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Abstract. This text corresponds to the lecture notes of a minicourse delivered from August 16

to 20, 2021 at the IMPA–ICTP online summer school “Aritmética, Grupos y Análisis (AGRA)

IV”. In particular, we discuss the same topics from our minicourse, namely, the basic theory

of origamis and its connections to the calculation of Masur–Veech volumes of moduli spaces of

translation surfaces.
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1. Square-tiled surfaces, Veech groups and arithmetic Teichmüller curves

1.1. Basic definitions and some examples. A square-tiled surface or origami is the surface

determined by a pair of permutations h, v ∈ Sn via the following construction: we take n copies

Sq(j), j = 1, . . . , n, of the unit square [0, 1] × [0, 1], and we glue by translations the right, resp.

top side of Sq(j) with the left, resp. bottom side of Sq(h(j)), resp. Sq(v(j)).

Remark 1. The resulting square-tiled surface is connected if and only if the subgroup of Sn gener-

ated by h and v acts transitively on {1, . . . , n}.

Since we are mostly interested in origamis, we shall pay little attention to the particular way of

labelling its squares by declaring that (h, v) is equivalent to (σhσ−1, σvσ−1).

Example 2. The trivial permutations h = (1) = v generate the square torus T2 = C/(Z⊕iZ), while

the L-shaped origami in Figure 1 is obtained from the permutations h = (1)(2, 3) and v = (1, 2)(3).

Figure 1. L-shaped origami

Example 3. A finite group G generated by two elements r and u (e.g., G = An, Sn, SL(2,Fp),

etc.) provides an origami because r and u act on G via the permutations g 7→ g · r and g 7→ g · u.

In particular, the quaternion group G = {±1,±i,±j,±k} generates a famous origami called

Eierlegende Wollmilchsau (cf. Figure 2).
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Figure 2. Eierlegende Wollmilchsau.

By definition, an origami is a finite cover π : X → T2 := C/(Z⊕ iZ) branched only at the origin

0 ∈ T2. The ramification points of the origami are conical singularities. The total angle around

a conical singularity is a multiple of 2π and it can be computed in combinatorial terms via the

non-trivial cycles of the commutator [h, v] = vhv−1h−1:

i

Figure 3. Turning by 2π around a corner.

In other terms, a non-trivial cycle c of [h, v] is responsible for a conical singularity with total

angle 2π · length of c.

Therefore, the topology of the origami is determined by [h, v]: in fact, if [h, v] has non-trivial

cycles of lengths k1 + 1, . . . , kσ+1, we can triangulate the origami by adding diagonals to each

square to obtain 2n faces, 3n edges and n−
∑σ
j=1 kj vertices; by the Euler–Poincaré formula, the

genus g of the origami satisfies

2− 2g = 2n− 3n+

n− σ∑
j=1

kj

 = −
σ∑
j=1

kj .

The details of the derivations of these facts are left to the reader (cf. Exercise 7).

Definition 4. We say that an origami O belongs to a stratum1 H(k1, . . . , kσ) whenever the total

angles of its conical singularities are 2π(kj + 1), j = 1, . . . , σ.

1Strictly speaking, one has to be a little bit careful here because a given origami might belong to multiple strata

if its conical singularities are not numbered. For the time being, we will slightly abuse notation by keeping the

labelling of conical singularities always implicit, and we postpone a serious discussion of this point to Section 3.
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Remark 5. The nomenclature “stratum” will become clear later in Section 3.2. For now, let us

just mention that origamis will play the role of integral points of strata, so that we will be able

to compute volumes of certain moduli spaces by counting origamis (similarly to Gauss’ idea of

relating volumes of Euclidean balls to counting problems about integral vectors).

In the sequel, we will often avoid using “superfluous” squares by assuming that our origamis

are reduced, i.e., the finite branched cover π : X → T2 defining the origami doesn’t factor through

C/(nZ⊕ imZ)→ T2 with n ·m > 1. Equivalently, the period lattice Per(ω) spanned by
∫
γ
ω, where

ω = π∗(dz) and γ are paths joining conical singularities, of the origami coincides with Z⊕ iZ.

1.2. Action of SL(2,Z) and Veech groups. The group SL(2,Z) is generated by the parabolic

matrices

T =

(
1 1

0 1

)
and S =

(
1 0

1 1

)
(cf. Exercise 8 below).

Since T and S stabilize T2 (cf. Figure 4), it is not hard to check that the natural action

Figure 4. Cutting and pasting after shearing by T .

of SL(2,Z) transforms origamis into origamis. From the combinatorial point of view, T (h, v) =

(h, vh−1) and S(h, v) = (hv−1, v) (cf. Figure 5).

Figure 5. Action of T on pairs of permutations.

In combinatorial group theory, the maps (a, b) 7→ (a, ba−1), (a, b) 7→ (ab−1, b) are called Nielsen

transformations because they played a prominent role in Nielsen’s characterisation of pairs of

generators of the free group F2 on two generators.

