

MAX School on Advanced Materials and Molecular Modelling with QUANTUM ESPRESSO

QE-2021: Hands-on session – Day-7

(Magnetism in transition metals)

Pietro Delugas, Alessandro Stroppa, Sukanya Ghosh, Nandhakumar Velankanni, Subrahmanian Sappati, Lei Qiao

QE-2021: Hands-on session – Day-7

Topics of Day-7 hands-on session:

- 1. Comparison of magnetic and non-magnetic solution for Fe (bcc)
 (exercise1.ferromagnetic_vs_nonmagnetic/)
- Dependence of exchange splitting on the lattice constant. (exercise2.volume_dependence)
- 3. Comparison of *3d* occupations in transition metals (Fe, Co, Ni) (exercise3)
- 4. Plotting bands of magnetic material collinear and non collinear case. (exercise4.bands)

How to run calculations remotely on the "hpc" HPC cluster

Several utility commands have been implemented specially for the QE-2021 school to aid at submitting jobs to HPC cluster(s). These are:

- **remote_mpirun** this is like mpirun, but it automatically submits the calculation to a queuing system on the "hpc" HPC system. For example, a pw.x calculation can be submitted as:
 - remote_mpirun pw.x -in pw.file.in

where pw.file.in is the name of the pw.x input file. **BEWARE:** stdin/stdout redirection does not work for remote_mpirun, hence you must use -in (or -inp) option (i.e., do note use "<" redirection operator). You do not need to specify the number of processors, because the default is set to -np 20.

A different number of processors, say 8, can be requested as:

- NPROC=8 remote_mpirun pw.x -in pw.file.in
- remote_pwtk this automatically submits the PWTK script to queuing system on the "hpc" HPC system. Example:
 - remote_pwtk script.pwtk

where script.pwtk is the name of the PWTK script.

- remote_sbatch automatically submits the Unix-shell script to queuing system on the "hpc" HPC system. Examplee:
 - remote_sbatch script.sh

where script.sh is the name of the Unix-shell script. When you run in the HPC cluster use increase the number of pools change the line:

```
mpirun -np $NPROC $PW < fe.scf.$latt.in -nk 2 > fe.scf.$latt.out
```

```
mpirun -np $NPROC $PW < fe.scf.$latt.in -nk 10 > fe.scf.$latt.out
```

- remote_squeue this checks the status of the job in the queuing system on the "hpc" HPC system. Example:
 - remote_squeue

in

JOBID PA	RTITION	NAME	USER	ST	TIME	NODES	NODELIST(REASON)
26098354	all s	ubmit.n	qe001	R	0:27	1	wn150

Where status (ST) R stands for running and PD for pending.

- hpc this makes ssh to "hpc" HPC login node, such that the user will be located in the same directory as used locally
- rsync_to_hpc copies specified files to the "hpc" cluster to the same directory as is currently used locally. Example:
 - rsync_to_hpc '*.in'

This will copy all *.in files from local directory to the same directory on the "hpc" cluster, whereas:

• rsync_to_hpc .

will copy all the files in the current directory to the same directory on the "hpc" cluster.

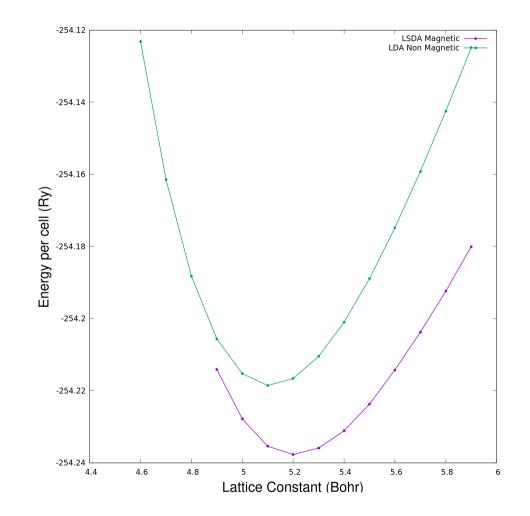
- **rsync_from_hpc** download the specified file from the "hpc" cluster from the same directory as is currently used locally. Example:
 - rsync_from_hpc '*.out'

This will copy all *****.out files from the "hpc" cluster to the local host (virtual machine).

Exercise 1: Task 1

- Compare the magnetic and the non-magnetic solution for Fe (bcc)
- Find the optimized lattice constant for non-magnetic Fe (bcc):
 - 1. go to exercise1.ferromagnetic_vs_nonmagnetic/non_magnetic :
 - 2. Use the scripts job.sh or job.pwtk to scan the lattice constants from 4.6 Bohr to 5.9 Bohr.
 - 3. use ev.x to fit the data collected in energies.dat with the Murnaghan EOS and find the optimized lattice constant.

