# Refinement of the search for BSM particles in the process Z' -> tt at sqrt(s) = 13 TeV with single-lepton boosted final state in the ATLAS experiment

# Reategui Rojas, Erick Jhordan<sup>1,2</sup> Sánchez Pineda, Arturo<sup>3,4</sup> Tovar Landeo, Renato<sup>1,2</sup>

<sup>1</sup>Faculty of Physical Sciences, UNMSM <sup>2</sup>Faculty of Science, UNI <sup>3</sup>ATLAS Experiment <sup>4</sup>ICTP

# Introduction

Due to its mass close to the electroweak symmetry breaking scale, the top quark, besides having a large coupling to the SM Higgs boson, is predicted to have large couplings to new particles hypothesised in many BSM models[2]

This analysis is focused on implementing the selection criteria of a search for BSM Z' particles that decay into top-quark pairs in events containing a single



# Event selection criteria

#### The event selection proceeds with the following steps:

| Event cleaning requirement  | <ul> <li>All subsystems working acceptably</li> <li>n<sub>tracks_associated_with_primary_vertex</sub> &gt;= 2</li> </ul> |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Charged-lepton<br>selection | ■ $1^{st}$ lep with $p_T >= 30 GeV$ (matching trigger e)<br>■ If there is $2^{nd}$ lep it must have $p_T <= 25 GeV$      |
| Leptonic-W selection        | $M \longrightarrow 1 \perp F^{miss}$                                                                                     |

#### charged lepton, large-R jets and missing transverse momentum.

# Figure 1: $Z' \to t\bar{t}$ [2]

The

into:

made

Data

the

CERNS's

analysis

One

as described in 2

requires that the Z' decays

meaning its products are a

b-jet and a leptonic-W wich

decays to one charged

lepton and a neutrino, and

a hadronic-top decaying to

a b-jet and an hadronic-W,

This analysis are being

(\*.root files) provided by

initiative[1]

program for

Particle Physics ROOT.

processing and analysis in

ATLAS

using

the

data

Open

and

data

selection

leptonic-top,

### Event selection criteria



Figure 2:  $t\bar{t}$  decays [2]

The event selection criteria are applied to the following physics objects (and to the Missing) transverse momentum  $E_T^{miss}$ :

 $\blacksquare W \to l + E_T^{miss}:$  $E_T^{miss} > 20 GeV$  $E_T^{miss} + m_T^W > 60 GeV$ 

b-tagging

 $\square n_{b-taggedtrack-jet} >= 1$ 

#### **Classification into Boosted or Resolved selection** Based on the hadronic activity:

| Leptonic-top        | <ul> <li>Events required: n<sub>small-R_jet</sub> &gt;= 1</li> <li>no b-tagging required</li> <li>Not well separated from lepton:</li></ul>                                                                                                                                                                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b-jet               | (jet, lepton) < 1.5 <li>If new n<sub>small-R_jet</sub> &gt; 1 then highest p<sub>T</sub> jet is chosen as j<sub>sel</sub></li> <li>b<sub>jet</sub> from: t<sub>lep</sub> → b + W<sub>lep</sub></li> <li>*Better resolution for m<sub>tt̄</sub> than others based on b-tagging or info. of top candidate mass</li>                                                                                                                |
| Hadronic-top<br>jet | <ul> <li>Events required: n<sub>large-R_jet</sub> &gt;= 1</li> <li>top tagging required</li> <li>Well separated from Leptonic-top:<br/>∆Φ(j<sub>top</sub>, lepton) &gt; 2.3 and ∆R(j<sub>top</sub>, j<sub>sel</sub>) &gt; 1.5</li> <li>If new n<sub>large-R_jet</sub> &gt; 1 then highest p<sub>T</sub> jet is<br/>chosen as hadronic-top jet</li> <li>top<sub>jet</sub> from: Z' → t<sub>lep</sub> + t<sub>had</sub></li> </ul> |