Note that T and S preserve [h, v]. Hence, the natural action of SL(2,Z) permutes origamis in

each stratum H(k1, . . . , kσ).
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The Veech group of a reduced origami (h, v) is its stabiliser in SL(2,Z). Note that any Veech

group has finite index in SL(2,Z): for example, the Veech group of T2 is SL(2,Z) and the Veech

group of the L-shaped origami h = (1, 2)(3), v = (1, 3)(2) has index 3 in SL(2,Z) (cf. Exercise 6).

1.3. Arithmetic Teichmüller curves. As we will see in details later, an origami is a particular

example of translation surface, i.e., a surface obtained from a finite collection of polygons after

gluing pairs of parallel sides by translations. As it turns out, a translation surface possesses a

finite number of conical singularities whose total angles are multiples of 2π, and, hence, they can

be organised into a stratum H(k1, . . . , kσ) (of the moduli space of translation surfaces). These

strata are complex orbifolds (with at most 3 connected components) carrying a natural SL(2,R)-

action coming from the fact that the linear action of A ∈ SL(2,R) maps a pair v, v + a ∈ R2 onto

A(v), A(v) +A(a) ∈ R2.

In this context, the SL(2,R)-orbit of an origami O is closed and it is isomorphic to the unit

tangent bundle of a hyperbolic surface, namely, SL(O)\ SL(2,R) ' SL(O)\T 1H, where SL(O) ⊂
SL(2,Z) is the Veech group of O.

The closed SL(2,R)-orbits generated by origamis are called arithmetic Teichmüller curves, while

other closed SL(2,R)-orbits in strata are called non-arithmetic Teichmüller curves (because a

theorem of Smillie asserts that they are isomorphic to SL(2,R)/G where G is a lattice of SL(2,R)

which is not commensurable to SL(2,Z)).

The flat torus T2 has a SL(2,R)-orbit isomorphic to the unit tangent bundle of the modular

curve H/ SL(2,Z). In general, since any Veech group is a finite index subgroup of SL(2,Z), every

arithmetic Teichmüller curve is a finite cover of the modular curve.

Combinatorially, we can code an arithmetic Teichmüller curve generated by an origami O via

the graph with vertices

{O = O1, . . . ,Om} = SL(2,Z) · O

and edges connecting Ok to Ol whenever Ok = T±1(Ol) or Ok = S±1(Ol) (for T and S generating

SL(2,Z)). In fact, this graph describes (in a certain sense) the “adjacencies” between the tiles of

the tilling of H/ SL(O) obtained by lifting the usual fundamental domain{
x+ iy ∈ H : |x| < 1

2
, x2 + y2 > 1

}
of the modular curve H/ SL(2,Z).

1.4. Exercises.

Exercise 6. Let us consider the two following origamis

o1 = (h1, v1) = ((1)(2, 3), (1, 2)(3)),

o2 = (h2, v2) = ((1, 2, 3, 4)(5, 6, 7, 8), (1, 5, 3, 7)(2, 8, 4, 6)).

For each of them

(1) draw the flat representation of these origamis;
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(2) compute the angles of the conical singularities of the associated flat surface H(k1, . . . , kσ);

(3) compute the orbit of SL(2,Z) on them.

(4) Compute the index of the Veech group of o1 and o2 in SL2(Z).

Exercise 7. Given an origami o = (h, v).

(1) Show that the singularities of o are in bijection with the cycles of the commutator [h, v] =

vhv−1h−1.

(2) Let ki + 1 be the lengths of these cycles and g the genus of the origami o. Show that

2g − 2 =
∑

ki

(3) Compute the ki and the genus g of o1 and o2 from Exercise 6.

Exercise 8. Recall that PSL2(R) acts on the upper plane R by homography and denote by G the

subgroup of PSL2(Z) generated by

T =

(
1 1

0 1

)
and S =

(
1 0

1 1

)
(1) Show that

{z : |z| ≥ 1,−1/2 ≤ Re(z) ≤ 1/2} ⊂ H

is a fundamental region for G.

(2) Show that G = PSL2(Z).
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2. Some properties of Veech groups

2.1. Characteristic origamis. Recall that an origami O is a finite cover of the flat torus T2 =

C/(Z ⊕ iZ) which is not ramified outside the origin 0 ∈ T2. In particular, O determines a finite-

index subgroup H of π1(T2 \ {0}) ' F2.

We say that O is a characteristic origami whenever the Galois group H is a characteristic

subgroup of F2, i.e., ϕ(H) = H for all ϕ ∈ Aut(F2).

The Eierlegende Wollmilchsau is a characteristic origami: cf. Exercise 14. In general, any

origami is covered by a characteristic origami: indeed, Hchar :=
⋂
ϕ∈Aut(F2) ϕ(H) is a finite-index2

characteristic subgroup of F2 describing a characteristic origami Ochar covering O.

Example 9. The L-shaped origami h = (1, 2)(3), v = (1, 3)(2) is covered by a characteristic

origami with 108 squares.

In 1917, Nielsen showed that Aut(F2) belongs to a short exact sequence

{1} → Inn(F2)→ Aut(F2)
Φ→ GL(2,Z)→ {1},

where Inn(F2) are the inner automorphisms of F2 = 〈x, y〉 and the map Φ : Aut(F2) → GL(2,Z)

is

Φ(ϕ) =

(
sum of exponents of x in ϕ(x) sum of exponents of x in ϕ(y)

sum of exponents of y in ϕ(x) sum of exponents of y in ϕ(y)

)

Remark 10. This result is a particular case of the Dehn–Nielsen–Baer theorem relating the outer

automorphisms of fundamental groups of surfaces and the mapping class groups (of isotopy classes

of homeomorphisms) of surfaces.