• Find the optimized lattice constant for magnetic Fe (bcc)


- 1. go to /Day-7/exercise1.ferromagnetic_vs_nonmagnetic/magnetic
- 2. repeat steps 2 and 3 as for the non-magnetic case.

• Plot and compare energies and lattice constants

- go to /Day-7/exercise1.ferromagnetic_vs_nonmagnetic/
- use the gnuplot script compare.gp to plot your results.

Compare energies and lattice constants.

- The magnetic solution has a lower total energy per cell.
- The magnetic solution has a larger lattice constant than the non-magnetic.
- LSDA underestimate lattice constant ~ 5.2 Bohr vs. ~ 5.4 Bohr of the experiment.

Remarks on input

How to select the magnetic solution:

```
&system
    ibrav=3,
    celldm(1)=$latt,
    nat= 1,
    ntyp=1,
    nspin=2,
    starting_magnetization(1)=0.3,
    ecutwfc=70.0, ecutrho=850.0,
    occupations='smearing',
    smearing='marzari-vanderbilt',
    degauss=0.02
/
```

- nspin=2 Specify the spin polarized calculation.
- To allow a magnetic solution we have also break the symmetry between the *up* and *down* channel:
 - starting_magnetizion(1)=0.3 Builds the starting potential assuming an initial magnetization of Fe of 0.3×16 .

Remarks on input

Magnetic system in the non-collinear case

```
&system
    ibrav=3
    celldm(1)=5.4,
    nat=1,ntyp=1,
    noncolin=.true.,
    starting_magnetization=0.3,
    angle1(1)=0.0,
    angle2(1)=0.0,
    ecutwfc=70.0,
    ecutwfc=70.0,
    ecutrho=850.0,
    occupations='smearing',
    smearing='marzari-vanderbilt',
    degauss=0.02
/
```

- non-collinear case is selected specifying noncolin=.true.
- starting_magnetization must be specified for at least one species otherwise the program will perfom a non-magnetic calculation.
- in the non-collinear case magnetization is a vector, it is possible to specify the direction of the starting magnetization for each atomic type:
 - angle1 is the angle with the z axis (in degrees);
 - angle2 is the azimuthal angle (in degrees)

How the magnetization is reported in output

• In the spin-polarized case the total magnetization is reported at each SCF step and at the end of the calculation:

total magnetization	=	2.22 Bohr mag/cell
absolute magnetization	=	2.28 Bohr mag/cell

• In the magnetic non-collinear case:

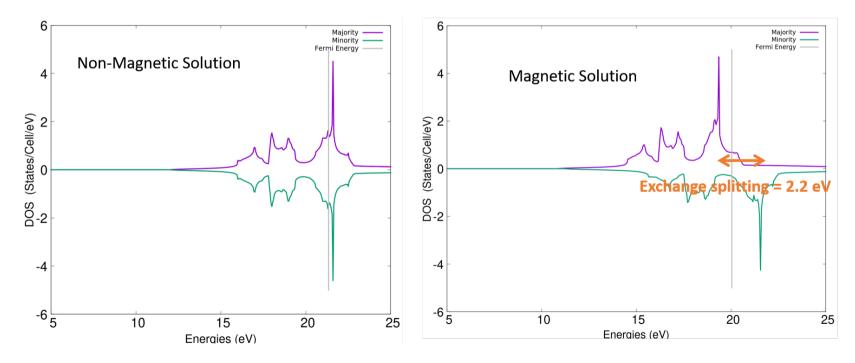
total magnetization	=	1.38 0.00 1.38 Bohr mag/cell
absolute magnetization	=	1.99 Bohr mag/cell

• An estimate of the magnetization at each ionic site is also printed at the end of the calculation

Magnetic moment per site (integrated on atomic sphere of radius R) atom 1 (R=0.357) charge= 14.4267 magn= 2.2287 • In the magnetic non-collinear case:

1 relative position : 0.0000 0.0000 0.0000 atom number charge : 14.332507 (integrated on a sphere of radius 0.357) magnetization : 1.374808 -0.000000 1.374808 magnetization/charge: 0.095922 0.095922 -0.000000 polar coord.: r, theta, phi [deg] : 1.944273 45.000000 -0.00000

