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LECTURE 1

Warm-up: elliptic curves

1. The basics

Let k be a field. An elliptic curve over k is a smooth projective irreducible curve of genus
1 with a distinguished k-rational point.

For us, the most relevant example is given by elliptic curves in Weierstrass form

y2 = x3 + Ax2 +Bx+ C

where Disc(x3 +Ax2 +Bx+C) 6= 0. This last condition ensures that the plane curve defined
by the previous equation is smooth. It is not projective, but its projective closure in P2 in
homogeneous coordinates [x : y : z] is

y2z = x3 + Ax2z +Bxz2 + Cz3.

At infinity (i.e. z = 0) there is only the point [0 : 1 : 0] which is the distinguished point of
an elliptic curve in Weierstrass form.

Given an elliptic curve E ⊆ P2 in Weierstrass form over k and k-rational points P,Q
(possibly the same) we consider the line L through P and Q (if P = Q we take the tangent
to E). Since deg(L) = 1 and deg(E) = 3 there must be a third intersection point if we count
with multiplicities. It is k-rational because P and Q are.

This method to get new points from known ones was already discussed by Diophantus
in his book series Arithmetica in the III century.

Example 1.1. Let E over Q be given by y2 = x3 + 1. We have the trivial points
(x, y) = (−1, 0) and (0, 1). The line L through them is y = x+ 1. Let’s intersect L and E:{

y2 = x3 + 1

y = x+ 1
⇒

{
x2 + 2x+ 1 = x3 + 1

y = x+ 1
⇒

{
0 = x3 − x2 − 2x = x(x+ 1)(x− 2)

y = x+ 1

We find the two initial solutions and a new more interesting one: (x, y) = (2, 3).
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2. Group law

It is a theorem of Poincaré that a small modification of Diophantus’s method yields much
more algebraic structure:

Theorem 1.2 (Poincare; group law). Let k be a field and let E be an elliptic curve given
in Weierstrass form over k. Given P,Q ∈ E(k) define the point “P +Q” as follows:

Suppose that R = (a, b) is the third intersection with E of the line L through P and Q.
Then P +Q := (a,−b).

With this operation, E(k) becomes an abelian group with neutral element P∞ = [0 : 1 : 0].

Pictorially, we have:

3. Integral points

Let us consider another example, only slightly different to the previous one. We’ll focus
on integral solutions.

Example 1.3. Let E over Q be given by y2 = x3 − 1. We have the trivial point
(x, y) = (1, 0) and a quick search reveals no other integer solution. Is there any other integer
solution?

First, we see that x must be odd and y must be even, by working modulo 4.
Now, working over the Euclidean domain Z[i] we have

x3 = y2 + 1 = (y + i)(y − i).

Notice that (y + i)− (y − i) = 2i and recall that x is odd, so, gcd(y + i, y − i) = 1.
Due to the equation (y+ i)(y− i) = x3 in Z[i] (which is UFD) we see that y+ i and y− i

are cubes up to units, but the only units are ±1,±i which are cubes themselves. Therefore
y + i and y − i are cubes in Z[i]

In particular, y + i = (a + bi)3 = a3 + 3a2bi − 3ab2 − b3i for some a, b ∈ Z. Separating
real and imaginary parts, we find{

y = a3 − 3ab2 = a(a2 − 3b2)

1 = 3a2b− b3 = b(3a2 − b2)

The second equation forces b = ±1 and a = 0, and the first equation gives y = 0. Hence,
the only integral point in the elliptic curve y2 = x3 − 1 is (x, y) = (1, 0).

Finiteness of integral points holds in much greater generality than this example:

Theorem 1.4 (Siegel). If E is an elliptic curve given by a Weierstrass equation with
integer coefficients, then it has at most a finite number of integral points.
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4. Rational points

The main theorem for the rational solutions of an elliptic curve over Q is

Theorem 1.5 (Mordell). Let E be an elliptic curve over Q. With the group structure
from Poincaré’s theorem, the set of rational points E(Q) is a finitely generated abelian group.
In particular, E(Q) ' T ⊕ Zr where T is a finite abelian group (the torsion part) and
r = rkE(Q) ≥ 0 is the rank.

