Refinement of the search for BSM particles in the process Z' -> tt at sqrt(s) = 13 TeV with single-lepton boosted final state in the ATLAS experiment

Reategui Rojas, Erick Jhordan^{1,2} Sánchez Pineda, Arturo^{3,4} Tovar Landeo, Renato^{1,2}

¹Faculty of Physical Sciences, UNMSM ²Faculty of Science, UNI ³ATLAS Experiment ⁴ICTP

Introduction

Due to its mass close to the electroweak symmetry breaking scale, the top quark, besides having a large coupling to the SM Higgs boson, is predicted to have large couplings to new particles hypothesised in many BSM models[2]

This analysis is focused on implementing the selection criteria of a search for BSM Z' particles that decay into top-quark pairs in events containing a single

Event selection criteria

The event selection proceeds with the following steps:

Event cleaning requirement	 All subsystems working acceptably n_{tracks_associated_with_primary_vertex} >= 2
Charged-lepton selection	■ 1^{st} lep with $p_T >= 30 GeV$ (matching trigger e) ■ If there is 2^{nd} lep it must have $p_T <= 25 GeV$
Leptonic-W selection	$W \rightarrow l + E_{\pi}^{miss}$

charged lepton, large-R jets and missing transverse momentum.

Figure 1: $Z' \to t\bar{t}$ [2]

The

into:

made

Data

the

CERNS's

analysis

One

as described in 2

requires that the Z' decays

meaning its products are a

b-jet and a leptonic-W wich

decays to one charged

lepton and a neutrino, and

a hadronic-top decaying to

a b-jet and an hadronic-W,

This analysis are being

(*.root files) provided by

initiative[1]

program for

Particle Physics ROOT.

processing and analysis in

ATLAS

using

the

data

Open

and

data

selection

leptonic-top,

Event selection criteria

Figure 2: $t\bar{t}$ decays [2]

The event selection criteria are applied to the following physics objects (and to the Missing) transverse momentum E_T^{miss} :

 $\blacksquare W \to l + E_T^{miss}:$ $E_T^{miss} > 20 GeV$ $E_T^{miss} + m_T^W > 60 GeV$

b-tagging

 $\square n_{b-taggedtrack-jet} >= 1$

Classification into Boosted or Resolved selection Based on the hadronic activity:

Leptonic-top	 ■ Events required: n_{small-R_jet} >= 1 ■ no b-tagging required ■ Not well separated from lepton:
b-jet	(jet, lepton) < 1.5 ■ If new n_{small-R_jet} > 1 then highest p_T jet is chosen as j_{sel} ■ b_{jet} from: t_{lep} → b + W_{lep} ■ *Better resolution for m_{tt̄} than others based on b-tagging or info. of top candidate mass
Hadronic-top jet	 Events required: n_{large-R_jet} >= 1 top tagging required Well separated from Leptonic-top: ∆Φ(j_{top}, lepton) > 2.3 and ∆R(j_{top}, j_{sel}) > 1.5 If new n_{large-R_jet} > 1 then highest p_T jet is chosen as hadronic-top jet top_{jet} from: Z' → t_{lep} + t_{had}

R = 0.4	$p_T > 25 GeV$	*jet-vertex tagger requirement
	$ \eta < 2.5$	92% efficiency
	$(p_T < 60 GeV)$	rejecting 98%
	$ (\eta < 2.4)$	
R = 1.0	$p_T > 25 GeV$	*top-tagged
Subjets:	$ \eta < 2.0$	80% for selecting top-quark
R = 0.2		
$p_T < 0.05 p_T^{totaljet}$		
R = 0.2	$p_T > 10 GeV$	$*n_{ch,part} >= 2$
	$ \eta < 2.5$	$p_T > 0.4 GeV$ and $ \eta < 2.5$
		*b-tagged
		*b-tagged small R jets [$\Delta R(j_{calo}, j_{track}) < 0.4$]
		70% efficiency
Isolation:	$n_{\rm T} > 25 GeV$	*Not heavy flavor decays (is part of jet or μ ?):
	1 -	$\Delta R(from, nearest, jet) >= 0.04 + 10 GeV/p_T^{\mu}$ (μ stay)
	$\eta < 2.0$	Or $\Delta I(J + 0)I(T, HCur CSC, JCC) > = 0.04 + 1000CV / P_T (\mu Stay)$
$100cv/p_T < \Delta n < 0.0$		$n_{tracks, of, jets} < 3$ (jet removed and μ stay)
Isolation:	$E_T > 25 GeV$	*tight likelihood-based requirement
	1	*Not jet energy deposit (is e or $E_{deposit}$?):
		and
\perp morent track norm μ		*Overlap removal:
		$\Delta R_{from,new,nearest,small,jet} >= 0.4$ (e stay)
	R = 1.0 Subjets: $R = 0.2$ $p_T < 0.05p_T^{totaljet}$ $R = 0.2$ Isolation: $\sum (p_T in\Delta R) < 0.06p_T^{\mu}$ $10GeV/p_T^{\mu} < \Delta R < 0.3$ Isolation: $\sum (p_T in\Delta R) < 0.06p_T^{\mu}$ $10GeV/p_T^{\mu} < \Delta R < 0.2$	$\begin{aligned} & \eta < 2.5 \\ & \eta < 2.5 \\ &(p_T < 60 GeV) \\ &(\eta < 2.4) \end{aligned}$ $R = 1.0 \\ &\text{Subjets:} \\ R = 0.2 \\ &p_T < 0.05 p_T^{totaljet} \\ R = 0.2 \end{aligned}$ $p_T > 10 GeV \\ & \eta < 2.5 \end{aligned}$ $p_T > 10 GeV \\ & \eta < 2.5 \end{aligned}$ $p_T > 25 GeV \\ & \eta < 2.5 \end{aligned}$

Mass reconstruction

An observable that approximates the mass of the "tt" system must be constructed by summing the four-momentum of the top-tagged large-R jet, the charged lepton and the b-tagged small-R jet associated with the lepton. in the analysis taken from the ATLAS Open Data examples[1], the neutrino momentum is not added, this is a way to take it into account, from [2]:

Hadronic-top candidate	Four momentum of the hadronic-top jet
Leptonic-top candidate	four-momenta of the charged lepton + four-momenta of the neutrino candidate + four-momenta of the $j_{sel}(Leptonic - top_b - jet)$ $E_T^{\nu_{candidate}} = E_T^{miss}$ $P_t^{\nu} = E_T^{miss}$ P_z^{ν} estimated assuming ν and l come from on-shell W and imposing W mass constraint If no real solution found, a mismeasurement of E_T^{miss} is assumed and it is re-scaled and rotated by the minimal amount until a real solution is found If more than 1 solution found, smallest absolute value is taken
m _{tt}	Four momentum of the hadronic-top jet

References

ATLAS COLLABORATION, *Review of the 13 TeV ATLAS Open Data release* [online] Retrieved from:

https://cds.cern.ch/record/2707171/files/ANA-0TRC-2019-01-PUB-updated.pdf, 2020.

ATLAS COLLABORATION, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at s = 13 TeV with the ATLAS detector [online] Retrieved from:

https://link.springer.com/article/10.1140/epjc/s10052-018-5995-6, 2018.

Perspectives

- The task of this thesis is to reconstruct the complete "tt" system and either confirm or deny whether this makes a significant difference in the results of the analysis.
- The addition of the neutrino momentum introduces a challenge due to the reconstruction of its z component.

MAIN NATIONAL UNIVERSITY

OF SAN MARCOS

Faculty of Physical Sciences

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS Physics Without Frontiers

