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Exchange-Correlation functionals
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FIG. 3. The alphabet soup of approximate functionals available in a code
near you. Figure used with permission from Peter Elliott.
Kieron Burke, “Perspective on density functional theory” JCP 136 (2012) 150901
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Jacob's ladder of Density Functional Theory

Chemical Accuracy

unoccupied 4 (1) l O exact exchange and exact partial correlation
occupied ¥, (r') exact exchange and compatible correlation
7(r) meta-generalized gradient approximation
Vn(r) generalized gradient approximation
n(r) | T O local spin density approximation

Hartree World

FIGURE 1. Jacob’s ladder of density functional approximations. Any resermblance to the Tower
of Babel is purely coincidental. Also shown are angels in the spherical approximation, ascending
and descending. Users are free to choose the rungs appropriate to their accuracy requirements
and computational resources. However, at present their safety can be guaranteed only on the two
lowest rungs.
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The density functional formalism, its applications and prospects

R. O. Jones
Institut fiir Festkérperforschung der Kernforschungsanlage Jilich, D-5170 Jiilich, Federal Republic of Germany

O. Gunnarsson
Max-Planck-Institut fiir Festkérperforschung, D-7000 Stuttgart 80, Federal Republic of Germany

A scheme that reduces the calculations of ground-state properties of systems of interacting particles exact-
ly to the solution of single-particle Hartree-type equations has obvious advantages. It is not surprising,
then, that the density functional formalism, which provides a way of doing this, has received much atten-
tion in the past two decades. The quality of the energy surfaces calculated using a simple local-density ap-
proximation for exchange and correlation exceeds by far the original expectations. In this work, the au-
thors survey the formalism and some of its applications (in particular to atoms and small molecules) and
discuss the reasons for the successes and failures of the local-density approximation and some of its
modifications.




HK: n(r) — Fn| = min(V|T, + W,.|¥)

v —n

It is useful to introduce a ficticious system
of non-interacting electrons

KS: n(r) — Tn] = éﬂiﬂ(@]TeHJ}
—n

Fin| =Ts[n| + Eg|n| + Ei.[n] This defines Exc

The energy becomes

En| =Tsn] + Egn] + Ez.n| + / Vezt(r)n(r)dr




Self-consistent equations [Kohn-Sham, 1965]
O0E,c|n]

/
‘/eff(r, R) — ‘/ewt(ra R) + 62/ ‘:(_I.I?,’ dr’ +
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on(r)

It is as simple as a Mean-field approach but it is exact !

Exc|n] is not known exactly — approximations




Simple approximations to Exc are possible

En] =Tsn] + Egn] + E.cn| + / Vezt(r)n(r)dr
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FIG. 4. Relative magnitudes of contributions to total valence
energy of Mn atom (in eV).
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Local Density Approximation

The simplest approximation is LDA that exploits
nearsightedness of the electronic matter

W. Kohn, PRL 76,3168 (1996)

BLPAWn(r)] = [ ebem(nfe) n(e)ds

Analogous to the Thomas-Fermi approximation for the

Kinetic Energy term but applied to the much smaller
Exchange-Correlation term
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A good Ground State theory

LDA/LSDA describes well a variety of materials and
materials properties (amenable to an el. GS description)

- energetics, phase stability, defects thermodynamics

- equilibrium geometries of complex systems

- response functions to external perturbations
static dielectric constants
piezoelectric constants
elastic constants

- within the adiabatic approximation lattice dymamics
is a ground state property
vibrational properties

defect diffusion
thermodynamic properties




First Ionization Energies

FIG. 8. First ionization energy of atoms in the local-density
(LD), local spin-density (LSD), and Hartree-Fock (HF) approxi-
mations compared with experiment. The numbers show the
atomic numbers of the atoms considered. For reasons of clari-
ty, the zero of energy is shifted by 5, 10, and 15 eV for the
second row, the third row, and the transition-element row, re-
spectively. The LD results for the first and second rows are in-
creased by an additional 2 eV.