The torsion part is easy to compute with the aid of

Theorem 1.6 (Nagell-Lutz). Let E be an elliptic curve over Q given by a Weierstrass
equation

y2 = x3 + Ax2 +Bx+ C

with integer coefficients, and let ∆ = Disc(x3 + Ax2 + Bx + C). All affine torsion points
have integral coordinates. Points with y = 0 are precisely the 2-torsion points, and all other
torsion points satisfy y2|∆.

Computing the rank is harder. There is a method called descent which, at present, is
not guaranteed to terminate. Nevertheless, descent often works in practice. It is slow to do
by hand, but fortunately it is programmed in Sage and Magma (among other softwares).

Regardless of whether it terminates or not, descent always gives an upper bound for the
rank. In the case of 2-descent in the presence of a 2-torsion point, we get the following simple
upper bound (see [1], and see [6] for a more precise result)

Theorem 1.7. Let E be an elliptic curve given by a Weiertrass equation of the form
y2 = x3 + Ax2 +Bx with A,B ∈ Z. Then

rkE(Q) ≤ ω(B) + ω(A2 − 4B)− 1

where ω(n) is the number of different prime divisors of n.

The next example will use Sage. You can use a basic version for free here:
https://sagecell.sagemath.org

Example 1.8. After a change of variables, elliptic curves over Q can be written in the
form y2 = x3 + bx+ c and Sage reads this as [b, c]. For instance, let us compute the rank of
the elliptic curve y2 = x3 + 1 of Example 1.1:

>E=EllipticCurve([0,1]);

>[E, E.rank()]

Sage: [Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field, 0]

This means that E(Q) is just torsion. We leave it as an exercise to compute all the affine
torsion points using the Nagell-Lutz theorem. Here, instead, let us simply use Sage:

>E=EllipticCurve([0,1]);

>E.torsion_order()

Sage: 6

This means that there are 6 torsion points. One is ∞ = [0 : 1 : 0] and we already know
the points (−1, 0), (0, 1), (0,−1), (2, 3), (2,−3) from Example 1.1. Thus, our list is complete
and we found all the rational solutions of y2 = x3 + 1.
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LECTURE 2

Rational approximations and integral points

1. Dirichlet: Good and cheap rational approximations exist

Every real number can be approximated by rational numbers. Naturally, one one would
love to have control on the quality of such approximations. For instance,

√
2 = 1.4142... can

be approximated by
17

12
= 1.416 and by

109

77
= 1.415584.

The second approximation has a slightly smaller error, but it is more complicated to write.
A classical result by Dirichlet provides a supply of rational approximations that are both

good and not too expensive:

Theorem 2.1 (Dirichlet, 1840). Let α ∈ R be an irrational number. There are infinitely
many rational numbers q = a/b with a, b coprime integers and b > 0, such that

|α− q| < 1

b2
.

If the reader has not seen the proof before, she should give it a try.
An example: Our first rational approximation of

√
2 is as provided by Dirichlet’s theorem

while the second one is not: it is too expensive for its quality:∣∣∣∣√2− 17

12

∣∣∣∣ = 0.0024... <
1

122
= 0.0069...;

∣∣∣∣√2− 109

77

∣∣∣∣ = 0.0013... >
1

772
= 0.0001...

2. Liouville: Algebraic numbers cannot be approximated too well

Can we do better than what Dirichlet’s theorem provides? The first result to address
this problem is due to Liouville. It imposes a non-trivial restriction on the exponent on the
approximation when α is algebraic.

Theorem 2.2 (Liouville, 1844). Let α ∈ R be an irrational algebraic number of degree
d. There is a constant c(α) > 0 depending only on α such that for every rational number
q = a/b with a, b coprime integers and b > 0 we have

|α− q| > c(α)

bd
.

The proof is an easy exercise using the minimal polynomial of α.
We have two immediate consequences:

Corollary 2.3. The exponent of b2 in Dirichlet’s theorem cannot be increased when α
is real quadratic, e.g. for α =

√
2. Thus, the exponent in Dirichlet’s theorem is optimal.

