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Fourier Transform

For a periodic f(x) function of period L in one dimension:
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are an infinite set of discrete values of g.



Discrete Fourier Transform

In the Discrete Fourier Transform, we consider a finite set of discrete values for both
g and x:

f(il?) — fm:f(xm)a xm:mﬁ, m=20,..,N—1
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The Discrete Fourier Transform can be written as
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Note that both ¢ and = are now periodic! The ¢ components of negative value refold
into those at the “other side of the box".



Discrete Fourier Transform in 3D

Consider a set of reciprocal-lattice vectors (3, centered around the origin:
G = n’lGl -+ n’2G2 -+ ngGg

where (51, (g9, (G3 are the primitive translations that generate the reciprocal lattice;
n1 = O, ..,Nl — 1, 77,/1 =N If n1 S N1/2, n’1 =nN1 — N1 otherwise;
same for no =0,.., No — 1 and n3 =0,.., N3 — 1.

N1, Ny, N3 are the FFT dimensions and must be big enough to accommodate all
needed Fourier components.

Note that this G—space grid is by construction periodic!

In real space, we consider a grid that spans the unit cell:

R, N Ro> N R3
r=mi— +mo— + mg—
"Ny PN, PN
with m; =0,.., Ny —1, my =0,...No— 1, mg =20,.., N3 — 1. Ry, Rs, R3 are the
primitive translations that generate the Bravais lattice



Discrete Fourier Transform in 3D (2)

Original Fourier transform:

f(G) = %/f(r)e_iG'rdr — f(nl, No, N3)

Discretized Fourier Transform:
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where N = N;NyN3. Remember that G; - R; = 279;;.



PW-PP calculations and Discrete Fourier Transform

. 2
¢Z(r) — Is ch+Gez(k+G)-r, —|k + G‘z < Ecut
G
Which grid in G-space? We Need to calculate the charge density. In principle (but

not in practice):
*
:E § fi,kCi,k+GCz‘,k+G+G’
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Fourier components G’ with max(|G’|) = 2max(|G|) appear.
Another case: we need the product of the potential time a wavefunction:

(V)G ZV (G = G)ejprar
G/

Again, max(|G — G'|) = 2max(|G|). We need a kinetic energy cutoff for the Fourier

components of the charge and potentials that is four time larger as the cutoff for the

PW basis set: )
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In practice such condition may occasionally be relaxed.



Fourier Transform grid

The Fourier Transform grid is thus
G = n’lGl + n’2G2 + néGg

with ny =0,.., Ny —1, no =0,.., Ny — 1, ng =0,..,N3g — 1. This grid must be big
enough to include all G—vectors up to a cutoff
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and NOT up to the cutoff of the PW basis set! In general, the grid will also
contain “useless” Fourier components (beyond the above-mentioned cutoff, so that

n(G)=0,V(G) =0 etc.)

Important: for ultrasoft pseudopotentials, a further FT grid may be needed



FFT grid

FFTs
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(Note: G?/2 is the kinetic energy in Hartree atomic units)



Fast Fourier Transform

Computational cost of a conventional Fourier Transform of order n: Topy = O(n?).
Computational cost of a Fast Fourier Transform of order n: Tepy = O(nlogn).
Difference: enormous in practical applications.

Advantages of the use of FFT in PW-PP calculations: enormous, especially in
conjunction with iterative techniques and of the “dual-space” technique



Dual space technique

Basic ingredients: evaluation of products ¢; = (H — €;)1; on trial wavefunctions ;.
Same ingredient used in direct minimization, Car-Parrinello, etc.

Hop = (T + Ve + Viee + Vi + Vi)t

(T') : easy in G-space, Topy = O(N)
(Vioe + Vi + Vie)w : easy in r-space, Tepy = O(N)

(V) : easy in G-space (also in r-space) if V is written in separable form
Tepy = O(mN), m =number of projectors

FFT is used to jump from real to reciprocal space. Operations are performed where it
IS easler.

The same technique is used to calculate the charge density from Kohn-Sham orbitals,
the exchange-correlation GGA potential from the charge density, etc.: in all cases, we
move to the more convenient space to perform the required operations.



Charge density: symmetrization

The code computes an unsymmetrized charge density n(r) as:

> D wdtiu(n),

kelIBZ v

where the sum runs on occupied states only and on symmetry-inequivalent k-points
only, that belong to the Irreducible Brillouin Zone (IBZ). The symmetry weight wy is
the number of k-points in the star of k, that is: equivalent by symmetry to k.