Schmithüsen proved in 2004 that the Veech group of an origami O is

Φ({ϕ ∈ Aut(F2) : ϕ(H) = H}) ∩ SL(2,Z).

An immediate consequence of this result is the fact that any characteristic origami has Veech

group equal to SL(2,Z). Moreover, Schmithüsen was able to use her theorem to obtain an algorithm

for the computation of Veech groups. In particular, she derived that the origamis O2k with h =

(1, 2, . . . , 2k) and v = (1, 2)(3, 4) . . . (2k − 1, 2k) have Veech groups

SL(O2k) ⊃

{(
a b

c d

)
∈ SL(2,Z) : a ≡ d ≡ 1, b ≡ c ≡ 0 (mod 2k)

}
.

2Because ϕ(H) has the same index of H and F2 has only finitely many subgroups of a given index (as F2 is

finitely generated).
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2.2. Origamis with prescribed Veech groups. All concrete examples of Veech groups we met

so far were congruence subgroups of SL(2,Z), that is, they contained

Γ(n) :=

{(
a b

c d

)
∈ SL(2,Z) : a ≡ d ≡ 1, b ≡ c ≡ 0 (mod n)

}
for some n ∈ N.

This observation leads us to the important open problem (going back to Thurston) of listing

all finite-index subgroups of SL(2,Z) which are the Veech groups of some origamis. An important

partial progress towards this question was obtained in 2012:

Theorem 11 (Ellenberg–McReynolds). Any finite-index subgroup Γ of Γ(2) containing {±Id} is

the Veech group of some origami.

The basic idea behind the proof of this theorem is to explore the isomorphism H/Γ(2) ' C \
{0, 1,∞} and the fact that Γ(2) is the group of affine homeomorphisms of the elliptic curve E(2) =

C/2(Z ⊕ iZ) fixing its 2-torsion points p = (0, 0), q = (1, 0), s = (0, 1) in order to make a fiber

product of the ramified coverings

E(2)→ E(2)/{±Id} and H/Γ→ H/Γ(2)

with the purpose of getting an origami π : Y → E(2) such that

• π is ramified exactly at p, q, s,

• the degree of π is [Γ(2) : Γ],

• all elements of Γ(2) lift to affine homeomorphisms of Y , and

• the fiber π−1(r) of r = (1, 1) is “naturally isomorphic” to Γ(2)/Γ.

Next, one builds a finite cover O → Y so that O → Y → E(2) ramifies in distinct ways above p,

q, s, r, and O → Y ramifies at id · Γ(2) ∈ Γ(2)/Γ ' π−1(r) differently from the other points of

π−1(r). Finally, one uses these properties to check that O has Veech group Γ.

An interesting consequence of Ellenberg–McReynolds theorem is the existence of non-congruence

Veech groups. In fact, Selberg famously proved that the first eigenvalue of the Laplacian of H/G
is ≥ 3/16 when G is a congruence subgroup of SL(2,Z). On the other hand, we can produce cyclic

covers H/Γ of the hyperbolic surface H/Γ(6) (with genus one and 12 cusps) whose Laplacians

have arbitrarily small first eigenvalues because of the so-called Cheeger–Buser inequality. In this

situation, we can employ Ellenberg–McReynolds’ theorem to produce an origami O whose Veech

group Γ ⊂ Γ(6) ⊂ Γ(2) is not a congruence subgroup.

2.3. Non-congruence Veech groups within H(2). The non-congruence Veech groups are also

present among origamis in H(2) with n ≥ 4 squares.

Theorem 12 (Hubert–Lelièvre (2005)). Each (reduced) origami O ∈ H(2) with n ≥ 4 has a

non-congruence Veech group.
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Remark 13. If G is a congruence subgroup of SL(2,Z) and ` is the smallest integer with Γ(`) ⊂ G,

then the reduction of G modulo ` has index [SL(2,Z) : G]. Since the indices of Veech groups of

origamis in H(2) increase when their number of squares grow, the fact proved by Schmithüsen in

2015 that the reductions modulo m of these Veech groups have indices 1 or 3 for any m ≥ 2 is a

beautiful improvement of Hubert–Lelièvre’s theorem.

In the sequel, we will sketch the proof of Hubert–Lelièvre’s theorem when n ≥ 4 is even and

n− 2 is not a power of 2.

As we are going to see later, the reduced origamis in H(2) with an even number n ≥ 4 of squares

belong to a single SL(2,Z)-orbit. In particular, their Veech groups Γn are mutually conjugated

and, hence, they contain the conjugates of the matrices(
1 k

0 1

)
, k = 1, . . . , n

because this SL(2,Z)-orbit contains the origamis below:

[ADD FIGURE LATER]

By a lemma of Wohlfahrt, if Γn were congruence, then the smallest ` with Γ(`) ⊂ Γn would be

the least common multiple of the lengths of the cusps of Γn, that is,

` = lcm(1, . . . , n).

