Combinatória de superfícies quadriculadas e geometria de espaços de módulos

Carlos Matheus

CNRS & École Polytechnique

17 de agosto de 2021

Sumário

- Origamis característicos
- Realização de grupos de Veech
- 3 Grupos de Veech que não são de congruência

Subgrupos característicos do grupo livre F_2 (I)

Um origami \mathcal{O} é um recobrimento finito do toro plano \mathbb{T}^2 o qual não é ramificado fora de $0 \in \mathbb{T}^2$. Em particular, \mathcal{O} determina um subgrupo H de índice finito de $\pi_1(\mathbb{T}^2 \setminus \{0\}) \simeq F_2$.

Subgrupos característicos do grupo livre F_2 (I)

Um origami \mathcal{O} é um recobrimento finito do toro plano \mathbb{T}^2 o qual não é ramificado fora de $0 \in \mathbb{T}^2$. Em particular, \mathcal{O} determina um subgrupo H de índice finito de $\pi_1(\mathbb{T}^2 \setminus \{0\}) \simeq F_2$.

Definição

Um origami \mathcal{O} é *característico* quando o grupo de Galois H é um subgrupo característico de F_2 , i.e., $\varphi(H) = H \ \forall \ \varphi \in Aut(F_2)$.

Subgrupos característicos do grupo livre F_2 (I)

Um origami \mathcal{O} é um recobrimento finito do toro plano \mathbb{T}^2 o qual não é ramificado fora de $0 \in \mathbb{T}^2$. Em particular, \mathcal{O} determina um subgrupo H de índice finito de $\pi_1(\mathbb{T}^2 \setminus \{0\}) \simeq F_2$.

Definição

Um origami \mathcal{O} é *característico* quando o grupo de Galois H é um subgrupo característico de F_2 , i.e., $\varphi(H) = H \ \forall \ \varphi \in Aut(F_2)$.

Exemplo / Exercício

O Eierlegende Wollmilchsau é um origami característico.

Subgrupos característicos do grupo livre F_2 (II)

Como $H_{car} := \bigcap_{\varphi \in \operatorname{Aut}(F_2)} \varphi(H)$ é um subgrupo caract. de índice finito de F_2 , todo origami é recoberto por um origami caract.

¹Aqui usamos que cada $\varphi(H)$ possui o mesmo índice que H e F_2 possui um número finito de subgrupos de índice fixado porque F_2 é finitamente gerado.

Subgrupos característicos do grupo livre F_2 (II)

Como $H_{car} := \bigcap_{\varphi \in \operatorname{Aut}(F_2)} \varphi(H)$ é um subgrupo caract. de índice finito de F_2 , 1 todo origami é recoberto por um origami caract.

Exemplo

O origami h = (1)(2,3), v = (1,2)(3) em L é recoberto por um origami característico possuíndo 108 quadrados.

¹Aqui usamos que cada $\varphi(H)$ possui o mesmo índice que H e F_2 possui um número finito de subgrupos de índice fixado porque F_2 é finitamente gerado.

Nielsen mostrou em 1917 que $Aut(F_2)$ faz parte de uma sequência exata curta

$$\{1\} o \operatorname{Inn}(F_2) o \operatorname{Aut}(F_2) \overset{\Phi}{ o} \mathit{GL}(2,\mathbb{Z}) o \{1\},$$

onde $\operatorname{Inn}(F_2)$ é o grupo de automorfismos *internos* de $F_2 = \langle x, y \rangle$ e a aplicação $\Phi : \operatorname{Aut}(F_2) \to \operatorname{GL}(2, \mathbb{Z})$ envia $\varphi \in \operatorname{Aut}(F_2)$ em

$$\left(\begin{array}{c|c} \#x - \#x^{-1} \text{ em } \varphi(x) & \#x - \#x^{-1} \text{ em } \varphi(y) \\ \hline \#y - \#y^{-1} \text{ em } \varphi(x) & \#y - \#y^{-1} \text{ em } \varphi(y) \end{array}\right) \in GL(2, \mathbb{Z}).$$