Please note: k-point grids in the IBZ and weights can be either automatically computed
or supplied as a list. In the latter case they must be valid for the symmetry group of
the Bravais lattice, not of the crystal.

The true charge density n(r) is then obtained via symmetrization:
| N | N
=1
N Z =270
n=1 5 n=1

where O,, is the n-th symmetry of the crystal, O,, is the corresponding rotation matrix.



Charge density: symmetrization ||

For non-symmorphic groups, whose symmetry operations may contain fractional
translations as well, one generalizes symmetrization as follows:

N
1 S
S n=1

where f,, is the fractional (with respect to lattice vectors) translation for operation n

In practice, the symmetrization in pw.x (but not in other codes) is performed in
reciprocal space, not in real space:

N N
1 i Ja ~ 1 i ~ . _,L —1 .
S n=1 S n=1

Please note: the charge density as defined above is adimensional and integrates to the
number of electrons in the system, N,



Charge density: augmentation charge

For USPP (ultrasoft pseudopotentials) and PAW, an augmentation term is present:

n(r) =Y @) P+ Y @ilB)Qunu(r) Bl |, D =Y,

7 Lm,p 7 k,v

where 1 runs over atoms, §; and ()i, are short-range functions centered on atom .

The first term — the square of |1);| — can be easily computed on the same FFT grid

used in the calculation of H1%, containing in G-space Fourier components up to a
kinetic energy cutoff Ey = 4F ;.

Double Grid technique: the augmentation term is computed on a larger (denser in
real space) grid containing G up to a cutoff E; > 4F,,, typically E4 =8 = 12FE,,,.

Real-space grids are not necessarily commensurate, so interpolation from one grid to
the other happens in reciprocal space only



Charge density: metals

The most common way to deal with metallic systems, is to introduce a broadening of
discrete levels. The charge density becomes

n(r) = filtu(r)?,
where the fractional weights (or occupancies) 0 < f; < 1 are given by

fi:/< 0 (€ —¢;)de Zfz-:N(eF)

and the Fermi energy ep is determined by the condition N(er) = Ngjee, number of
electrons in the system. §(x) is the (normalized) broadening function. In principle one
might use the Fermi-Dirac function:

1

but it is not convenient: one needs very high 1" and the distribution has long tails.



Metals: energy

Important notice: the correct way to compute the sum-of-eigenvalue contribution
Exg to the DFT energy is

Erg = Z/ ed(e — €;)de = EKS +0F, 0
i VESEr

where

EKS = ZG’L/ (€ — €;)de = Zfiei, OF ot = Z/ (e —€;)0(e — €;)de

e<ep e<erp

and the f; are the occupancies as previously defined.

The DFT energy computed using E'x g is the “variational” one, that is: it is minimized
by the ground-state charge density, and forces are its derivatives.

In the output of pw.x, §F,,e is printed (in Ry) as “smearing contrib. (-TS)"



Metals: broadening functions

A simple choice for the broadening function is a normalized Gaussian:

d(x) = 0_\1/%6_302/02, /5(90) = 1.

The parameter o (degauss, in Ry) plays the role of a fictitious “temperature”
T = o/kp, to which a fictitious “free energy” functional Exg(o) corresponds.

One can show that Exg(0) o« o2 so large values of o needed for fast k-point

convergence yield a large defference between the “free” and true energy.

Methfessel-Paxton (MP) and Marzari-Vanderbilt (MV) “cold” smearing are devised
to make the quadratic o term vanish so that Exg(o) o« o*, with much better

convergence (see http://theossrvl.epfl.ch/Main/ElectronicTemperature)

Note however that:

— With MP, the occupancies f; may be negative or larger than 1;

— With MV, the occupancies f; are non-negative but may be larger than 1;
— In both cases, N(€) is not guaranteed to be a monotonic function;

— As a consequence, the Fermi energy may not be uniquely defined.