| Small-R    | R = 0.4                                              | $p_T > 25 GeV$     | *jet-vertex tagger requirement                                          |
|------------|------------------------------------------------------|--------------------|-------------------------------------------------------------------------|
| jets       |                                                      | $ \eta  < 2.5$     | 92% efficiency                                                          |
| -          |                                                      | $(p_T < 60 GeV)$   | rejecting 98%                                                           |
|            |                                                      | $ ( \eta  < 2.4)$  |                                                                         |
| Large-R    | R = 1.0                                              | $p_T > 25 GeV$     | *top-tagged                                                             |
| jets       | Subjets:                                             | $ \eta  < 2.0$     | 80% for selecting top-quark                                             |
|            | R = 0.2                                              |                    |                                                                         |
|            | $p_T < 0.05 p_T^{totaljet}$                          |                    |                                                                         |
| Track-jets | R = 0.2                                              | $p_T > 10 GeV$     | $*n_{ch,part} >= 2$                                                     |
|            |                                                      | $ \eta  < 2.5$     | $p_T > 0.4 GeV$ and $ \eta  < 2.5$                                      |
|            |                                                      |                    | *b-tagged                                                               |
|            |                                                      |                    | *b-tagged small R jets [ $\Delta R(j_{calo}, j_{track}) < 0.4$ ]        |
|            |                                                      |                    | 70% efficiency                                                          |
| Muon       | Isolation:                                           | $p_T > 25 GeV$     | *Not heavy flavor decays (is part of jet or $\mu$ ?):                   |
|            | $\sum (p_T in \Delta R) < 0.06 p_T^{\mu}$            | $\eta < 2.5$       | $\Delta R(from, nearest, jet) >= 0.04 + 10 GeV/p_T^{\mu}$ ( $\mu$ stay) |
|            | $\frac{\Delta G}{10 GeV/p_T^{\mu}} < \Delta R < 0.3$ |                    | Or ////////////////////////////////////                                 |
|            |                                                      |                    | $n_{tracks, of, jets} < 3$ (jet removed and $\mu$ stay)                 |
| Electron   | Isolation:                                           | $E_T > 25 GeV$     | *tight likelihood-based requirement                                     |
|            | $\sum (p_T in \Delta R) < 0.06 p_T^{\mu}$            | $\eta < 2.5$       | *Not jet energy deposit (is $e$ or $E_{deposit}$ ?):                    |
|            | $10 GeV/p_T^{\mu} < \Delta R < 0.2$                  | $ \eta $ < 1.37 or | $\Delta R_{from,nearest,small,jet} < 0.02$ (jet removed)                |
|            | Different track from $\mu$                           | $\eta > 1.52$ )    | and                                                                     |
|            |                                                      |                    | *Overlap removal:                                                       |
|            |                                                      |                    | $\Delta R_{from,new,nearest,small,jet} >= 0.4$ (e stay)                 |

### Mass reconstruction

An observable that approximates the mass of the "tt" system must be constructed by summing the four-momentum of the top-tagged large-R jet, the charged lepton and the b-tagged small-R jet associated with the lepton. in the analysis taken from the ATLAS Open Data examples[1], the neutrino momentum is not added, this is a way to take it into account, from [2]:

| Hadronic-top candidate | Four momentum of the hadronic-top jet                                                                                                                             |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Leptonic-top           | four-momenta of the charged lepton                                                                                                                                |  |  |
| candidate              | + four-momenta of the neutrino candidate                                                                                                                          |  |  |
|                        | + four-momenta of the $j_{sel}(Leptonic - top\_b - jet)$                                                                                                          |  |  |
|                        | $\blacksquare E_T^{\nu_{candidate}} = E_T^{miss}$                                                                                                                 |  |  |
|                        | $\square P_t^{\nu} = E_T^{miss}$                                                                                                                                  |  |  |
|                        | $\blacksquare P_z^{\nu}$ estimated assuming $\nu$ and $l$ come from                                                                                               |  |  |
|                        | on-shell $W$ and imposing $W$ mass constraint                                                                                                                     |  |  |
|                        | If no real solution found, a mismeasurement of<br>E <sub>T</sub> <sup>miss</sup> is assumed and it is re-scaled and<br>rotated by the minimal amount until a real |  |  |
|                        | solution is found                                                                                                                                                 |  |  |
|                        | If more than 1 solution found, smallest                                                                                                                           |  |  |
|                        | absolute value is taken                                                                                                                                           |  |  |
| $m_{tar{t}}$           | Four momentum of the hadronic-top jet                                                                                                                             |  |  |

#### References

**ATLAS COLLABORATION**, *Review of the 13 TeV ATLAS Open Data release* [online] Retrieved from:

https://cds.cern.ch/record/2707171/files/ANA-OTRC-2019-01-PUB-updated.pdf, 2020.

**ATLAS COLLABORATION, Search for heavy particles decaying into top-quark pairs using** lepton-plus-jets events in proton–proton collisions at s = 13 TeV with the ATLAS detector [online] Retrieved from:

https://link.springer.com/article/10.1140/epjc/s10052-018-5995-6, 2018.

### Perspectives

- The task of this thesis is to reconstruct the complete "tt" system and either confirm or deny whether this makes a significant difference in the results of the analysis.
- The addition of the neutrino momentum introduces a challenge due to the reconstruction of its z component.



### MAIN NATIONAL UNIVERSITY

OF SAN MARCOS

Faculty of Physical Sciences



### INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS Physics Without Frontiers