Nielsen mostrou em 1917 que $Aut(F_2)$ faz parte de uma sequência exata curta

$$\{1\} o \operatorname{Inn}(F_2) o \operatorname{Aut}(F_2) \overset{\Phi}{ o} \mathit{GL}(2,\mathbb{Z}) o \{1\},$$

onde $\operatorname{Inn}(F_2)$ é o grupo de automorfismos *internos* de $F_2 = \langle x, y \rangle$ e a aplicação $\Phi : \operatorname{Aut}(F_2) \to \operatorname{GL}(2, \mathbb{Z})$ envia $\varphi \in \operatorname{Aut}(F_2)$ em

$$\left(\begin{array}{c|c} \#x - \#x^{-1} \text{ em } \varphi(x) & \#x - \#x^{-1} \text{ em } \varphi(y) \\ \hline \#y - \#y^{-1} \text{ em } \varphi(x) & \#y - \#y^{-1} \text{ em } \varphi(y) \end{array}\right) \in GL(2, \mathbb{Z}).$$

Observação

Esse resultado é um caso particular do chamado *teorema de Dehn-Nielsen-Baer* relacionando automorfismos externos de grupos fundamentais de superfícies e seus grupos modulares (de classes de isotopias de seus homeomorfismos).

Nesse contexto, Schmithüsen mostrou em 2004 que o grupo de Veech de um origami $\mathcal O$ é o subgrupo

$$\Phi(\{\varphi \in \operatorname{Aut}^+(F_2) : \varphi(H) = H\})$$

de $SL(2,\mathbb{Z})$.

Nesse contexto, Schmithüsen mostrou em 2004 que o grupo de Veech de um origami \mathcal{O} é o subgrupo

$$\Phi(\{\varphi \in \operatorname{Aut}^+(F_2) : \varphi(H) = H\})$$

de $SL(2,\mathbb{Z})$.

Observação

Um corolário direto é que qualquer origami é recoberto por um origami com grupo de Veech = $SL(2,\mathbb{Z})$.

Nesse contexto, Schmithüsen mostrou em 2004 que o grupo de Veech de um origami \mathcal{O} é o subgrupo

$$\Phi(\{\varphi \in \operatorname{Aut}^+(F_2) : \varphi(H) = H\})$$

de $SL(2,\mathbb{Z})$.

Observação

Um corolário direto é que qualquer origami é recoberto por um origami com grupo de Veech = $SL(2, \mathbb{Z})$.

Esse tipo de consideração conduziu Schmithüsen a um *algoritmo* para calcular grupos de Veech.

Nesse contexto, Schmithüsen mostrou em 2004 que o grupo de Veech de um origami \mathcal{O} é o subgrupo

$$\Phi(\{\varphi \in \operatorname{Aut}^+(F_2) : \varphi(H) = H\})$$

de $SL(2,\mathbb{Z})$.

Observação

Um corolário direto é que qualquer origami é recoberto por um origami com grupo de Veech = $SL(2,\mathbb{Z})$.

Esse tipo de consideração conduziu Schmithüsen a um *algoritmo* para calcular grupos de Veech. Em part., ela provou que o origami \mathcal{O}_{2k} com $h=(1,2,\ldots,2k),\ v=(1,2)(3,4)\ldots(2k-1,2k)$ tem

$$SL(\mathcal{O}_{2k})\supset\left\{\left(egin{array}{cc}a&b\\c&d\end{array}
ight)\in SL(2,\mathbb{Z}):b=c=0,a=d=1mod2k
ight\}.$$

Quais grupos são de Veech?

Até o momento, os origamis que encontramos possuem um grupo de Veech de *congruência*, i.e., contendo

$$\Gamma(n) := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL(2,\mathbb{Z}) : b = c = 0, a = d = 1 mod n
ight\}$$

para algum *n* natural.

Quais grupos são de Veech?

Até o momento, os origamis que encontramos possuem um grupo de Veech de *congruência*, i.e., contendo

$$\Gamma(n) := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL(2,\mathbb{Z}) : b = c = 0, a = d = 1 mod n
ight\}$$

para algum *n* natural.