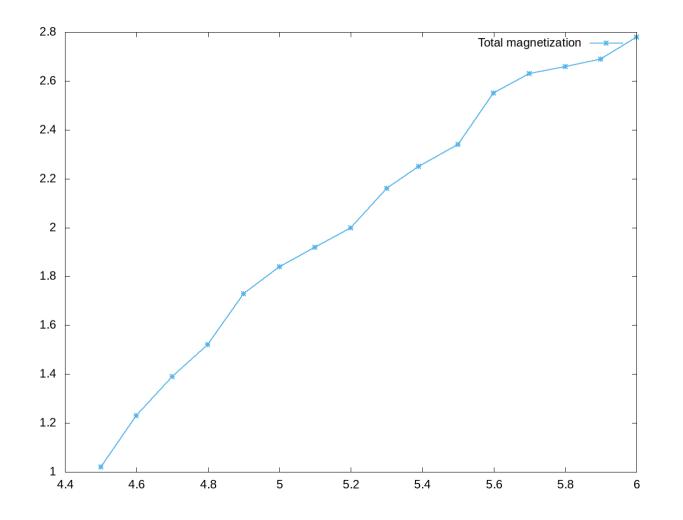
Input of dos.x and projwfc.x


```
&dos
    prefix='fe',
    bz_sum='tetrahedra_opt'
    Emin=5.0
    Emax=25.0
    DeltaE=0.05
    fildos='fe.dos'
/
```

- **bz_sum** selects the integration method.
- Emin,Emax, and DeltaE define the range and definition of the DOS;
- to select the range first use default values, then select the right window

```
&projwfc
   !outdir='./tempdir/',
   prefix='fe'
   Emin=5.0, Emax=25.0, DeltaE=0.05
/
```

Using the optimized lattice constants obtained in task 1 we analize the electronic structures of the two solutions.


- 1. Make the SCF and non-SCF computations for boths solutions.
- 2. Compute the DOS for both solutions
- 3. Compute the pDOS for the magnetic solution

Exercise 2: Magnetization vs. volume

- The aim of this exercise is to see how the magnetization and the exchange splitting behaves when the lattice constant decreases
- Here we use the PBE functional that gives a more realistic lattice constant than LDA.
- The exercise proceeds along the following steps:
 - 1. Run a script for determining the optimized lattice constant
 - 2. Use ev.x to estimate the optimized lattice constant fitting the energies to the Murnaghan EOS.
 - 3. Use the data in the file magnetization.dat to see how the magnetization changes when we change the lattice constant.
 - 4. **Assignment** Compute the electronic structure for 3 different values of lattice constant and estimate the the exchange splitting as we did in exercise 1.

Magnetization vs. alat

Exercise 3. Comparing magnetization and exchange splitting in transition metals

In this exercise we compare the magnetic properties of three different transition metals Fe(bcc), Co(hcp), and Ni(fcc)

- With the usual procedure we compute the electronic structure for the 3 transition metals.
- use projwf.x to analize the contribution to the magnetization coming from the different orbitals.

Atom # 1: total charge = 17.0232, s = 2.4486, p = 6.1080, d = 8.4666, spin up = 8.8345, s = 1.2198, spin up = 8.8345, p = 3.0211, pz= 1.0070, px= 1.0070, py= 1.0070, spin up = 8.8345, d = 4.5935, dz2= 0.9308, dxz= 0.9106, dyz= 0.9106, dx2-y2= 0.9308, dxy= 0.9106, spin down = 8.1887, s = 1.2288, spin down = 8.1887, p = 3.0869, pz= 1.0290, px= 1.0290, py= 1.0290, spin down = 8.1887, d = 3.8731, dz2= 0.8427, dxz= 0.7292, dyz= 0.7292, dx2-y2= 0.8427, dxy= 0.7292,polarization = 0.6457, s = -0.0089, p = -0.0658, d = 0.7204, Spilling Parameter: 0.0543

Format of projwfc.x output

- The total DOS and the sum of projected DOS are written to file <filpdos>.pdos_tot.
 - The format for the collinear, spin-unpolarized case and the non-collinear, spinorbit case is:

```
E DOS(E) PDOS(E)
```

- The format for the collinear, spin-polarized case is:

```
E DOSup(E) DOSdw(E) PDOSup(E) PDOSdw(E)
```

- The format for the non-collinear, non spin-orbit case is:

```
E DOS(E) PDOSup(E) PDOSdw(E)
```

. . .

Format of the projection files

In the collinear case and the non-collinear, non spin-orbit case projected DOS are written to file $\{\texttt{filpdos},\texttt{pdos}_a\texttt{tm}\#N(X)_w\texttt{fc}\#M(1), where N = atom number, X = atom symbol, M = wfc number, l=s,p,d,f (one file per atomic wavefunction found in the pseudopotential file)$

• The format for the collinear, spin-unpolarized case is:

```
E LDOS(E) PDOS_1(E) ... PDOS_21+1(E)
```

where

- LDOS = $\sum_{m=1,2l+1} PDOS_m(E)$
- $PDOS_m(E)$ = projected DOS on atomic wfc with component m
- The format for the collinear, spin-polarized case and the non-collinear, non spin-orbit case is as above with two components for both LDOS(E) and PDOS_m(E)