Next, we note that if m is a divisor of ` such that the reduction of Γn is SL(2,Z/mZ), then

dn := [SL(2,Z) : Γn] = [Γ(m) : Γn ∩ Γ(m)].

Hence, if Γ(`) ⊂ Γn∩Γ(m), then dn must divide [Γ(m) : Γ(`)]. Thus, we will reach a contradiction

if there is a divisor m of ` such that the reduction of Γn modulo m is SL(2,Z/mZ) but dn does

not divide [Γ(m) : Γ(`)].

In this direction, let m be the largest divisor of ` which is coprime to n, that is,

m =
∏
p -n

pλp = `/
∏
p|n

pλp

where ` :=
∏
pλp and n :=

∏
pνp .

Since Γn contains both matrices(
1 n

0 1

)
and

(
1 0

n 1

)

thanks to the origami below

[ADD FIGURE LATER]

we get that the reduction of Γn modulo m is SL(2,Z/mZ).
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Thus, our task is reduced to check that dn does not divide [Γ(m) : Γ(`)]. For this sake, we recall

that it is known that

dn =
3

8
(n− 2)n2

∏
p|n

(
1− 1

p2

)
=

3

8
(n− 2)

∏
p|n

p2νp−2(p2 − 1)

and

[Γ(m) : Γ(`)] =
`3
∏
p|`

(
1− 1

p2

)
m3
∏
p|m

(
1− 1

p2

) =
∏
p|n

p3λp−2(p2 − 1),

so that if dn divides [Γ(m) : Γ(`)], then 3(n − 2) divides 8
∏
p|n p

3λp−2νp . However, this is not

possible because gcd(n, n − 2) = 2 and n − 2 is not a power of 2 (so that n − 2 is divided by an

odd prime which does not divide n).

2.4. Exercises.

Exercise 14. For each origami oi from exercise 6 investigate if it is characteristic or not.

Exercise 15. In this exercise we denote by Γ the group Γ(n) for some n ≥ 2. Recall that a cusp

(resp. an elliptic point) z ∈ R ∪ {∞} (resp. z ∈ H) for Γ is the unique fix point of some γ ∈ Γ.

(1) Show that there is no elliptic points for Γ.

(2) Show that ∞ is a cup of Γ and its fixator is

{(
1 kn

0 1

)
: k ∈ Z

}
.

(3) Compute the cardinal of SL2(Z/nZ). In this count, the functions φ(n) = n
∏
p|n(1 − 1

p )

and ψ(n) = n
∏
p|n(1 + 1

p ) can be used.

Exercise 16. Consider the origami o3 given by the pair of permutations (h3, v3) = ((1)(2, 3, 4), (1, 2)(3)(4)).

(1) Show that the matrices(
1 3

0 1

)
,

(
−1 3

−2 5

)
,

(
1 0

2 1

)
and

(
3 −5

2 −3

)
are element of the Veech group Γ of o3. In fact it can be shown that it is a basis of the

Veech group.

(2) The group Γ has three cusps whose fixators are generated by T 3, ST 2S−1 and TST 4S−1T−1.

Show that if γ contains a Γ(`), then it contains Γ(12).

(3) Let p : PSL2(Z) → PSL2(Z/3Z) be the natural projection. Show that p(Γ) is equal to

PSL2(Z/3Z).

(4) Let N = Γ ∩ Γ(3). Deduce from the fact that [PSL2(Z) : Γ] = 9 that [Γ(3) : N ] = 9.

(5) Deduce from the fact that [Γ(3) : Γ(12)] = 243 that Γ is not a congruence subgroup.
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3. Translation surfaces, moduli spaces and Masur–Veech volumes

A flat torus is a quotient of C by a lattice Λ (a Z-module of rank 2). We already encountered the

square torus C/(Z+ iZ). We recall that the moduli space of flat tori is identified with SL(2,Z)\H2.

In this section, we introduce translation surfaces that generalize tori and origamis. Then we

introduce their moduli spaces that are the projectivized strata PH(k1, . . . , kσ) which is, as the

modular curve, a complex orbifold endowed with an SL(2,R)-action.

3.1. Translation surfaces and GL(2,R)-action. Square-tiled surfaces are particular cases of

translation surfaces that we define now.

Definition 17. An (constructive) translation surface is a compact surface S built from the follow-

ing procedure. Pick a finite collection of Euclidean polygons P1, P2, . . . , Pm in R2 and a pairing f

of the edges of the polygons such that paired sides are parallel with opposite normal vectors. For

each edge e there is a unique translation τe such that τe(e) = f(e). The surface S is the union of

the polygons quotiented by the relation x ∼ τe(x) for the points x on the edge e.

Definition 18. A (geometric) translation surface is a compact surface S and a finite Σ ⊂ S and

a translation structure defined on S \ Σ.

Definition 19. A (analytic) translation surface is a Riemann surface X, a finite set Σ ⊂ X and

an Abelian differential ω on X which is nowhere zero on X \ Σ.

Exercise 20. Figure out the equivalence between the definitions.

The singularity type of a translation surface is the tuple κ = (k1, . . . , kσ) such that at the point

xi we have an angle 2π(ki + 1).