Isso nos conduz ao problema importante (ainda em aberto) de determinar quais subgrupos de índice finito de $SL(2,\mathbb{Z})$ podem ser realizados como grupos de Veech de origamis.

Quais grupos são de Veech?

Até o momento, os origamis que encontramos possuem um grupo de Veech de *congruência*, i.e., contendo

$$\Gamma(n) := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL(2,\mathbb{Z}) : b = c = 0, a = d = 1 mod n
ight\}$$

para algum *n* natural.

Isso nos conduz ao problema importante (ainda em aberto) de determinar quais subgrupos de índice finito de $SL(2,\mathbb{Z})$ podem ser realizados como grupos de Veech de origamis.

Nesse sentido, Ellenberg e McReynolds mostraram em 2012 que:

Teorema

Todo subgrupo Γ de índice finito de $\Gamma(2)$ contendo $\{\pm Id\}$ é o grupo de Veech de algum origami.

Idéia da prova do teorema de Ellenberg–McReynolds (I)

A prova do teorema de Ellenberg-McReynolds está fora do escopo dessa aula.

Idéia da prova do teorema de Ellenberg–McReynolds (I)

A prova do teorema de Ellenberg–McReynolds está fora do escopo dessa aula. Em termos vagos, a idéia é usar o isomorfismo

$$\mathbb{H}/\Gamma(2)\simeq\overline{\mathbb{C}}\setminus\{0,1,\infty\}$$

е

Idéia da prova do teorema de Ellenberg-McReynolds (I)

A prova do teorema de Ellenberg–McReynolds está fora do escopo dessa aula. Em termos vagos, a idéia é usar o isomorfismo

$$\mathbb{H}/\Gamma(2)\simeq\overline{\mathbb{C}}\setminus\{0,1,\infty\}$$

e o fato de que $\Gamma(2)$ é o grupo de homeomorfismos afins de $E(2):=\mathbb{C}/(2\mathbb{Z}\oplus 2i\mathbb{Z})$ fixando os pontos de 2-torção P=(0,0), $Q=(1,0),\ S=(0,1)$

Idéia da prova do teorema de Ellenberg-McReynolds (I)

A prova do teorema de Ellenberg–McReynolds está fora do escopo dessa aula. Em termos vagos, a idéia é usar o isomorfismo

$$\mathbb{H}/\Gamma(2)\simeq\overline{\mathbb{C}}\setminus\{0,1,\infty\}$$

e o fato de que $\Gamma(2)$ é o grupo de homeomorfismos afins de $E(2) := \mathbb{C}/(2\mathbb{Z} \oplus 2i\mathbb{Z})$ fixando os pontos de 2-torção P = (0,0), Q = (1,0), S = (0,1) para fazer um *produto fibrado* dos recobrimentos ramificados

$$E(2) \to E(2)/\{\pm Id\} \simeq \overline{\mathbb{C}}$$
 e $\mathbb{H}/\Gamma \to \mathbb{H}/\Gamma(2)$

Idéia da prova do teorema de Ellenberg-McReynolds (I)

A prova do teorema de Ellenberg–McReynolds está fora do escopo dessa aula. Em termos vagos, a idéia é usar o isomorfismo

$$\mathbb{H}/\Gamma(2)\simeq\overline{\mathbb{C}}\setminus\{0,1,\infty\}$$

e o fato de que $\Gamma(2)$ é o grupo de homeomorfismos afins de $E(2) := \mathbb{C}/(2\mathbb{Z} \oplus 2i\mathbb{Z})$ fixando os pontos de 2-torção P = (0,0), Q = (1,0), S = (0,1) para fazer um *produto fibrado* dos recobrimentos ramificados

$$E(2) \to E(2)/\{\pm Id\} \simeq \overline{\mathbb{C}}$$
 e $\mathbb{H}/\Gamma \to \mathbb{H}/\Gamma(2)$

com o intuito de produzir um origami $q: Y \to E(2)$ tal que q é ramificado exatamente em P, Q, S, o grau de q é $[\Gamma(2): \Gamma]$, os elementos de $\Gamma(2)$ se levantam em homeomorfismos afins de Y e a fibra $q^{-1}((1,1))$ é "naturalmente isomorfa" a $\Gamma(2)/\Gamma$.