Rev. Mod. Phys., Vol. 61, No. 3, July 1989

Jones & Gunnarsson
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s-p Transfer Energies

FIG. 9. The sp transfer energies A, for the first-row atom
ions: (a) experimental and local spin-density (LSD) result
Hartree-Fock (HF) and Xa results. The energies are in eV.
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s-d Transfer Energies
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H>
Li2
Be:

Req (a.u.)
exp LSD
1.40 1.45
5.05 5.12
4.71 4.63
3.04 3.03
2.35 2.36
2.07 2.08
2.28 2.31
2.68 2.62

First Row Dimers

BE (eV)

exp LSD
4.75 4.81
1.06 1.01
0.11 0.50
3.08 3.93
6.31 7.19
991 11.34
523 7.54
1.66 3.32

freq(cm-1)

exp
4400
351
294
1051
1857
2358
1580
892

LSD
4277
347
362
1082
1869
2387
1563
1075




Summary (LDA)

Lattice constants: 1-3% too small
Cohesive Energies: 5-20% too strongly bound
Bulk Modulus: 5-20% (largest errors for late TM)

Bandgaps: too small
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PHYSICAL REVIEW B VOLUME 45, NUMBER 23 15 JUNE 1992-1

Accurate and simple analytic representation of the electron-gas correlation energy

John P. Perdew and Yue Wang*
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
(Received 31 January 1992)

We propose a simple analytic representation of the correlation energy €. for a uniform electron gas, as
a function of density parameter r; and relative spin polarization {. Within the random-phase approxi-
PW9 ]_ mation (RPA), this representation allows for the r, /% behavior as r,— . Close agreement with nu-
merical RPA values for £.(7;,0), €.(7,,1), and the spin stiffness a.(r,)=0%.(r,, £=0)/8L%, and recovery
of the correct rInr, term for r,—0, indicate the appropriateness of the chosen analytic form. Beyond
RPA, different parameters for the same analytic form are found by fitting to the Green’s-function Monte
Carlo data of Ceperley and Alder [Phys. Rev. Lett. 45, 566 (1980)], taking into account data uncertain-
ties that have been ignored in earlier fits by Vosko, Wilk, and Nusair (VWN) [Can. J. Phys. 58, 1200
(1980)] or by Perdew and Zunger (PZ) [Phys. Rev. B 23, 5048 (1981)]. While we confirm the practical ac-
curacy of the VWN and PZ representations, we eliminate some minor problems with these forms. We
study the {-dependent coefficients in the high- and low-density expansions, and the r,-dependent spin
susceptibility. We also present a conjecture for the exact low-density limit. The correlation potential
ul(rg,£) is evaluated for use in self-consistent density-functional calculations.

VoOLUME 77, NUMBER 18 PHYSICAL REVIEW LETTERS 28 OCTOBER 1996

Generalized Gradient Approximation Made Simple

John P. Perdew, Kieron Burke,* Matthias Ernzerhof

Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
(Received 21 May 1996)

PBE Generalized gradient approximations (GGA's) for the exchange-correlation energy improve upon
the local spin density (LSD) description of atoms, molecules, and solids. We present a simple
derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental
constants. Only general features of the detailed construction underlying the Perdew-Wang 1991
(PW91) GGA are invoked. Improvements over PWO91 include an accurate description of the linear
response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential.
[S0031-9007(96)01479-2]
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TABLE L.

Atomization energies of molecules, in kcal/mol (I eV = 23.06 kcal/mol). Exc
has been evaluated on self-consistent densities at experimental geometries [33]. Nonspherical
densities and Kohn-Sham potentials have been used for open-shell atoms [34]. The
calculations are performed with a modified version of the CADPAC program [35]. The
experimental values for AE (with zero point vibration removed) are taken from Ref. [36].
PBE is the simplified GGA proposed here. UHF is unrestricted Hartree-Fock, for comparison.

