text {ghant }}=\bar{c}^{A}\left(-\partial^{\mu} D_{\mu}^{A C}\right) c^{c} \quad A \ldots \ldots B^{B} \frac{i \delta^{A B}}{p^{2}}
$$