Let M be the translation surface obtained from the polygons P1, . . . , Pm and side pairing σ.

Let A be a matrix in GL(2,R). The translation surface A ·M is the one obtained from the polygons

A · P1, . . . , A · Pm and where the side pairings is identical.

Exercise 21. (1) Why is A ·M a translation surface?

(2) What is its area in terms of the area of M ?

3.2. Strata of translation surfaces. The ”set of isomorphism classes” of translation surfaces

can be turned into a geometric object called a moduli space. We define precisely this object in this

section.

Theorem 22. Each stratum H(µ) is a complex orbifold with a piecewise integral linear structure.

Proof. (Sketch) Let S be a fixed topological surface of genus g where 2g − 2 = µ1 + . . .+ µσ and

p1, . . . , pσ distinct points in S. Each element in H(µ) can be represented as a pair (X,ω) where

X is a complex structure on S and ω is a one-form, holomorphic for X with zeros of order µi at
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pi and non-vanishing elsewhere. We can then consider the period map

H(µ) → H1(S, {p1, . . . , pσ};C)

(X, p1, . . . , pσ, ω) 7→ [ω]

This map is locally injective (if (X, p1, . . . , pσ, ω) admits an automorphism one needs to quotient

the right hand side by Aut(X, p1, . . . , pσ, ω)). �

From the ”constructive” perspective of Definition 17 the period map defined in the proof above

just associates to a polygon the vectors used for the sides.

3.3. Masur-Veech volume and enumeration of square-tiled surfaces. Each stratum H(µ)

is endowed with a canonical volume form called the Masur-Veech volume form. The projectivized

stratum admits a natural normalization whose total mass is finite and whose value is directly

related to the asymptotic enumeration of square-tiled surfaces.

Recall from Section 3.2 that the period map provides locally injective charts. The target

H1(S, {p1, . . . , pσ};C) is a vector space of complex dimension 2g + σ − 1. A vector space has

a natural measure class, the Lebesgue class, which is the set of measures invariant by transla-

tions. It is a one-dimensional ray RLeb. Now, H1(S, {p1, . . . , pσ};C) admits a natural lattice

H1(S, {p1, . . . , pσ};C), one can then pick Leb so that this lattice has covolume one.

Theorem 23. We have

Vol(PH(κ)) = 2 d · lim
N→∞

1

Nd
#ST ≤N (κ).

where d = dimCHκ) and each square tiled surface is counted with a weight 1
Aut(X,ω) .

The proof will follow from the following equivalent definition of square-tiled surfaces.

Lemma 24. A translation surface (X,ω) is square-tiled if and only if its image under the period

map is an integral vector.

Exercise 25. Make a proof of Lemma 24.

Proof of Theorem 23. Riemann integral : the number of rational points with denominator at most

N in an open set U in Rd is proportional to the Lebesgue volume of U times Nd. �

3.4. Reduced versus non-reduced origamis. We explain how to switch between the count of

reduced and non-reduced origamis. By mean of the Möbius formula one can pass freely from the

count of reduced origamis to the count of non-reduced origamis.

Theorem 26. Let H(µ) be a stratum of translation surfaces and let aN and a′N be respectively the

weighted count of all and reduced square-tiled surfaces in H(µ). Then

aN =
∑
d|N

σ

(
N

d

)
a′d.
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Hence

a′N =
∑
d|N

σ′
(
N

d

)
ad

where σ′ is the Dirichlet inverse of σ

N 1 2 3 4 5 6 7 8 9

σ(N) 1 3 4 7 6 12 8 15 13

σ′(N) 1 −3 −4 2 −6 12 −8 0 3

Proof. (Sketch) σ1(N) counts tori. �

3.5. The Masur-Veech volume of H(2). Here we show how to enumerate the origamis in the

stratum H(2) and deduce its Masur-Veech volume. The computations follow the techniques of

Zorich 2002.

The main result of this section is

Theorem 27. The Masur-Veech volume of H(2) is 1
120π

4.

The way we prove this theorem is by enumerating square-tiled surfaces. To state the counting

theorem we first need to introduce some functions. For d ≥ 0, the sum of divisors function is

σd(N) :=
∑
k|N

kd.

The function σ0 simply counts the divisor of N . Let the associated generating series be

Ẽk(q) :=
∑
`>0

`k−1 qk

1− qk
=
∑
n>0

σk−1(n)qn.

For even indices, Ẽ2k(q) coincide up to the constant term and the multiplicative factor with the

so-called normalized Eisenstein series of weight 2k

E2k(q) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn.

The functions E2, E4 and E6 are multiplicative generators of the quasi-modular forms for SL(2,Z)

that will appear again in the next section.

Theorem 28. The generating series of square tiled surfaces in H(2) is

1

4

(
6Ẽ2

2 − Ẽ4(q) + Ẽ2(q)
)

= 3 q3 + 9 q4 + 27 q5 + 45 q6 +O(q7).

In particular up to the constant term it is a non-homogeneous quasimodular form of maximal weight

four.

Proof. We decompose the square-tiled surfaces depending whether its horizontal direction is made

of one or two cylinders, see Figure 6.
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A B C

BCA

A B

B

A

C

Figure 6. The two cylinder diagrams in H(2).

