Efforts to a harmonized data processing approach for cosmic-ray neutron sensors

Rafael Rosolem

At the end of this lecture, you should...

- Recognize national-scale networks of cosmic-ray neutron sensors for soil moisture networks
- Understand the current challenges related to the establishment of a global-scale network of cosmic-ray neutron sensors
- Be aware of current efforts to harmonize global datasets of cosmic-ray sensors and their important quality control and processing steps

A quick recap

Over the years, the community has learned more about the cosmic-ray neutron sensors

$$\theta_{VOL} = \left[\frac{a_0}{\frac{N_{pihv}}{N_0} - a_1} - a_2 - LW - SOC\right] \cdot \rho_{bd}$$

where

$$N_{pihv} = N_{raw} \cdot f_p \cdot f_i \cdot f_h \cdot f_v$$

Based on Franz et al. (2012), Rosolem et al. (2013); and Baatz et al. (2015?) θ_{VOL} = volumetric water content (m³ m⁻³)

N_{pihv} = fully-corrected measured neutron counting rate (counts per hour)

N_{raw} = raw measured neutron counting rate (counts per hour)

N₀ = site-specific calibration parameter

$$-W =$$
lattice water content (g g⁻¹)

= atmospheric pressure correction factor (-)

- = solar intensity correction factor (-)
- = atmospheric water vapor correction factor (-)
- = aboveground biomass correction factor (-)

 a_0 , a_1 , a_2 = fixed coefficients (-)

The cosmic intervention neutron sensor signal is affected bby all sources of hydrogen within its support volume

Image kindly provided by Trenton Franz (Nebraska-Lincoln)

Rafael Rosolem ©

Propagation of uncertainty: dry versus humid regions

In a humid region:

Uncertainty of neutron counts on the order of 5%

Do you know why?

Propagated uncertainty of soil moisture on the order of 17% vol.

Can you understand why?

How does each factor influence the neutron signal?

7

How is that propagated to the derived soil moisture estimation?

Expansion of cosmic-ray neutron sensor stations for soil moisture monitoring

Since the US COSMOS, we have seen an increase in national-scale networks

Increase adoption of the technology from scientific publications

Total Publications **106** Analyze

쁥

This new technology is relevant to environmental modeling and remote sensing communities

http://www.theguardian.com/environment/2015/apr/12/californian-drought-water-restrictions

Soil moisture from cosmic-ray sensors have unique information at sub-kilometer scales

2012

2013

Soil moisture from cosmic-ray sensors have unique information at sub-kilometer scales

Sen Oct

Nov Dec

Rafael Rosolem ©

Source: Isobel Roberts undergraduate project

Oct

Nov De

The importance of in situ soil moisture has led to global international efforts

Challenges ahead

However, the combined use of cosmic-ray neutron sensors with environmental models is still lacking

Partially processed cosmic-ray sensor measurements hinders more comprehensive comparisons with hydrological and land surface models