Idéia da prova do teorema de Ellenberg-McReynolds (II)

Em seguida, fazemos um recobrimento finito $\mathcal{O} \to Y$ de modo que $\mathcal{O} \to Y \to E(2)$ ramifica de maneiras distintas em P,Q,S e $\mathcal{O} \to Y$ ramifica em $id \cdot \Gamma \in \Gamma(2)/\Gamma \simeq q^{-1}((1,1))$ diferentemente dos outros pontos de $q^{-1}((1,1))$.

Idéia da prova do teorema de Ellenberg-McReynolds (II)

Em seguida, fazemos um recobrimento finito $\mathcal{O} \to Y$ de modo que $\mathcal{O} \to Y \to E(2)$ ramifica de maneiras distintas em P,Q,S e $\mathcal{O} \to Y$ ramifica em $id \cdot \Gamma \in \Gamma(2)/\Gamma \simeq q^{-1}((1,1))$ diferentemente dos outros pontos de $q^{-1}((1,1))$.

Em posse dessas propriedades, podemos mostrar finalmente que $\mathcal O$ tem grupo de Veech Γ .

Existência de grupos de Veech não-congruentes

Graças ao famoso teorema 3/16 de Selberg e ao teorema de Ellenberg-McReynolds, a existência de origamis com grupos de Veech que não são de congruência é garantida.

Existência de grupos de Veech não-congruentes

Graças ao famoso teorema 3/16 de Selberg e ao teorema de Ellenberg–McReynolds, a existência de origamis com grupos de Veech que não são de congruência é garantida.

Com efeito, Selberg mostrou que o primeiro valor próprio do Laplaciano de \mathbb{H}/Γ é $\geq 3/16$ quando Γ é de congruência. Por outro lado, a desigualdade de Cheeger–Buser implica que $\Gamma(2)$ contém subgrupos com primeiro valor próprio do Laplaciano arbitrariamente próximo de zero:

Para obter exemplos mais concretos de grupos de Veech não-congruentes, basta olhar para o estrato $\mathcal{H}(2)$.

Para obter exemplos mais concretos de grupos de Veech não-congruentes, basta olhar para o estrato $\mathcal{H}(2)$.

Teorema (Hubert–Lelièvre, 2005)

O grupo de Veech de qualquer origami (reduzido) em $\mathcal{H}(2)$ com $n \geq 4$ quadrados não é de congruência.

Para obter exemplos mais concretos de grupos de Veech não-congruentes, basta olhar para o estrato $\mathcal{H}(2)$.

Teorema (Hubert–Lelièvre, 2005)

O grupo de Veech de qualquer origami (reduzido) em $\mathcal{H}(2)$ com $n \geq 4$ quadrados não é de congruência.

Observação

Um grupo de congruência Γ possui a propriedade que o índice de sua redução mod. ℓ em $SL(2,\mathbb{Z}/\ell\mathbb{Z})$ coincide com $[SL(2,\mathbb{Z}):\Gamma]$. Schmithüsen melhorou em 2015 o teorema acima ao mostrar que os grupos de Veech oriundos de $\mathcal{H}(2)$ possuem reduções módulo n com índice 1 ou 3 em $SL(2,\mathbb{Z}/n\mathbb{Z})$ para $todo\ n\in\mathbb{N}$.

Para obter exemplos mais concretos de grupos de Veech não-congruentes, basta olhar para o estrato $\mathcal{H}(2)$.

Teorema (Hubert–Lelièvre, 2005)

O grupo de Veech de qualquer origami (reduzido) em $\mathcal{H}(2)$ com $n \geq 4$ quadrados não é de congruência.