System AEUMT AE'SP AEPW! AE"PE AE
H, 84 113 105 105 109
LiH 33 60 53 52 58
CH, 328 462 421 420 419
NH; 201 337 303 302 297
OH 68 124 110 110 107
H,0 155 267 235 234 232
HF 97 162 143 142 141
Li, 3 23 20 19 24
LiF 89 153 137 136 139
Be, -7 13 10 10 3
C,H, 294 460 415 415 405
C,Hy 428 633 573 571 563
HCN 199 361 326 326 312
CO 174 299 269 269 259
N, 115 267 242 243 229
NO 53 199 171 172 153
0, 33 175 143 144 121
F, -37 78 54 53 39
P, 36 142 120 120 117
Cl; 17 81 64 63 58
Mean abs. error 71.2 314 8.0 7.9




MgO

TiO2 (a)
TiO2 (c)
Al202
BaTiO3
PbTiO3
Sn0O2
B-MnO2 (a)
b-MnO2 (c)

exp
4.21
4.59
2.958
5.128

3.9
4.737
4.404
2.876

Oxides

LDA

417
4.548
2.944
5.091

3.94
3.833
4.637
4.346

2.81

-0.95%
-0.92%
-0.47%
-0.72%
-1.50%
-1.72%
-2.11%
-1.32%
-2.29%

GGA
4.623
2.987
5.185

3.891

4.444
2.891

0.72%
0.98%
1.11%

-0.23%

0.91%
0.52%




Summary (LDA & GGA)

Lattice constants: 1-3% too small
Cohesive Energies: 5-20% too strongly bound
Bulk Modulus: 5-20% (largest errors for late TM)

Bandgaps: too small

GGA gives better cohesive energies. Effect on lattice
parameters 1s more random. GGA 1mportant for magnetic
systems.




Summary of Geometry Prediction

LDA under-predicts bond lengths (always ?)

GGA error is less systematic though over-prediction is
common.

errors are in many cases < 1%, for transition metal
oxides < 5%




Elemental Crystal Structures: GGA pseudopotential
method
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Elemental Crystal Structures: GGA pseudopotential

H .
201 experimentally found to be fcc
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Summary: Comparing Energy of Structures

For most elements. both LDA and GGA predict the correct structure for a
material (as far as we know)

Notable exceptions: Fe in LDA: materials with substantial electron
correlation effects (e.g. Pu)




Problems with LDA / GGA functionals

* Chemical accuracy (1 kcal/mol) is far.
- trends are often accurate for strong bonds (covalent, ionic,metallic)
- weak bonds/small overlaps are problematic

* Self interaction cancellation is only approximately
verified in LDA and GGA.
- molecular dissociation limit, TMO & RE and other atom-in-solid system.

*\VVan der Waals interactions are not taken into account

- occasional agreement with exp. from compensation of errors
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LDA and LSDA
simple and well defined. good geometry, overbinding

GGA : PW91, PBE, revPBE, RPBE, BLYP
many options, improved energetics, good geometry

META-GGA: PKZB, TPSS,
more complicated, not very much used

SIC, DFT+U, Hybrids
address the self-interaction error with some drawback

Van der Waals functionals
truly non local, very active field




p()

H= D H = 2. V:+ 2 Vitew) + 2 Vigoeue(7})

i i=1 i=1 i=1

Small self-interaction error
Metal

Self interaction in DFT
r is key problem in transition

metal oxides

. Large self-interaction




Redox Reactions can be more Problematic

FePO, + Li -> LiFePO,

MnO, + Li -> LiMn,O,

V,(POy4); + Li  -> LiV,(PO,);

All these reactions involve the transfer of an electron from a

delocalized state in Li metal to a localized state in the transition
metal oxide (phosphate)



Self Interaction Error

One important source of error in LDA/GGA that can lead

to qualitatively wrong results is the only approximate
cancellation of self interaction coming from the approximate
treatment of exchange

Mott insulators: what is missing in LDA 7

( ’\ is OK in LDA

~—— U iswrong in LDA




Energy [eV]

LDA / GGA can badly fail for TMO and in 4f- systems

Electronic Structure of FeO
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SIC, DFT+U, Hybrids

Self interaction correction was proposed as early as in 1981
by Perdew-Zunger. Conceptually important but not widely
used.

Hybrid functionals (like PBEO, B3LYB) mix a fraction of
Self-interaction-free HF with LDA/GGA functionals.

Is the method preferred by chemists.

It is very expensive in a plane-wave basis.