Corollary 2.4. The real number λ =
∞∑
n=1

1

2n!
is transcendental.
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3. Approximation theorems beyond Liouville

Liouville’s argument has served as a blueprint for more sophisticated arguments leading
to stronger estimates. The first improvement was due to Thue:

Theorem 2.5 (Thue’s approximation bound, 1909). Let α ∈ R be an irrational algebraic
number of degree d and let ε > 0. For all but finitely many q = a/b ∈ Q (with a, b coprime
integers) we have

(3.1) |α− q| ≥ 1

|b|d/2+1+ε
.

Comments about the proof. A gentle and detailed exposition of Thue’s proof can
be found in [33]. We will not repeat the details here. Let us simply say that it is a two-
variables generalization of Liouville’s proof. �

The method of proof initiated by Liouville and Thue (namely, constructing auxiliary
polynomials, proving non-vanishing at rational points, and confronting upper and lower
bounds) is nowadays called Diophantine approximation method.

The exponent d/2 + 1 + ε in Thue’s theorem was improved by Siegel, Gelfond, Dyson,
and finally by Roth [31] who obtained the exponent 2 + ε. Roth’s theorem was generalized
by Schmidt [32] to higher dimensions, in what is now called the Subspace Theorem.

4. Integral points in curves

Thue used his Diophantine approximation result to prove the following remarkable finite-
ness theorem for a special type of Diophantine equations.

Theorem 2.6 (Thue’s equation). Let F (x, y) ∈ Z[x, y] be an irreducible homogeneous
polynomial of degree d ≥ 3. Let c be a non-zero integer. The Diophantine equation

(4.1) F (x, y) = c

has at most finitely many integer solutions.

Proof. Let α1, ..., αd be the roots of F (x, 1) in C and let δ = min{|αi − αj| : i 6= j}/3.
We can factor F as

F (x, y) =
d∏
j=1

(x− αjy).

We proceed by contradiction; assume that (4.1) has infinitely many integer solutions.

An auxiliary map. Let us ignore the finitely many solutions with y = 0. Given
an integer solution (a, b) ∈ Z2 for (4.1) having b 6= 0, we construct the rational number
φ(a, b) = a/b. Since F (a, b) = c we have gcd(a, b)d|c, thus, this construction is finite-to-one.

The auxiliary map gives good approximations. Let (a, b) be an integer solution of
(4.1) with b 6= 0 and write q = φ(a, b). Then

c

bd
= F (q, 1) =

d∏
j=1

(q − αj).
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By definition of δ, for at most one j we can have |q − αj| < δ. This means that

|c|/|b|d ≥ δd−1 · min
1≤j≤d

|αj − q|.

Since we have infinitely many (a, b) and φ is finite-to-one, we have infinitely many possi-
ble values of q. Passing to an infinite sub-sequence qi = φ(ai, bi) and relabeling the αj if
necessary, we obtain

δ1−d|c|/|bi|d ≥ |α1 − qi| for each i = 1, 2, ...

A posteriori, this α1 must belong to R because it is the limit of a sequence in Q.

Applying a Diophantine approximation estimate. Let ε > 0. The algebraic
number α1 ∈ R has degree d ≥ 3. Hence, Thue’s approximation theorem gives

|α1 − q| >
1

|b|d/2+1+ε

for all but finitely many q = φ(a, b).

Confronting the bounds. Let ε = 1/4. Discarding finitely many of the qi, we get

δ1−d|c|/|bi|d ≥ |α1 − qi| > 1/|bi|d/2+1+1/4

for an infinite sequence qi = φ(ai, bi). This gives

|bi|1/4 ≤ |bi|d/2−1.25 < δ1−d|c|.
where we used d ≥ 3. Hence, bi is bounded, which is impossible because the sequence
qi = φ(ai, bi) was infinite. �

We remark that a Pell equation such as x2−2y2 = 1 has infinitely many integral solutions.
This shows that the assumption d ≥ 3 in Thue’s theorem cannot be dropped.

The strategy in the previous proof is still in use today, to show that integral or rational
points of certain algebraic varieties are Zariski degenerate, or even to show finiteness. See
for instance [9].