	Network												-	Average	
Network	Mean	GLDAS	CFSR	CFS	20CR	MERRAland	MERRA	GEOS5	ERA-I land	ERA-Interim	IFS	CLM	CCSM	Bias	SD
Ameriflux	7.6	-0.7	-0.8	-0.5	14.1	11.0	5.0	7.4	7.7	-1.7	-0.3	-2.0	-5.6	2.8	5.8
ARM	9.7	-3.8	-2.6	-3.5	2.9	-2.5	-2.0	-2.3	8.3	-4.2	-4.1	-3.9	-4.3	-1.8	3.6
AWDN	3.7	2.8	5.5	2.9	10.1	9.8	9.5	10.7	13.7	2.0	1.7	2.5	-0.7	5.9	4.4
CHILI	4.1	5.4	7.4	4.9	14.7	9.9	9.6	12.9	19.4	0.4	0.3	4.6	1.0	7.5	5.7
COSMOS	8.8	-2.0	1.2	-1.9	5.3	7.1	6.6	9.4	8.4	-1.6	-2.0	-0.5	-5.1	2.1	4.8
DEOS	15.9	-7.3	-2.3	-6.1	3.0	-0.4	6.3	11.5	14.4	-8.1	-10.7	-8.9	-11.7	-1.7	8.4
ECONET	7.2	4.3	1.0	3.7	18.4	20.2	19.3	22.2	25.9	1.2	0.8	4.4	-3.7	9.8	10.0
MAWN	8.7	-2.5	0.7	-2.4	3.9	6.4	5.3	6.9	9.3	-1.9	-2.2	-0.9	-4.9	1.5	4.4
MAW-MO	7.3	-1.1	3.4	1.0	9.0	9.6	6.0	9.9	11.2	-2.2	-3.1	-0.7	-4.8	3.2	5.5
NOAAHMT	7.9	-1.1	-0.6	0.1	14.2	10.9	4.8	7.6	7.4	-1.7	-0.4	-2.5	-5.9	2.7	5.9
OK-Meso	9.0	-3.6	-2.6	-2.1	7.1	-1.2	-1.8	0.7	4.6	-4.8	-4.1	-4.1	-6.7	-1.6	3.8
PBO-H2O	8.9	-1.2	0.1	-3.8	-1.4	16.3	6.2	20.1	4.0	-3.5	-1.4	-0.7	-6.1	2.4	7.8
SCAN	17.6	-7.3	-0.5	-6.5	6.7	5.1	6.0	4.3	11.7	-8.8	-11.0	-9.7	-13.6	-1.9	8.1
SDAWN	7.8	-1.6	0.7	-2.2	5.8	7.9	6.2	6.8	10.4	-1.3	-1.4	-1.0	-4.9	2.1	4.8
SNOTEL	14.0	-9.3	-3.3	-7.9	0.2	23.3	30.9	18.3	0.1	-7.9	-8.3	-5.1	-12.4	1.5	13.8
SOILSCAPE	9.6	-3.9	-2.0	-5.0	0.0	7.5	7.3	8.7	5.9	-1.5	-1.7	-3.0	-5.1	0.6	5.0
USCRN	14.3	-8.2	-6.8	-6.6	-2.3	-2.8	-5.4	-5.1	6.9	-7.5	-7.6	-7.9	-11.0	-5.4	4.3
USDA-ARS	6.7	3.8	5.1	1.7	14.6	28.5	31.0	19.4	9.0	0.8	0.7	1.6	-4.8	9.3	11.1
WTX-Meso	3.7	0.7	7.4	1.2	5.5	30.2	32.2	13.1	0.0	0.0	0.0	12.0	-0.7	8.5	11.1
Average	7.9	-1.9	0.6	-1.7	6.9	10.4	9.6	9.6	9.4	-2.7	-2.9	-1.4	-5.8	2.5	
SD	3.8	4.1	3.7	3.6	5.9	9.4	10.6	7.1	6.0	3.2	3.8	5.0	3.8	25	
			10	-10	-6	-4	-2	2	4	6	10	16			

Error metric on soil moisture memory

Data processing steps included

- ✓ conventional/uniform calibration weighting
- \checkmark atmospheric pressure correction
- ✓ high-energy neutron intensity correction

Missing processing steps

- X lattice water and soil organic carbon correction (Franz et al. 2012; WRR)
- X atmospheric water vapor correction (Rosolem et al. 2013; JHM)
- X aboveground biomass correction (Baatz et al., 2015; WRR)
- X revised calibration weighting (Schrön et al. 2017; HESS)

Worldwide evaluation for modeling applications is limited due to lack of harmonized datasets

Data processing steps	COSINOS Cosmic-ray Soil Moisture Observing System	CosmOz	COSMOS-UK UK Soil Moisture Monitoring Network
Atmospheric pressure correction	Yes	Yes	Yes
High-energy neutron intensity correction	Jungfraujoch reference site with no local correction	Neutron monitor site with closest cutoff rigidity value to site	Jungfraujoch reference site with local correction (Hawdon et al. 2014; WRR)
Atmospheric water vapor correction	No	Yes	Yes
Aboveground biomass correction	No	No	No
Lattice water and soil organic carbon correction	No	Yes	Yes

Different data processing procedures can lead to different estimates of soil moisture

Rafael Rosolem ©

Power et al. 2021 (GMDD)

Good practices from other networks

Towards a 'Global COSMOS' initiative?

