Superficies cuadriculadas III Conteo de origamis : espacio de moduli y volumen de Masur–Veech

Vincent Delecroix

CNRS - Université de Bordeaux

AGRA IV, 18/08/2021

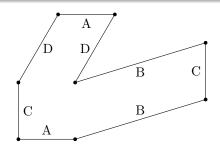
Contar origamis: motivaciones

- Gromov-Witten invariants
- 2 volumen de espacio de moduli $\mathcal{H}_g(k_1, k_2, \dots, k_{\sigma})$

Superficie de translación (constructiva)

Definición

Sean P_1 , P_2 , ..., P_N polígonos en \mathbb{R}^2 y σ un emparejamiento de sus lados tal que dos lados emparejados estan paralelos y con vectores normales opuestos. La superficie de translación construida a partir de $(\{P_i\}_{i=1,...,m},\sigma)$ es el cociente $\sqcup P_i$ bajo la identificación por translación de los pares de lados dados por σ .



Superficie de translación (analítica)

Definición

Una superficie de translación es un par (X, ω) donde X es una superficie de Riemann compacta y ω una 1-forma holomorfa que no sea zero.

$$y^{2} = x(x-1)(x-2)$$
$$\omega = \frac{dx}{y}$$

Superficie de translación (analítica)

Definición

Una superficie de translación es un par (X, ω) donde X es una superficie de Riemann compacta y ω una 1-forma holomorfa que no sea zero.

$$y^{2} = x(x-1)(x-2)$$
$$\omega = \frac{dx}{y}$$

!Las dos definiciones son equivalentes! (ver ejercicios)

Estratas

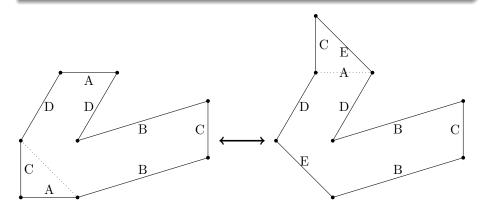
Definición

Por cada vector $\kappa = (k_1, \ldots, k_{\sigma})$ de números enteros positivos tal que $k_1 + k_2 + \ldots + k_{\sigma} = 2g - 2$ definimos la estrata $\mathcal{H}_g(\kappa)$ como el conjunto de las clases de isomorfismos de superficies de translaciones de genero g y singularidades cónicas de angulos $2\pi(k_1 + 1)$, $2\pi(k_2 + 1)$, ..., $2\pi(k_{\sigma} + 1)$.

Isomorphismos: cortar y pegar

Definición

Dos superficies de translaciones dados por polígonos son isomorfas si existe una secuencia de cortes y pegadura que permite de pasar de una a la otra.



Isomorfismos: versión analítica

Definición

 (X,ω) y (X',ω') son isomorfas si existe un isomorfismo de superficies de Riemann $\phi:X\to X'$ tal que $\phi^*\omega'=\omega$.

Isomorfismos: versión analítica

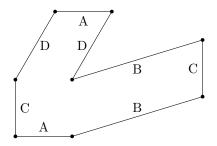
Definición

 (X,ω) y (X',ω') son isomorfas si existe un isomorfismo de superficies de Riemann $\phi:X\to X'$ tal que $\phi^*\omega'=\omega$.

!Las dos definiciones son equivalentes! (no es trivial)

Coordenadas por $\mathcal{H}_g(\kappa)$

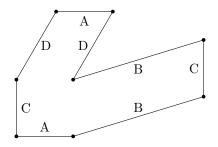
Sea M superficie de translación definida por un solo poligono



Una venicinidad de M en $\mathcal{H}_g(\kappa)$ es dado por pequeño cambio de los lados $(v_A, v_B, v_C, v_D) \in \mathbb{C}^4$.

Coordenadas por $\mathcal{H}_g(\kappa)$

Sea M superficie de translación definida por un solo poligono



Una venicinidad de M en $\mathcal{H}_g(\kappa)$ es dado por pequeño cambio de los lados $(v_A, v_B, v_C, v_D) \in \mathbb{C}^4$.

versión algebraica (mapa de periodos): $(X, \omega) \mapsto [\omega] \in H^1(S, \Sigma; \mathbb{C})$

Origamis = puntos enteros

Proposición

Una superficie de translación M es un origami si y solo si su imagen por la aplicación de periodos pertenece a $H^1(S,\Sigma;\mathbb{Z})\simeq \mathbb{Z}^{2g+\sigma-1}$. De manera equivalente, si y solo si los lados de los poligonos son vectores integrales.

Origamis = puntos enteros

Proposición

Una superficie de translación M es un origami si y solo si su imagen por la aplicación de periodos pertenece a $H^1(S,\Sigma;\mathbb{Z})\simeq \mathbb{Z}^{2g+\sigma-1}$. De manera equivalente, si y solo si los lados de los poligonos son vectores integrales.

Ver ejercicios.

Volumen de Masur-Veech

Sea $\mathcal{H}_g(\kappa)$ una estrata de superficies de translación.

Teorema (Masur-Veech 1982)

La medida de Lebesgue en $H^1(S,\Sigma;\mathbb{C})$ normalizada tal que $H^1(S,\Sigma;\mathbb{Z})$ sea de covlumen uno define por pull-back una medida en $\mathcal{H}_g(\kappa)$. La masa total de $\{M: \operatorname{Area}(M) \leq 1\}$ es finita.