DFT+U has been introduced by Anisimov, Zaanen and
Andersen as an approximation to treat strongly correlated
materials. It has been more recently been applied also in
more normal system with encouraging results.
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Self-interaction correction to density-functional approximations for many-electron systems

J. P. Perdew
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118

Alex Zunger
Solar Energy Research Institute, Golden, Colorado 80401
and Department of Physics, University of Colorado, Boulder, Colorado 80302
(Received 31 October 1980)

The exact density functional for the ground-state energy is strictly self-interaction-free (i.e., orbitals demonstrably
do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for
exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any
density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the
variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem. Although the first method
introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham
scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-
correlation hole, while substantially improving the description of its shape. We apply this method to a number of
physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic
improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations
include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii)
accurate binding energies of negative ions, which are wrongly unstable in LSD, (iii) more accurate clectron densitics,
(iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct long-
range behavior of the potential and density. It appears that SIC can also remedy the LSD underestimate of the band
gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate
of the cohesive energics of transition metals. The LSD spin splitting in atomic Ni and s5-d interconfigurational
energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional
occupation numbers, and present a parametrization of the clectron-gas correlation energy at any density, based on
the recent results of Ceperlev and Alder.
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Derivation

Full-Interacting Hamiltonian

H=T+W-+vy = |V) n(r)
Non-Interacting (Khon-Sham) Hamiltonian
Hxs = Ts +vks = \dD,%), n(r)

then we introduce fictitious systems with scaled interaction AW wich
connect the KS (A = 0) with the Many-Body system (A = 1)

Adiabatic Connection

A=0
Vext = VKS
A=l
Vext = Vext




Derivation

According to Hellmann-Feynman theorem

dE dH ov
dAA (W] A|‘UA> (Wa|W|Wy) + (‘UA\ =

Integrating over A beetween 0and 1

ALY

1
Ex—1 = Ex—0 + /0 dA (W |W|Vy) + /dr N(r)[Vexe (r) — vks(r)]

With the usual decomposition of energy functional

Eay = Tot Byt Ee + / dr 1(r)Vae(r)

Ex—o= Ts+ /dr n(r)vks(r)

we end up with

1
EH + Exc = / dA <\‘UA’W|W/\>
J0



J. Chem. Phys. 96, 2155 (1992)
A new mixing of Hartree-Fock and local density-functional theories

Axel D. Becke
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

(Received 12 August 1992; accepted 8 October 1992)

Previous attempts to combine Hartree-Fock theory with local density-functional theory have
been unsuccessful in applications to molecular bonding. We derive a new coupling of

these two theories that maintains their simplicity and computational efficiency, and yet greatly
improves their predictive power. Very encouraging results of tests on atomization

energies, ionization potentials, and proton affinities are reported, and the potential for future
development is discussed.

Wa
Half-Half Exc'z%U())(c‘i'%U%{c,
0 A 1
Pi(x )P (r) ¢ (r) hi(x )
U%C = Ex=— 2 if — 2"121 l : dr2

Uge=Uxe = Juxc[Pa(r)aPﬁ(r)]d3r’



B3LYP [edit]

For example, the popular B3LYP (Becke, three-parameter, Lee-Yang-Parr)[#l[3] exchange-correlation
functional is:

E)?C(SLYP — E)%.DA_i_aO(E;IF_E;DA)_i_ax(ESGA_E)%DA)+ECL.DA+aC(ES-GA_ECLDA)‘

where gy = 0.20, a, = 0.72, and q. = 0.81. ES'GA and ECGGA are generalized gradient
approximations: the Becke 88 exchange functionall®! and the correlation functional of Lee, Yang and
Parrl7] for B3LYP, and E}D"‘ is the VWN local-density approximation to the correlation functional.[8]

Contrary to popular belief, B3LYP was not fit to experimental data. The three parameters defining
B3LYP have been taken without modification from Becke's original fitting of the analogous B3PW91
functional to a set of atomization energies, ionization potentials, proton affinities, and total atomic
energies.[°]



PBEO [edit]

The PBEO functionall1°l [11] mijxes the PBE exchange energy and Hartree-Fock exchange energy in a
set 3 to 1 ratio, along with the full PBE correlation energy:

EPBEO _ lEHF n EEPBE 4 EFPBE
XC 4 X 4 X c ’

where E:'F is the Hartree-Fock exact exchange functional, EEBE is the PBE exchange functional,
and ECPBE is the PBE correlation functional.[12]




HSE [edit]

The HSE (Heyd-Scuseria-Ernzerhof)[13] exchange-correlation functional uses an error function
screened Coulomb potential to calculate the exchange portion of the energy in order to improve
computational efficiency, especially for metallic systems.

wPBEh __ HF SR PBE,SR PBE,LR PBE
Exc - a'Ex (OJ) + (1 - a)Ex (Cd) + Ex ((.d) + Ec )
where a is the mixing parameter and w is an adjustable parameter controlling the short-rangeness

of the interaction. Standard values of g = Z and w = ().2 (usually referred to as HSE06) have been

shown to give good results for most of systems. The HSE exchange-correlation functional
degenerates to the PBEO hybrid functional for i, = (). EEF'SR(w) is the short range Hartree-Fock

exact exchange functional, E}:BE*SR(Q,) and E,I:BE’LR(
components of the PBE exchange functional, and E BF(,) is the PBE [14] correlation functional.

w) are the short and long range



Hartree-Fock energy
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HF Vx using PWs

* FFT pseudo wfc to real space
¢kv(k =+ G) FE;T ¢kv(r)

* For each gpoint and each occupied band build “charge density

Pq(T) = by qo(T) Pru(T)

* FFT charge to recip.space and solve Poisson eq.

47 e?

lq+ G|?

Pq(T) 2 pa(a+G) = V4(a+G) = pa(a+G)

* FFT back to real space, multiply by wfc and add to result

Vll(q + G) F_,FT Vq(l') = Vxﬁbkv(r) = Vm(pkv(r) : ¢k—qv'(r)Vq(r)

5 DEMOCRITOS

FRY INFM ~—




The g+G=0 divergence

® Gygi-Baldereschi PRB 34, 4405 (1986)

()

Aav(t) =G qulDbeal® = Ala+G)= / dk |4597 (g + G)?

(2m)°
Zm“ “(q+G)
_ 4we? . Q Alq+G) ,
Epp=——5- X (om)? / qu a+ GP Integrable divergence

G
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The q+G=0 divergence

® Gygi-Baldereschi PRB 34, 4405 (1986)
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T "{(%) / qz 4 +GP? ! <2w>3/ q; arGE

Aas(t) = B qui) = Ala+G) = / dk |pk79 (g + G)|?
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The g+G=0 divergence

® Gygi-Baldereschi PRB 34, 4405 (1986)

Q cagrat
o ®) = B qu@ios) =A@+ G) = o [ dk 6 (0 + G)

kv

1 o
=—) o (@+G)

’ \
)
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Simple Molecules

HF PBE PBEO EXP

PW G PW PAW G PW PAW G
N, 114 115 239 244 244 221 225 226 227
02 36 33 139 143 144 121 124 125 118
G 173 175 265 269 269 252 258 250 261

PAW : Paier,Hirschl, Marsman and Kresse, J. Chem. Phys. 122, 234102 (2005)

Energies in kcal/mol = 43.3 meV

DEMOCRITOS _|

iy INFM




Scaling

Kinetic energy and local Potential

NPW +2x FFT+ NRXX
*Non local potential

2x NBND s NPW

*Fock operator

2x FFT+ NBND+*NQ * (NRXX + FFT)+2x NRXX
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Kinetic energy and

Scaling

local Potential

NPW +2x FFT + NRXX

*Non local potential

2x NBND s NPW

*Fock operator

2x FFT+ NBND+*NQ * (NRXX + FFT)+2x NRXX

From 10 to 100 times slower than standard case

Moore's law: computer power doubles every 18 months
( a factor of 10 in 5 yrs)
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Kinetic energy and

Scaling

local Potential

NPW +2x FFT + NRXX

*Non local potential

2x NBND s NPW

*Fock operator

2x FFT+ NBND+*NQ * (NRXX + FFT)+2x NRXX

From 10 to 100 times slower than standard case
Separation of long- and short-range part in X can help
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Scaling