Voluntary participation; PI-driven research; bottom-up organizational structure

Strengths	Weaknesses	Can we solve the issue?
✓ Interdisciplinarity	X Insecurity of funding for many	! National to multi-national
✓ Strong sense of community	sites	consortia ('network of
✓ Good representation	X Underrepresentation of some	networks')
hydroclimates and biomes	biomes or geographical location	! Availability of subset of data
	X Lack of incentives for data	Publication of datasets with
	sharing	DOI numbers

Towards a 'Global COSMOS' initiative?

Lack of standardization/harmonization of instrumentation and quality-control processing

Strengths	Weaknesses	Can we solve the issue?
 ✓ Open and flexible methodology to advance the technology 	X Undesired biases and data inconsistencies for	! Hybrid approach: flexible processing of data while sharing
✓ Incentive for PIs to submit data with 'in-house' data processing	continental/global comparisonX Limited adoption by wide	a subset of data for harmonization
1 0	modeling communityX Unclear about publication strategies and authorship	! Open-source software for modeling and data processing are becoming widely available (COSMIC, URANOS, Cornish Pasdy, crspy)

Towards a 'Global COSMOS' initiative?

Lack of a common platform for data quality control and processing for multiple sites globally

Opportunities for a Global COSMOS network

We have developed 'crspy': a comprehensive data processing tool for cosmic-ray sensor

https://github.com/danpower101/crspy

양 master ▾ 양 1 branch ⓒ 1 tag		Go to file Add file ▼
et anpower101 Added refs		a223362 2 days ago 🛛 🕉 87 commits
Crspy	Added refs	2 days ago
📄 data	Added alternative intensity correction.	5 months ago
example	delete duplicate file to avoid confusion	last month
🗅 .gitignore	adding gitignore	3 months ago
LICENSE	Create LICENSE	4 months ago
README.md	Update README.md	2 months ago
🗅 name_list.py	change to name_list default	last month
run_crspy_workthrough.ipynb	Added notebook workthrough (mk2)	2 months ago
🗋 setup.py	Changes to n0 calib	26 days ago
∃ README.md		P

E README.md

Cosmic-Ray Sensor PYthon tool (crspy)

This tool can process Cosmic Ray Sensor data into soil moisture estimates. It is based on research conducted by many individuals and groups (see references).

Please note: this is a work in progress that is being updated regularly, so bugs or issues may be found. If you have any issues with crspy please do get in touch daniel.power@bristol.ac.uk

https://doi.org/10.5194/gmd-2021-77 C Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Review status: this preprint is currently under review for the journal GMD.

Cosmic-Ray neutron Sensor PYthon tool (crspy): An open-source tool for the processing of cosmic-ray neutron and soil moisture data

Daniel Power^{®1}, Miguel Angel Rico-Ramirez^{®1}, Sharon Desilets², Darin Desilets², and Rafael Rosolem^{®1,3} ¹Faculty of Engineering, University of Bristol, Bristol, UK ²Hydroinnova, Albuquerque, New Mexico, USA ³Cabot Institute for the Environment, University of Bristol, Bristol, UK

Received: 12 Mar 2021 - Accepted for review: 05 May 2021 - Discussion started: 07 May 2021

Power et al. 2020 (GMDD)

crspy contains functions to help with working directory set up for each processing step

Pre-processing steps integrate global products for use in processing and analysis of sites

User can calibrate the sensor using crspy

Hydrol. Earth Syst. Sci., 21, 5009–5030, 2017 https://doi.org/10.5194/hess-21-5009-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Earth System Sciences

Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

Martin Schrön^{1,2}, Markus Köhli^{1,3,4}, Lena Scheiffele⁵, Joost Iwema⁶, Heye R. Bogena⁷, Ling Lv⁸, Edoardo Martini¹, Gabriele Baroni^{2,5}, Rafael Rosolem^{6,9}, Jannis Weimar³, Juliane Mai^{2,10}, Matthias Cuntz^{2,11}, Corinna Rebmann², Sascha E. Oswald⁵, Peter Dietrich¹, Ulrich Schmidt³, and Steffen Zacharias¹

Revised weighting approach for soil samples that takes into dependencies on air pressure, air humidity, soil moisture and vegetation

The optimised N0 is calculated as: N0 | Total Relative Error RelErr N0 3476 0.618526 3476 The site calibrated was site number 102 in UK and the name is W2-W3 The bulk density was 1.166 The user defined accuracy was 0.01 The soil organic carbon was 0.046 g/m^3 The lattice water content was 0.031 Unique calibration dates where on: [datetime.date(2015, 11, 2) datetime.date(2016, 2, 8) datetime.date(2016, 11, 1) datetime.date(2015, 7, 4)] Average neutron counts for each calib day where {0: 1800.0, 1: 1759.0, 2: 1901.0, 3: 1977.0} The weighted field scale average of theta (from soil samples) was {0: 48.01, 1: 61.86, 2: 31.40, 3: 20.02}

Please see the additional tables which hold calculations for each calibration date

Rafael Rosolem ©

Outputs a mini-report along with any tables written during the calibration process. This can be useful to check for any issues in the calibration process.

Data quality assessment with visual outputs

Internal relative humidity

Battery Voltage

crspy generates soil moisture analysis for easy checks

Metadata file is generated for single- or -ultisite processing

COUNTRY	SITENUM	SITE_NAME	INSTALL_DATE	LATITUDE	LONGITUDE	ELEV	TIMEZONE	GV	LW	SOC	BD
USA	001	Mount Lemmon	27/10/2007	32.4418	-110.782	2747	-7	5.08	0.04	0.016	nan
USA	003	Biosphere 2	28/04/2008	32.5795	-110.851	1180	-7	5.02	0.04	0.016	nan
USA	004	Manitou Forest Tower	24/10/2009	39.101	-105.102	2411	-6	2.93	0.028	0.005	1.4
USA	005	Santa Fe Watershed-SF2	24/10/2009	35.683	-105.823	2427	-7	3.72	0.04	0.016	nan
USA	006	Marshall Colorado	24/10/2009	39.9495	-105.195	1756	-6	2.74	0.04	0.016	nan
USA	007	Manitou Forest Ground	24/10/2009	39.1006	-105.103	2391	-6	2.93	0.028	0.005	1.4
USA	008	Santa Fe Watershed-SF1	23/12/2009	35.6792	-105.827	2482	-7	3.68	0.04	0.016	nan
USA	009	Rancho No Tengo	02/06/2010	31.7438	-110.022	1401	-7	5.08	0.0317	0.016	1.4
USA	010	Kendall	02/06/2010	31.7368	-109.942	1548	-7	5.26	0.024	0.008	1.23
USA	011	Santa Rita Creosote	02/06/2010	31.9085	-110.839	989	-7	5.21	0.01	0.003	1.43
USA	012	Silver Sword	15/06/2010	19.765	-155.423	2868	-10	12.87	0.0957	0.0181	0.78
USA	013	Island Dairy	16/06/2010	19.998	-155.286	381	-10	12.82	0.2093	0.0325	1.01
USA	014	SMAP-OK	21/07/2010	36.0635	-97.217	326	-6	3.27	0.0517	0.0065	1.42
USA	015	ARM-1	21/07/2010	36.6054	-97.4878	322	-6	3.14	0.0537	0.0059	1.4
USA	016	Iowa Validation	05/09/2010	41.9832	-93.6837	316	-6	1.93	0.045	0.0159	1.43
USA	017	Sterling	10/09/2010	38.9739	-77.4852	95	-4	2.49	0.0637	0.0045	1.32
AUT	018	Rietholzbach	16/12/2010	47.3805	8.9934	755	1	4.34	0.0518	0.0308	0.97
USA	019	VCNP CZO	15/12/2010	35.8896	-106.533	3037	-6	3.79	0.04	0.016	nan
USA	020	San Pedro 2	19/01/2011	31.5615	-110.14	1233	-7	5.3	0.016	0.005	1.42