One cylinder square-tiled surfaces with N squares in H(2) are in bijection with the 5-tuples(`A, `B , `C , h, t) ∈ Z5
≥0 :

`A > 0, `B > 0, `C > 0

(`A + `B + `C) · h = N

0 ≤ t < `A + `B + `C

 .

Their number is equal to

aN :=
1

3
·
∑
`|N

` · ·
(
`− 1

2

)
=

1

6
σ3(N)− 1

2
σ2(N) +

1

3
σ1(N).

(the factor 1
3 accounts for the symmetry of the diagram). This can be equivalently expressed on

the generating series

A(q) :=
∑
n≥1

aNq
N =

1

6

(
Ẽ4(q)− 3Ẽ3(q) + 2Ẽ2(q)

)
.

Now, two-cylinders square-tiled surfaces in H(2) are in bijection with
(`A, `B , `C , h1, h2, t1, t2) ∈ Z7

≥0 :

`A > 0, `B > 0, `C > 0

`A = `C

(`A + `B) · h1 + `C · h2 = N

0 ≤ t1 < `A + `B

0 ≤ t2 < `C


Their number is

bn :=
∑

`1,`2,h1,h2
h1>0,h2>0
`2>`1>0

h1`1+h2`2=N

`1 · `2

=
1

2

∑
`1,`2,h1,h2
h1>0,h2>0

h1`1+h2`2=N

`1 · `2 −
∑

`1,h1,h2
h1,h2>0

(h1+h2)(`1)=N

`21.

We will manipulate the generating series B(q) :=
∑
n>0 bnq

n and write it in terms of the Ẽk. We

have

B =
1

2

(
Ẽ2

2 − q
d

dq
Ẽ2 + Ẽ3

)
.

Now we use
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Proposition 29 (Ramanujan identity). Let D = q ddq . We have

DẼ2 = −2Ẽ2
2 +

1

6
Ẽ2 +

5

6
Ẽ4

Hence

B =
1

12

(
18Ẽ2

2 − Ẽ2 − 5Ẽ4 + 6Ẽ3

)
.

�

N 3 4 5 6 7 8 9

aN 1 4 10 21 35 60 85

bN 2 5 17 24 55 75 116

aN + bN 3 9 27 45 90 135 201

a′N 1 4 10 18 35 48 81

b′N 2 5 17 18 55 60 108

a′N + b′N 3 9 27 36 90 108 189

Figure 7. The number of N -squares one-cylinder and two-cylinders square-tiled

surfaces in H(2). Here a′N and b′N are the count of reduced origamis according to

the formula of Theorem 26.

As can be noticed on Figure 7 the rough order of aN and bN are N3 but there are deviations

due to the wild behaviour of the number of divisor function σ3(N).

3.6. Further readings.

(1) surveys

(2) Zorich 2002

(3) DGZZ : one cylinder contribution
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0 50 100 150 200

0.15

0.20

0.25

0.30

0.35

0.40

Figure 8. The sequence {(aN + bN )/N3}N≥3.
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4. Enumeration of square-tiled surfaces via quasi-modular forms

We now count square-tiled surfaces in general strata. The technique was introduced in a famous

article by A. Eskin and A. Okounkov.

Theorem 30 (Eskin-Okounkov). For any stratum H(κ), the generating series of square-tiled sur-

faces in H(κ) is a quasi-modular form of weight 2g.

Corollary 31. The total mass of PH(κ) with respect to the Masur-Veech volume form is a rational

multiple of π2g.

4.1. Frobenius formula and the generating function of square-tiled surfaces.

4.2. Bloch-Okounkov and Kerov-Olshanski theorems.

Theorem 32 (Kerov-Olshanski). The fµ(λ) are shifted symmetric functions.

Let f : P → R be a function on integer partitions. Its q-bracket is the formal series in Q

〈f〉q :=

∑
λ∈P

f(λ)q|λ|∑
λ∈P q

|λ| .

Theorem 33 (Bloch-Okounkov). Let f be a shifted symmetric function, then its q-bracket 〈f〉q

4.3. Computations.
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5. Classification of SL(2,Z)-orbits of origamis

The minimal number of squares of an origami in a given stratum is described by the next

proposition.

Proposition 34. An origami in H(k1, . . . , kσ) is tiled by at least
∑σ
j=1(kj+1) squares. Moreover,

the stratum H(k1, . . . , kσ) contains an origami tiled by exactly
∑σ
j=1(kj + 1) squares.

Proof. We saw that an origami in H(k1, . . . , kσ) is given by a pair of permutations (h, v) ∈ Sn×Sn
whose commutator Sn 3 [h, v] has σ non-trivial cycles of lengths kj + 1, j = 1, . . . , σ. Therefore,

n ≥
σ∑
n=1

(kn + 1) = N.

Furthermore, a permutation µ ∈ SN with non-trivial cycles of lengths kj + 1, j = 1, . . . , σ, is even

because
σ∑
j=1

kj = 2g − 2. By a theorem of Gleason, µ ∈ AN is the product of two N -cycles, say

µ = vρ. Since N -cycles are conjugated, we can write ρ = hv−1h−1, so that µ = [h, v] and the

origami associated to h and v belongs to H(k1, . . . , kσ). �

The previous statement implies that the L-shaped origami with 3 squares inH(2). The SL(2,Z)-

orbit of this origami was discussed before (cf. Exercise 6).