Kinetic energy and local Potential

NPW + 2% FFT'+ NRXX
*Non local potential

2x NBND s NPW

*Fock operator

2%+ FFT+ NBND*NQ * (NRXX + FFT) +2+ NRXX

From 10 to 100 times slower than standard case
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The LDA+U energy functional

ELDA+U[n(r)] — ELDA[n(r)] + AE'I'I’Ub[{fn“nnn }]
[Anisimov, Zaanen and Andersen, PRB 44, 943 (1991).]
A simplified LDA+U model:

U - o
AEHub[{nmrm, — 3 Z TI‘[II] (1 o nI )]
1,0

In the diagonal basis, where  n’? . T!7 = AoF!7  the

LDA+U correction is simply u/s k- _
AEHub[{’n,nun Z )\]O'(l o >\]o') \
I, O, 0 )v 1

Fractional occupation are strongly discouraged for large U.
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LDA/GGA failure in the atomic limit

A

—_— | DA/IGGA
exact
correction

Total energy

Number of electrons

A correction is needed to remove spurious self-interaction
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Electronic Structure of Fe

GGA

Energy [eV]

LDA+U™
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Electronic Structure of Ceria

a) CeO, LDA - Cedf EXPT LDA+U

b) Ce,O5 LDA met.

kit MMMM

c) Ce,O5 LDA ins.

EXPT LDA+U
_aadinstedin
d) C9203 LDA+U
- M
-2 0 2

4 6 8 10 12
E (eV)

DOS

-4

— deGironcoli@sissa.#



Evaluating the U parameter

In atoms: U is the (wrong) LDA/GGA curvature of the
total energy as a function of occupation number.

In solids: U should be extracted from the curvature of E'"*
with respect to occupation number, after correcting for band
structure effects present also for-non interacting system :

2, LDA 2 mLDA
~ d&E i’ E;

U =
d(n?)? d(n?)?

M. Cococcioni (SISSA PhD 2002)
DEMOCRITOS
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Evaluating the U parameter

g Q2 pLpA - dzEéJDA
d(ng)?>  d(ny)?

In practice: we introduce localized perturbations in large supercells

dnt  d*EFPA do
I J d I
Vm+2 arPy o {ng} = xwu = ; =

I

doy ' d(nl)? _d_né

dnCIl dzEéJ & dog
day’ d(nl)2 dnl
and compute the variation of the energies with respect to
occupation numbers, via inversion of the response function:

VKS‘I'Z O’IPj {n;} = Xo1J =
I

—
NOSCF

The Hubbard U thus results: U = (xo™' = x7'),

.. M.Cococcioni and S. deGironcoli, PRB 71, 035105 (2005)
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LDA and LSDA
simple and well defined. good geometry, overbinding

GGA : PW91, PBE, revPBE, RPBE, BLYP
many options, improved energetics, good geometry

META-GGA: PKZB, TPSS,
more complicated, not very much used

SIC, DFT+U, Hybrids
address the self-interaction error with some drawback

Van der Waals functionals
truly non local, very active field




van der Waals

van der Waals interaction is relatively weak
but widespread in nature.
An important source of stability for molecular

solids and physisorption of molecules on
surfaces.

It is due to truly non-local correlation effects.
It is contained in the true XC functional but
LDA/GGA/MetaGGA and Hybrids do not describe it properly.

Fa

+ <= +>
a b




van der Waals

Van der Waals interaction is relatively
weak but widespread in nature.

An important source of stability for
molecular solids and physisorption of
molecules on surfaces.

It is due to truly non-local correlation effects.

It is contained in the true XC functional but
LDA/GGA/MetaGGA and Hybrids do not describe it
properly.



vdW : non local correlation

Two neutral atoms separated by R much larger
than the atomic size, a limit that ensure that the
corresponding wavefunctions are not overlapping



vdW : non local correlation

Instantaneous dipole d 4 generated
from charge fluctuations.

Two neutral atoms separated by R much larger
than the atomic size, a limit that ensure that the
corresponding wavefunctions are not overlapping



vdW : non local correlation

Induced dipole

Instantaneous dipolc.a d 5 generated dp = apda R—3
from charge fluctuations.