Volumen de Masur-Veech

Sea $\mathcal{H}_g(\kappa)$ una estrata de superficies de translación.

Teorema (Masur-Veech 1982)

La medida de Lebesgue en $H^1(S,\Sigma;\mathbb{C})$ normalizada tal que $H^1(S,\Sigma;\mathbb{Z})$ sea de covlumen uno define por pull-back una medida en $\mathcal{H}_g(\kappa)$. La masa total de $\{M: \operatorname{Area}(M) \leq 1\}$ es finita.

Teorema (Zorich 2002)

Sea a_N el conteo de origamis $a_N:=\sum \frac{1}{\operatorname{Aut}(o)}$ donde la suma es sobre los origamis o en $\mathcal{H}_g(\kappa)$ con area N. Entonces

$$\mathsf{Vol}(\{M : \mathsf{Area}(M) \leq 1\}) = \lim_{N o \infty} \frac{1}{N^{2g+\sigma-1}} \cdot \sum_{N' \leq N} a_{N'}.$$

El caso de $\mathcal{H}_2(2)$

Teorema

La función generadora de los origamis en $\mathcal{H}_2(2)$ satisface

$$\sum_{o} q^{\mathsf{Area}(o)} = \frac{1}{4} \left(6 \tilde{E}_2^2(q) - \tilde{E}_4(q) + \tilde{E}_2(q) \right) = 3q^3 + 9q^4 + 27q^5 + O(q^6)$$

donde

$$\widetilde{\mathcal{E}}_k(q) := \sum_{\ell>0} \ell^{k-1} \frac{q^\ell}{1-q^\ell} = \sum_{n>0} \sigma_{k-1}(n) q^n.$$

El caso de $\mathcal{H}_2(2)$

Teorema

La función generadora de los origamis en $\mathcal{H}_2(2)$ satisface

$$\sum_{o} q^{\mathsf{Area}(o)} = \frac{1}{4} \left(6 \tilde{E}_2^2(q) - \tilde{E}_4(q) + \tilde{E}_2(q) \right) = 3q^3 + 9q^4 + 27q^5 + O(q^6)$$

donde

$$\tilde{E}_k(q) := \sum_{\ell>0} \ell^{k-1} \frac{q^\ell}{1-q^\ell} = \sum_{n>0} \sigma_{k-1}(n) q^n.$$

Caso particular de un teorema de Eskin-Okounkov: la función generadora de los origamis en cualquier estrata $\mathcal{H}_g(\kappa)$ es quasimodular.

El caso de $\mathcal{H}_2(2)$

Teorema

La función generadora de los origamis en $\mathcal{H}_2(2)$ satisface

$$\sum_{o} q^{\mathsf{Area}(o)} = \frac{1}{4} \left(6 \tilde{E}_2^2(q) - \tilde{E}_4(q) + \tilde{E}_2(q) \right) = 3q^3 + 9q^4 + 27q^5 + O(q^6)$$

donde

$$\tilde{E}_k(q) := \sum_{\ell>0} \ell^{k-1} \frac{q^\ell}{1-q^\ell} = \sum_{n>0} \sigma_{k-1}(n) q^n.$$

Caso particular de un teorema de Eskin-Okounkov: la función generadora de los origamis en cualquier estrata $\mathcal{H}_g(\kappa)$ es quasimodular.

Corolario

El volumen $\{M \in \mathcal{H}(2) : \text{Area}(M) \leq 1\}$ es igual a $\frac{\pi^4}{960}$.

Conjetura

Por cada estrata $\mathcal{H}(\kappa)$ y cada k, la contribucción de los origamis con k cilindros al volumen de Masur-Veech de $\mathbb{P}\mathcal{H}(\kappa)$ e una combinacion racional de valores zeta múltiples

$$\zeta(s_1, s_2, \ldots, s_k) := \sum_{\substack{n_1 > n_2 > \ldots > n_k > 0}} \frac{1}{n_1^{s_1} \cdot n_2^{s_2} \cdots n_k^{s_k}}.$$

The conjecture holds for $\mathcal{H}(2,1,1)$ (Zorich)

$$V1 = \frac{7}{180}\zeta(8)$$

$$V2 = -\frac{2}{63}\zeta(1,7) + \frac{1}{63}\zeta(2,6) + \frac{1}{36}\zeta(7) + \frac{59}{756}\zeta(8)$$

$$V3 = \frac{8}{63}\zeta(1,1,6) - \frac{1}{378}\zeta(1,6) - \frac{26}{63}\zeta(1,7) + \frac{61}{3780}\zeta(2,5) - \frac{4}{63}\zeta(2,6) + \frac{95}{378}\zeta(2,6) + \frac{1}{3780}\zeta(2,5) - \frac{1}{63}\zeta(2,6) + \frac{1}{3780}\zeta(2,5) + \frac{5}{63}\zeta(2,6) + \frac{1}{1880}\zeta(2,5) + \frac{5}{63}\zeta(2,6) + \frac{1}{1880}\zeta(2,5) + \frac{1}{1880}\zeta(2,5)$$