5.1. SL(2,Z)-orbits in H(2). In what follows, we shall describe the SL(2,Z)-orbits of origamis

in H(2) with n ≥ 4 squares.

Theorem 35 (Hubert–Lelièvre, McMullen (2005)). The (reduced) origamis in H(2) with n ≥ 4

squares constitute:

• a single SL(2,Z)-orbit with 3
8 (n− 2)n2

∏
p|n

(1− 1
p2 ) elements when n is even,

• two SL(2,Z)-orbits with 3
16 (n− 1)n2

∏
p|n

(1− 1
p2 ) and 3

16 (n− 3)n2
∏
p|n

(1− 1
p2 ) elements when

n is odd.

The two SL(2,Z)-orbits mentioned above can be distinguished by their monodromies, that is,

the conjugacy classes of the subgroups 〈h, v〉 of Sn generated by the permutations h, v associated

to the corresponding origamis. Indeed, the monodromy is an invariant of a SL(2,Z)-orbit since

SL(2,Z) is generated by two elements acting on pairs of permutations by Nielsen transformations.

Furthermore, for each n ≥ 5 odd, there are at least two SL(2,Z)-orbits of origamis in H(2) with

n squares because the origami with h = (1, 2, . . . , n) and v = (1, 2, 3) has monodromy An and the

origami with h = (1, 2, . . . , n) and v = (1, 2) has monodromy Sn.

Remark 36. The theorem by Hubert–Lelièvre and McMullen says that the monodromy is a complete

invariant of SL(2,Z)-orbits of origamis in H(2). For n ≥ 5 odd, the orbit with monodromy Sn,

resp. An, is called of type A, resp. B.
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We say that an origami (h, v) ∈ Sn is primitive if it is not a non-trivial cover of another origami

or, equivalently, if its monodromy G = 〈h, v〉 is a primitive3 subgroup of Sn. The monodromy of

a primitive origami with a large number of squares is always An or Sn:

Theorem 37 (Zmiaikou). A primitive origami O ∈ H(k1, . . . , kσ) tiled by

N ≥

(
2

σ∑
n=1

(kn + 1)

)2

squares has monodromy group AN or SN .

Proof. After some results obtained by Babai (in 1982) and Pyber (in 1991), a primitive subgroup

G of Sm not containing the alternating group Am satisfies

m < 4

(
min

α∈G\{id}
#{1 ≤ v ≤ n : α(v) 6= v}

)2

.

In our context of primitive origamis O, the desired theorem follows directly from the results of

Babai and Pyber because the monodromy contains the commutator [h, v] of a pair of permutations

determining O and the support of [h, v] has cardinality
σ∑
n=1

(kn + 1) for O ∈ H(k1, . . . , kσ). �

Let us now close this subsection with a sketch of the proof of (a particular case of) the theorem

of Hubert–Lelièvre and McMullen. A maximal collection of closed horizontal geodesics in an

origami is called a horizontal cylinder. Any origami (h, v) is naturally decomposed into horizontal

cylinders given by unions of certain cycles of h. In our current setting, it is possible to show

that any origami in H(2) decomposes into one or two cylinders, so that any origami in H(2) is

determined by 4 natural parameters (t, a, b, c), 0 ≤ t < n = a + b + c or 6 natural parameters

(t1, t2, w1, w2, h1, h2), 0 ≤ tj < wj , 0 < w1 < w2 < n = h1w1 + h2w2:

[ADD FIGURE LATER]

Assuming that n > 3 is prime, Hubert–Lelièvre use a descent argument showing that the usual

generators of SL(2,Z) allow to decrease the heights of the cylinders: any origami in H(2) tiled

by n squares and decomposed into two horizontal cylinders belongs to the SL(2,Z)-orbit of an

origami with a single cylinder or two cylinders with heights h1 = h2 = 1.

Next, Hubert–Lelièvre observe that the coprimality between w1 and w2 allows to set t1 = 1 and

t2 = 0 after a certain number of applications of the Nielsen transformation (h, v) 7→ (h, vh−1). At

this stage, if we look at the vertical direction (or, equivalently, apply the element

(
0 −1

1 0

)
of

SL(2,Z)), then we obtain an origami with a single cylinder.

In summary, we showed that the SL(2,Z)-orbit of any origami in H(2) tiled by a prime number

n > 3 squares contains an origami consisting of a single horizontal cylinder.

3A block ∆ for G is a subset of {1, . . . , n} such that α(∆) = ∆ or α(∆) ∩ ∆ = ∅ for all α ∈ G. A primitive

subgroup of Sn is a subgroup without blocks of sizes between 2 and n− 1.



20 VINCENT DELECROIX, QUENTIN GENDRON, AND CARLOS MATHEUS

Remark 38. The SL(2,Z)-orbits of certain origamis of genus 3 might not contain origamis consist-

ing of a single horizontal cylinder: for example, this is the case of the Eierlegende Wollmilchsau.