How are cosmic-ray stations characterized worldwide

New harmonization tool crspy

G	era5_get_data_second.ipynb 🕏 main.py • 🕏 name_list.py	▶ Ⅲ …
ρ	1 # -*- coding: utf-8 -*- 2 """	E an in a construction and a construction of the construction of t
⁄ የ٥	4 @author: Daniel Power 5 """	
ۍ ۲	6 7 from name_list import nld	
₿>	<pre>8 import crspy 9 10 fileslist = crspy getlistoffiles(n)d['defaultdin']+"/data/crps data/naw/")</pre>	
⊑ø	11 fileloc = fileslist[25] 12	
₿	<pre>13 df, meta = crspy.process_raw_data(fileloc, calibrate = True)</pre>	
8)	
£53		
×	Python 3.8.8 64-bit ('crns': conda) 🛞 0 🛆 0 🧭 Executing Cell Ln 7, Col 26 Spaces: 7 UTF-8 CRLF Python	n 🖗 Go Live 🕺 🤤

Final remarks

- There has been a steady adoption of cosmic-ray neutron sensing technology recently
- Combined used with environmental models currently at slower pace
- Efforts to harmonized global data from cosmic-ray neutron sensors can facilitate further adoption
- Initial steps taken with the development of crspy as a common platform for data quality control and analysis

References

- Baatz, R., Bogena, H. R., Hendricks Franssen, H.-J., Huisman, J., Montzka, C., and Vereecken, H.: An empirical vegetation correction for soil water content quantification using cosmic ray probes., Water Resour. Res., 51, 2030-2046, doi: 10.1002/2014WR016443, 2015.
- Dirmeyer, P. A., Wu, J., Norton, H. E., Dorigo, W. A., Quiring, S. M., Ford, T. W., Santanello, J. A., Bosilovich, M. G., Ek, 675 M. B., Koster, R. D., Balsamo, G., & Lawrence, D. M.: Confronting weather and climate models with observational data from soil moisture networks over the United States. Journal of Hydrometeorology, 17(4), 1049-1067. https://doi.org/10.1175/JHM-D-15-0196.1, 2016.
- Franz, T. E., Zreda, M., Rosolem, R., and Ferré, T. P. A.: Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources., Water Resour. Res., 48, doi: 10.1029/2012WR011871, 2012a.
- Iwema, J., Rosolem, R., Rahman, M., Blyth, E., and Wagener, T.: Land surface model performance using cosmic-ray and pointscale soil moisture measurements for calibration, Hydrol. Earth Syst. Sci., 21, 2843-2861, doi: 10.5194/hess-21-2843-2017, 2017.
- Iwema, J., Schron, M., Rosolem, R., da Silva, J. K., Lopes, R. S. P.: Accuracy and precision of cosmic-ray neutron measurements and their impact on estimated soil moisture at humid environments, hydrological Processes, In review, 2021.
- Power, D., Rico-Ramirez, M. A., Desilets, S., Desilets, D., and Rosolem, R.: Cosmic-Ray neutron Sensor PYthon tool (crspy): An open-source tool for the processing of cosmic-ray neutron and soil moisture data, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-77, in review, 2021.
- Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., and Kurc, S. A.: The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System., J. Hydrometeorol., 14, 1659-1671, doi: 10.1175/JHM-D-12-0120.1, 2013b.
- Zreda, M., Desilets, D., Ferré, T. P. A., and Scott, R. L.: Measuring soil moisture content non- invasively at intermediate spatial scale using cosmic-ray neutrons., Geophys. Res. Lett., 35, L21402, doi: 10.1029/2008GL035655, 2008.