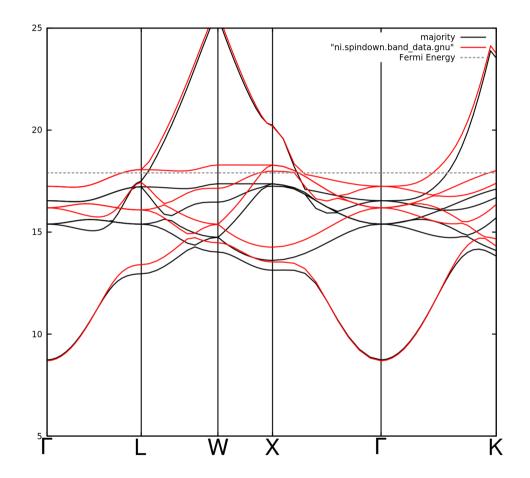
Orbital order

- for l=1:
 - 1. p_z (m=0)
 - 2. p_x (real combination of m=+/-1 with cosine)
 - 3. p_y (real combination of m=+/-1 with sine)
- for I=2:
 - 1. d_{z^2} (m=0)
 - 2. d_{zx} (real combination of m=+/-1 with cosine)
 - 3. d_{zy} (real combination of m=+/-1 with sine)
 - 4. $d_{x^2-y^2}$ (real combination of m=+/-2 with cosine)
 - 5. d_{xy} (real combination of m=+/-2 with sine)

Exercise 4: plotting bands

- this exercise provides an example on how to plot the bands of a magnetic system.
- Spin-polarized collinear case:
 - • cd Ni_collinear
 - SCF calculation for Ni (bcc): pw.x < ni.scf.in > ni.scf.out
 - non-SCF calculation:
 - * calculation='bands'
 - * set the list of K-points

	crystal_b						
6							
0.000	0.000	0.000	20	!gamma			
0.500	0.500	0.500	10	!L			
0.500	0.250	0.750	10	! W			
0.500	0.000	0.500	10	! X			
0.000	0.000	0.000	20	!gamma			
0.375	0.375	0.750	1	! K			

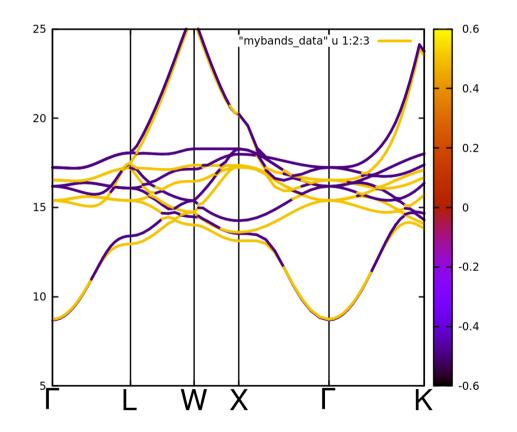

- we specify the high-symmetry points and number of points of each segment
- crystal_b specify the format for K-points

 use bands.x for preparing the band plot and analize symmetry, first for up component then for down component

```
&BANDS
outdir='./tempdir/',
prefix='ni',
filband='ni.spinup.band_data',
spin_component = 1,
/
```

- * spin_componet selects the spin component
- * filband selects the prefix where the bands are saved

- the output of bands.x provides the length of the k-points path and the position of the high-symmetry points
- use the gnuplot script to plot the bands



Non-collinear case

- Plot the Ni bands in the noncollinear case:
 - • cd Ni_noncollinear
 - run the collinear scf calculation for Ni in this directory:
 - pw.x < ni.scf.in > ni.scf.out
 - run the non-collinear nscf calculation for the bands
 - * spin=2 has been replaced with noncolinear=.true.
 - pw.x < ni.bands.in > ni.bands.out
 - run 'bands.x' for the noncollinear case:
 - spin_component has been removed and we add lsigma(3)=.true. that instructs the program to compute the expectation value for the z component of the spin operator for each eigenfunction and save all values in the file ni.noncolin.data.3. All values in this case are ceeither 1/2 or -1/2 as expected.
 - the program plot_noncolin_bands.f90 reads this values and writes them together with the band structure in the file my_bands.data.
 - * compile the program:
 - gfortran -o mino.x plot_noncolin_bands.f90

* copy ni.noncolin.data.3 to ni.noncolin.data.s

- * run the program
 - ./mino.x ni.noncolin.data
- * use gnuplot and the script bands_noncollin.gp to plot the bands in this case.
- * start gnuplot and type the command:
 - gnuplot> load "bands_noncollin.gp"

THE END

QE-2021: MaX School on Advanced Materials and Molecular Modelling