In particular, this indicates that the strategy used by Hubert–Lelièvre doesn’t easily generalize to

origamis with genus ≥ 3.

Hence, our task is reduced to show that all one-cylinder origamis with the same monodromy

belong to the same SL(2,Z)-orbit.

The first step towards this goal is to establish that an origami with parameters (a, b, c) belongs

to the SL(2,Z)-orbit of an origami with parameters (1, d, e). For this sake, it suffices to connect

(a, b, c) with (δ, kδ, γ) for δ | gcd(a, b) (because n prime forces gcd(δ, γ) = 1, so that we can repeat

the same argument to reach (1, d, e)). In this direction, note that the origami with parameters

(0, a, b, c) has two cylinders in the vertical direction: one of them has height c and the other has

a certain twist t. In particular, we obtain a one-cylinder origami with parameters (δ, kδ, γ), where

δ = gcd(1 + t, `) and ` = gcd(a, b), by looking at the direction (1 + t, `).

The second step towards our goal is to apply the usual generators of SL(2,Z) to connect (1, d, e)

and (1, 1, n − 2) or (1, 2, n − 3) depending on whether d and e are both odd or both even. For

example, if d and e are both odd, then the vertical direction gives a L-shaped origami with width

1 + e and height 1 + d. By applying

(
1 2

0 1

)
and looking at the vertical direction, we get an

origami with two cylinders of heights 1. Using the Nielsen transformation (h, v) 7→ (h, vh−1) to

set the twist parameters to t1 = 0 = t2, we get in the diagonal direction (1, 1) an origami with a

single cylinder and parameters (1, 1, n− 2).

5.2. HLK invariant and Delecroix–Lelièvre conjecture. In their original article, the SL(2,Z)-

orbits of origamis in H(2) were distinguished using an invariant called nowadays Hubert–Lelièvre–

Kani (HLK) invariant.

This invariant concerns the positions of the Weierstrass points of the origami. In plain terms,

any origami O ∈ H(2) is hyperelliptic, that is, O is a branched cover of T2 admitting an involution

ι with 6 fixed points such that ι lifts the map ι0(z) = −z of T2. By definition, the 6 fixed points

of ι project to the 2-torsion points of T2 (that is, the 4 fixed points of ι0), so that we can write a

list (l0, [l1, l2, l3]) where l0 is the number of fixed points of ι projecting to 0 ∈ T2 and l1, l2 and l3

are the numbers of fixed points of ι projecting to 1/2, i/2 and (1 + i)/2. Since SL(2,Z) fixes the

origin and permutes the other 2-torsion points of T2, the list (l0, [l1, l2, l3]) is an invariant (HLK)

of the SL(2,Z)-orbit of O when [l1, l2, l3] is taken modulo permutations.

A quick calculation shows that the possible values of the HLK invariant of origamis in H(2) are

(1, [3, 1, 1]) and (3, [1, 1, 1]) (cf. Exercise 39).

Unfortunately, the classification of SL(2,Z)-orbits of origamis is not known beyond H(2).

Nonetheless, we dispose of precise conjectures about such classifications in many strata thanks

to the numerical investigations by several authors. For instance, Delecroix and Lelièvre conjec-

tured that the monodromy and the HLK invariant (in the presence of “anti-automorphisms”)
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constitute complete invariants of arithmetic Teichmüller curves in many strata including H(1, 1)

and H(4).

In the case of H(1, 1), the Delecroix–Lelièvre conjecture predicts the existence of two SL(2,Z)-

orbits of reduced origamis with n > 6 squares. In the case of H(4), the Delecroix–Lelièvre conjec-

ture implies that there are seven SL(2,Z)-orbits of reduced origamis with an odd number n > 8

of squares and there are six or seven SL(2,Z)-orbits of reduced origamis with a number n > 8

squares which is 0 or 2 modulo 4.

5.3. McMullen’s expansion conjecture in H(2). We saw that the arithmetic Teichmüller

curves are coded by graphs whose vertices are SL(2,Z)-orbits of origamis and whose edges connect

origamis deduced from each other by a fixed set of generators of SL(2,Z) (e.g., two parabolic

matrices).

It was conjectured by McMullen that the corresponding family of graphs associated to arithmetic

Teichmüller curves in H(2) is expander, i.e., the adjacency matrices of these graphs possess an

uniform spectral gap. This conjecture is still open despite some evidences towards it: for example,

these graphs are associated to Teichmüller curves whose genera tend to infinity, they are not planar,

their diameters seem to grow slowly (e.g., the graph associated to origamis in H(2) with 66 squares

has 69120 vertices and diameter 23 ≈ 2 log(69120)), etc.

As it turns out, McMullen’s conjecture admits a geometric version asserting that the first eigen-

values of the Laplacians of the arithmetic Teichmüller curves in H(2) are uniformly bounded away

from zero.

5.4. Exercises.

Exercise 39. [Relate values of HLK and monodromies in H(2)]
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6. Some extra topics

6.1. Kontsevich–Zorich cocycle and its Lyapunov exponents. ???????

6.2. Geometric version of McMullen’s expansion conjecture. ????????

6.3. Duryev’s partial classification of SL(2,Z)-orbits in H(1, 1). ???????????????????
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