Two neutral atoms separated by R much larger
than the atomic size, a limit that ensure that the
corresponding wavefunctions are not overlapping

E = (Khwyopap) R°
CcgPA



Density Functional Theory

EURY = ()] + 5 [ 5 drar + Buclnlr)] + [ Veasr)n)dr + En((R)

n(r) =2 Z P (1)) KS self consistent eqs.




LDA/GGA
Semilocal Density Functionals

DFT within LDA and GGA functionals has been extremely
successful in predicting structural, elastic, vibrational
properties of materials bound by metallic, ionic, covalent

bonds.

These functionals focus on the properties of the electron
gas around a single point in space.

BLPA = [ nr)ehe (n(r))dr BSOA = [ ()PSO n(r), [Vn(r))dr

As such they do not describe vdW interaction.

The same is true for Hybrids, DFT+U and SIC etc...



Failure of semilocal functionals

Graphite




How to deal with van der Waals ?

- neglect it

- add an empirical damped dispersion correction
Grimme, Tkatchenko-Scheffler, MBD

- develop a truly non local XC functional starting from the
Adiabatic Coupling Fluctuation Dissipation formula
Vdw-DFE vdw-DF2, VV09, VV10

- RPA and beyond RPA



How to deal with van der Waals ?

- add an empirical damped dispersion correction

S. Grimme , J. Comp. Chem 27, 1787 (2000)

Eprr.o=Eprr + Edisp

Nat—1

Edlbp = —36 Z 2 Rb fdmp(le)

i=1 j=i+1 1

Here, N, is the number of atoms in the system, Cls denotes the dispersion
coefficient for atom pair ij, sz is a global scaling factor that only depends on the
DF used, and R; is an interatomic distance. In order to avoid near-singularities

for small R, a damping function f,,, must be used

1 | 1
ci =,/CiC] Jamp(Rij) = 3,78,
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CgHg-CgHg interaction energy as a function of the distance
between centers of mass: red (black) lines refer to Gaussian
(PWscf) calculations. GTO results were not corrected for BSSE.

Barone et al. J. Comput. Chem. 30, 934-939 (2009)




How to deal with van der Waals ?

- add an empirical damped dispersion correction
A Tkatchenko and M Scheffler, PRL 102, 073005 (2009)

1
EVdW - 5 Zfdamp(RAB’ RO’ R} )C6ABRAB,
AB

1
I+ exp[—d(; A RAB —1)]’

fdamp(RAB’ R?ug) -

0 — RO 0
where R, = R, + R}, d and s are free parameters.

Veff Koot vt _ ( ) r3wA(r)n(r)d3r)
eff __ free free free  y/free 3. free 3
C6AA (Vfree) C6AA' Ky Gy VA f F=1ny (l’)d r

free (l‘)

Wa (I’) - Z free(r) ’

Bp

Hirshfeld partition



Calculated Cg (hartree-bohr®)

=k
o
o
o
T
]

100 X -
ol
At:Eq.6 +
At: Square root
Mol: Our method  x
*  Mol: Chalmers-Rutgers =
oiE . . .. JMolidobnsea-Bocks,
10 100 1000

Reference Cg (hartree-bohre)

FIG. 1 (color online). Comparison of the Cq coefficients for
atom-atom interaction (At) and atom-molecule and molecule-
molecule interaction (Mol). The reference results for atom-atom
interaction are from accurate wave function calculations [26—
28]. For molecules, DOSD results are taken as a reference
[5,8,20,21]. Our results (only 211 values out of 1225 are shown)
are compared to those of Chalmers-Rutgers collaboration [15]
and Johnson-Becke [8]. The only outliers for our method are
cases involving the H, molecule (20-44% deviation).



How to deal with van der Waals ?

- develop a truly non local XC functional

l oo
EM = 5[(131‘ &r' n(F)o(r, F)n(F'),

¢( n(r), VTL(I‘), n(r’), V’n(r'), |I‘ R I‘/‘ )

-vdw-DF : Dion et al, PRL 92, 246401 (20006)
-vdW-DF2 : Lee et al, PRB 82, 081101 (2010)

-VV09 : Vydrov and Van Voorhis, PRL 103, 063004 (2009)
-VV10 : Vydrov and Van Voorhis, JCP 133, 244103 (2010)



Truly non-local functionals

E® = _ / du/dr/dr

E® _ _ ?;h‘; / dr / dar’
m

E.=E]+ E}

’I“’I/LL T ZU

/[0 a(iu) :/a(r,iu)

u — 0o : aliu) = Ne? /mu?