Observação

Um grupo de congruência Γ possui a propriedade que o índice de sua redução mod. ℓ em $SL(2,\mathbb{Z}/\ell\mathbb{Z})$ coincide com $[SL(2,\mathbb{Z}):\Gamma]$. Schmithüsen melhorou em 2015 o teorema acima ao mostrar que os grupos de Veech oriundos de $\mathcal{H}(2)$ possuem reduções módulo n com índice 1 ou 3 em $SL(2,\mathbb{Z}/n\mathbb{Z})$ para $todo\ n\in\mathbb{N}$.

No que se segue, vamos mostrar o teorema de Hubert-Lelièvre quando $n \ge 4$ par é tal que n-2 não é uma potência de 2.

Lema de Wohlfahrt

Conforme iremos discutir em detalhes na última aula, sabe-se que todos os origamis (reduzidos) de $\mathcal{H}(2)$ com um número $n \geq 4$ par de quadrados fazem parte de uma mesma $SL(2,\mathbb{Z})$ -órbita.

Lema de Wohlfahrt

Conforme iremos discutir em detalhes na última aula, sabe-se que todos os origamis (reduzidos) de $\mathcal{H}(2)$ com um número $n \geq 4$ par de quadrados fazem parte de uma mesma $SL(2,\mathbb{Z})$ -órbita.

Em particular, seus grupos de Veech são conjugados e, portanto, esses grupos de Veech Γ_n contém conjugados das matrizes

$$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}, k = 1, \ldots, n$$

porque essa $SL(2,\mathbb{Z})$ -órbita inclui os origamis abaixo.

Lema de Wohlfahrt

Conforme iremos discutir em detalhes na última aula, sabe-se que todos os origamis (reduzidos) de $\mathcal{H}(2)$ com um número $n \geq 4$ par de quadrados fazem parte de uma mesma $SL(2,\mathbb{Z})$ -órbita.

Em particular, seus grupos de Veech são conjugados e, portanto, esses grupos de Veech Γ_n contém conjugados das matrizes

$$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}, k = 1, \ldots, n$$

porque essa $SL(2,\mathbb{Z})$ -órbita inclui os origamis abaixo.

Por um lema de Wohlfahrt, se Γ_n fosse de congruência, o menor ℓ com $\Gamma \supset \Gamma(\ell)$ seria necessariamente

$$\ell = \text{ menor múltiplo comum entre } 1, 2, \dots, n$$

Proposição de Kühnlein

Seja m um divisor de ℓ . Se a redução de Γ_n mod. m coincide com $SL(2,\mathbb{Z}/m\mathbb{Z})$, então $d_n:=[SL(2,\mathbb{Z}):\Gamma_n]=[\Gamma(m):\Gamma_n\cap\Gamma(m)]$.

Proposição de Kühnlein

Seja m um divisor de ℓ . Se a redução de Γ_n mod. m coincide com $SL(2, \mathbb{Z}/m\mathbb{Z})$, então $d_n := [SL(2, \mathbb{Z}) : \Gamma_n] = [\Gamma(m) : \Gamma_n \cap \Gamma(m)]$.

Logo, se $\Gamma(\ell)$ está contido em $\Gamma_n \cap \Gamma(m)$, temos que d_n divide $[\Gamma(m) : \Gamma(\ell)]$.

Proposição de Kühnlein

Seja m um divisor de ℓ . Se a redução de Γ_n mod. m coincide com $SL(2, \mathbb{Z}/m\mathbb{Z})$, então $d_n := [SL(2, \mathbb{Z}) : \Gamma_n] = [\Gamma(m) : \Gamma_n \cap \Gamma(m)]$.

Logo, se $\Gamma(\ell)$ está contido em $\Gamma_n \cap \Gamma(m)$, temos que d_n divide $[\Gamma(m) : \Gamma(\ell)]$.

Em outras palavras, teremos que Γ_n não é de congruência se encontrarmos m divisor de ℓ tal que a redução de Γ_n mod. m é $SL(2,\mathbb{Z}/m\mathbb{Z})$ mas d_n não divide $[\Gamma(m):\Gamma(\ell)]$.