Charge density: magnetic case

For the unpolarized (non-magnetic) case, each orbital is doubly occupied and the
charge density n is simply

n(r) =23 fil ()

For the “LSDA" case (a misnomer!), each orbital has either spin up or spin down. We
have a charge density n and a (scalar) magnetization m:

n(r) =ne (@) +n_(r),  m(r) = ni(r) - n_(r),

where
wi,a(r)‘Qa o=-4,—

na(r) — Z fz’,a

Note: in pw.x, the o index for orbitals is hidden into the k-point index: k-points are
doubled, the first set corresponds to up spin, the second set to down spin



Charge density: non-collinear magnetic case

For the general case on non-collinear magnetization, the plane-wave basis set is
composed of up and down spinors and the orbitals are spinors:

1(k+Gp)r
U(r) =Y cno v %E(ij); ><+=((1)), x—=((1)>

n,o

In addition to the total charge density n:

() = 3 F ([0 @ + [ ())

there is a (vector) magnetization m:
i(r) =) fi¥](r)dWi(r)

where & = (04, 0,,0;) and 0,0y, 0, are the usual Pauli matrices.



Potentials

The following long-range potential terms are separately divergent for G = 0:

e V: electrostatic potentials generated by the electrons

e Ve local part of the electron-(pseudo)ion interaction

For neutral systems, (Vg + Vioe)(G = 0) does not diverge.

The remaining potential terms are short range:

e V... exchange-correlation potential

e Vnr: nonlocal part of the electron-(pseudo)ion interaction

Note: “potentials” are actually multiplied by e and have energy dimensions



An example: potentials in Si

potentials along <111> direction in bulk Si



Energies

The total energy can be written as the sum of the following terms:

E = Egs — Egn(r)] — /n(r)VxC(r)dr + Ereln(r)] + Epwaid

where:

e Fixgs: sum of one-electron KS energies (as defined earlier), contains electron-ion
energy F.g

e I electrostatic electronic energy, with divergent G = 0 contribution removed.
This term is present and counted twice in Exg and must be subtracted out.

e The third term is an exchange-correlation energy term to be subtracted out from
E s and to be replaced by F,.: true exchange-correlation energy.

e Frwaid: The Ewald energy is the ion-ion interaction energy (E;y) in the presence
of a neutralizing background

The divergent G =0 terms in Eg, Err, and E.; cancel out in neutral systems.



Electrostatics in Periodic Boundary Conditions

Consequences of periodicity:

e The net charge per unit cell is zero, or else the energy diverges

e All potentials must be lattice-periodic: a macroscopic electric field, which is
described by a potential V(r) = —eE - r, can not be described in PBC

e The zero of the energy is arbitrary and has no direct relation with the vacuum level
“outside” the crystal (there is no “outside™)

e The dipole moment per unit cell is in general ill-defined



Dipole moments

Picture from: Electronic Structure: Basic Theory and Practical Methods
R.M. Martin
Cambridge University Press (2008)

Finite system: d = /n(r)rdr
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Picture from: G. Makov, M.C. Payne PRB 51, 4014 (1995)

Periodic system: d = 777



Charged systems

To deal with charged systems in PBC, one treats the G = 0 divergences as for the
neutral system. Note that:

e The energy is finite but depends upon the specific choice of the V(G = 0) potential
e Comparison of energies with different Nj.. for the same system is tricky

e There is no guarantee that structural optimization of charged systems gives reliable
results (but no evidence it doesn't either)



Finite systems

For finite systems (e.g. molecules) with PBC, several tricks are available to get rid of
spurious interactions with periodic replicas, also for charged systems:

e Correct the energy with an electrostatic model (Makov-Payne)

e Correct both the energy and the potential by cutting off the Coulomb potential in
reciprocal space (Martyna-Tuckerman)

e Correct both the energy and the potential by cutting off the Coulomb potential

in real space, increasing the dimensions of the cell for the Coulomb potential only
(Hockney)



Makov-Payne corrections

Let us assume a molecule in a cubic cell of side L

e Neutral systems
— If there is no dipole, the energy converges as L—°
— If there is dipole, the energy converges as L3

e Charged systems

— The energy converges no better than L™*

A correction to energy can be written as:

2 2
Ecorr = F — g — ZW(QQ d )
2L 3L

+ O(L™?)

where q is the net charge, a the Madelung constant, d the dipole, () the quadrupole



Polar surfaces: dipole correction

Polar surfaces have a dipole. With PBC and a slab geometry, the dipole produces a
fictitious, slowly decaying interaction with periodic replica. Such spurious interaction
can be removed by adding a compensating dipole in the empty region. A recent
example: potential profile for MoS; on Au surfaces (Pedram Khakbaz et al, Solid
State Electronics, in press).
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