A .
E™M — —/dr/dr’ n(r)®(r,r )n(r") 6 dim
2 Integra

1!
\ 3et 1
" 2m2 wo(r)wo (17)[wo (r) + wo(r")]|r — 77|




How to deal with van der Waals ?

- develop a truly non local XC functional

AE (kcal/mol)
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Efficient mtegratlon

Roman-Rerez Soler interpolation scheme
If it's possible to express the complex density depende s
onr, r' via a single q(r) ( and q(r') ) function then ...

@(q1,Q2,7“12)%Z(I)(QaaCIB77“12)Pa(Q1)P6(Q2) O i ; _l, LIL 5 l
o,

-1 —

B — Z / [ ©ar) (s, Ir = r)Os() dr”
= 5 ZZ@Z G (I) QOzaCIB? ‘Gl)@B(G) @a(r) — n(T)Pa(q(T))

o, G

The vdW energy can be expressed as a sum of simple 3d integrals



Several Non-L.ocal Functionals

Ce
wWo n EEZ) Ei’CDA/GGA error

9h [ 0 AT DA :

vdWDF o [kr(l+us”) g 5¢ with 1 =0.09434 ST A+PW+RPBE- 18.5p
9h | 47 LDA ,

vAWDF2 g |Fr(l+ps)g5e. with p =0.20963 g1 A4+ PW+RPW86- 60.9 (%

vdWDF-09 3%/@%(1 + ,u32) with pu =0.22 SLA+PW+RPBE- 10.4 %
w3 R |vnl*

vv10 = +C— |—| with C =0.0089 SLA+PW+RPW386+PBC 10.7|%

m n

vdWDF - functional can exploit the Roman-Perez Soler interpolation
Vv10 - functional does not fulfill the needed conditions



Enthalpy (mRy)
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Alanine evolution with Pressure
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Volume (A3)
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Alanine evolution with P
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o —— Exp. (Olsen et. al. 2008)
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VV10 functional

3et 1
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VV10 vs rVV10

A(I)VVIO _ (I)VV10(’I“, T/) o (I)TVVH)(T’ 7“’)

R=01au R=0Bau R=15au

R=30au R=5D0au

0D D1 nn D2 03

The error in the kernel is small except when the density itself is very small !



E vdW-DF2
= WVV10

rVV10 validation

S22 - hydrogen bonded

S22 - Mixed complexes

—

rvvio

S22 - dispersin dominate
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WLDD

rvVV10 applications

Noble gas dimer are classical

examples of dispersion dominated

systems where the quality of
different functionals can be
explored.

——
T

C vdW-DF
vdW-DF2
rvvio

exp

Binding energy (meV)

Argon dimer

, — Exp.
N , 7 == EXX/RPA —-— RevPBE
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Phonon frequency (cm-1)

Phonons in Graphite

1600 -{ 08020 o
0 -
1400 — A PRB 76, 035439 (2007)
o 53;1 ?DZF, 075501 (2004)
1200 — —— vdW-DF2
1000 —
800 —
600 —
400 —
200
0 [ | [ |
G K M G
LDA vdW-DF vdW-DF2
MAE (cm-1) 39.86 24.57 28.29
MARE (%) 3.21 1.85 2.04

Comparison of DFPT results at high symmetry points
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Stiff intralayer
modes

rvv1io

18.29
1.36



Phonon frequency (cm-1)

Phonon frequency (cm-1)
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SUMMARY

LDA and LSDA
simple and well defined. good geometry, overbinding

GGA : PW91, PBE, revPBE, RPBE, BLYP
many options, improved energetics, good geometry

META-GGA: PKZB, TPSS,
more complicated, not very much used

SIC, DFT+U, Hybrids
address the self-interaction error with some drawback

Van der Waals functionals
truly non local, very active field



THE END