Conclusão (I)

Seja m o maior divisor de ℓ que é co-primo a n, i.e., se $\ell = \prod p^{\lambda_p}$ e $n = \prod p^{\nu_p}$, então $m = \prod_{p \nmid n} p^{\lambda_p} = \ell / \prod_{p \mid n} p^{\lambda_p}$.

Conclusão (I)

Seja m o maior divisor de ℓ que é co-primo a n, i.e., se $\ell = \prod p^{\lambda_p}$ e $n = \prod p^{\nu_p}$, então $m = \prod_{p \nmid n} p^{\lambda_p} = \ell / \prod_{p \mid n} p^{\lambda_p}$.

Como as matrizes $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ e $\begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$ pertencem a Γ_n por conta do origami abaixo, a redução mod. m de Γ_n é $SL(2, \mathbb{Z}/m\mathbb{Z})$.

Conclusão (I)

Seja m o maior divisor de ℓ que é co-primo a n, i.e., se $\ell = \prod p^{\lambda_p}$ e $n = \prod p^{\nu_p}$, então $m = \prod_{p \nmid n} p^{\lambda_p} = \ell / \prod_{p \mid n} p^{\lambda_p}$.

Como as matrizes $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ e $\begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$ pertencem a Γ_n por conta do origami abaixo, a redução mod. m de Γ_n é $SL(2, \mathbb{Z}/m\mathbb{Z})$.

Portanto, nos resta apenas verificar que d_n não divide $[\Gamma(m):\Gamma(\ell)]$.

Conclusão (II)

Sabe-se que

$$d_n = \frac{3}{8}(n-2)n^2 \prod_{p|n} (1 - \frac{1}{p^2}) = \frac{3}{8}(n-2) \prod_{p|n} p^{2\nu_p - 2}(p^2 - 1)$$

e

$$[\Gamma(m):\Gamma(\ell)] = \frac{\ell^3 \prod_{\rho|\ell} (1 - \frac{1}{\rho^2})}{m^3 \prod_{\rho|m} (1 - \frac{1}{\rho^2})} = \prod_{\rho|n} \rho^{3\lambda_\rho - 2} (\rho^2 - 1).$$

Conclusão (II)

Sabe-se que

$$d_n = \frac{3}{8}(n-2)n^2 \prod_{p|n} (1 - \frac{1}{p^2}) = \frac{3}{8}(n-2) \prod_{p|n} p^{2\nu_p - 2}(p^2 - 1)$$

е

$$[\Gamma(m):\Gamma(\ell)] = \frac{\ell^3 \prod_{p|\ell} (1 - \frac{1}{p^2})}{m^3 \prod_{p|m} (1 - \frac{1}{p^2})} = \prod_{p|n} p^{3\lambda_p - 2} (p^2 - 1).$$

Logo, d_n só pode dividir $[\Gamma(m):\Gamma(\ell)]$ se 3(n-2) dividir $8\prod_{\rho\mid n}p^{3\lambda_\rho-2\nu_\rho}$.

Conclusão (II)

Sabe-se que

$$d_n = \frac{3}{8}(n-2)n^2 \prod_{p|n} (1 - \frac{1}{p^2}) = \frac{3}{8}(n-2) \prod_{p|n} p^{2\nu_p - 2}(p^2 - 1)$$

е

$$[\Gamma(m):\Gamma(\ell)] = \frac{\ell^3 \prod_{p|\ell} (1 - \frac{1}{p^2})}{m^3 \prod_{p|m} (1 - \frac{1}{p^2})} = \prod_{p|n} p^{3\lambda_p - 2} (p^2 - 1).$$

Logo, d_n só pode dividir $[\Gamma(m):\Gamma(\ell)]$ se 3(n-2) dividir $8\prod_{\rho\mid n}p^{3\lambda_\rho-2\nu_\rho}$.

Isso não é possível porque mdc(n, n-2) = 2 e n-2 não é uma potência de 2 (de modo que n-2 é dividido por primo ímpar que não divide n).