Thue’s theorem on finiteness of integral points in plane curves of the form F (x, y) = c
with degF ≥ 3 was later generalized by Siegel using stronger Diophantine approximation
bounds. For the moment we state a version over Z, but the result actually holds over rings
of S-integers of number fields.

Theorem 2.7 (Siegel’s theorem on integral points). Let C be a smooth, geometrically
irreducible algebraic curve in affine space defined by equations over Z. When C has geometric
genus 0 we further assume that the smooth compactification of C has at least 3 complex points
at infinity. Under these assumptions, the set C(Z) of integral points of C is finite.

We leave it to the reader to check that Thue’s Theorem 2.6 is a direct consequence of
Siegel’s theorem: The equation F (x, y) = c defines an affine plane curve and its projective
closure in P2

C is smooth irreducible with d ≥ 3 points at infinity.
Also, this version of Siegel’s theorem implies the one about integral points in affine

Weierstrass models of elliptic curves (cf. Theorem 1.4).
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LECTURE 3

Chabauty’s p-adic approach

1. Abelian varieties

Let k be a field. An abelian variety A over k is an algebraic group over k which is
projective. Automatically, A is commutative.

Examples.

• A point. This is an abelian variety of dimension 0.
• The affine line A1 with addition is a group variety, it is commutative, but it is not

an abelian variety: it is not projective.
• Abelian varieties of dimension 1 are precisely elliptic curves.
• Products of elliptic curves give examples of abelian varieties of any dimension.
• Jacobians of curves of genus g give examples of abelian varieties of dimension g.

We’ll say more about jacobians of curves below.
• Over k = C all abelian varieties are of the form Cg/Λ where Λ ⊆ Cg is a rank 2g

lattice. (However, if g ≥ 2 not every quotient of this form is algebraic.)

Weil generalized Mordell’s theorem to abelian varieties over number fields. Here we state
a version over Q:

Theorem 3.1 (Mordell-Weil). Let A be an abelian variety over Q. The group of rational
points A(Q) is a finitely generated abelian group. In particular, A(Q) ' T ⊕ Zr where T is
a finite abelian group (the torsion part) and r = rkA(Q) ≥ 0 is the rank of A.

2. Jacobians

Now, let k be a perfect field and let C be a smooth, projective curve over k of genus g.
Recall that the jacobian of C is an abelian variety J = JC over k of dimension g with the
following property: For every L/k there is a functorial bijection between degree 0 divisors
on C ⊗ L modulo linear equivalence, and the points of J(L).

Example. All degree 0 divisors on P1
k are linearly equivalent to each other, so JP1

k
must

be a point: the trivial abelian variety. This is correct and it coincides with the fact that the
genus of P1 is 0.

Suppose that C(k) is non-empty and fix x0 ∈ C(k). Then we get a function

jx0 : C → J, x 7→ [x− x0].
This map is called the Abel-Jacobi map. Over C it has another expression using period
integrals; we don’t need that in these notes.

Theorem 3.2 (Properties of the Abel-Jacobi map). We keep the previous notation. If
g ≥ 1 then jx0 : C → J is an embedding defined over k. Moreover, the curve jx0(C) generates
J geometrically (i.e. over an algebraic closure of k).
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Therefore, every curve of genus g ≥ 1 having a k-rational point can be embedded into an
abelian variety over k —its own jacobian! This is an extremely useful construction to study
rational points in curves, since rational points in abelian varieties have more structure.

3. Completions of Q

A classical result of Ostrowski says that the only non-trivial absolute values on Q are (up
to equivalence by taking powers) the usual archimedian one |x|∞ = |x| and for each prime
number p, the p-adic one |x|p = p−ordp(x). Note that | − |p is a non-archimedian absolute
value, that is, it satisfies the strong triangle inequality

|x+ y|p ≤ max{|x|p, |y|p}.

Hence, the set of places of Q is MQ = {∞, 2, 3, 5, ...} and for each v ∈ MQ we have the
corresponding absolute value | − |v we just mentioned. These absolute values satisfy:

Lemma 3.3 (Product formula on Q). For all x ∈ Q× we have∏
v∈MQ

|x|v = 1.

For each v ∈ MQ we let Qv be the completion of Q with respect to | − |v. Thus, Qv is a
field, it densely contains Q, and | − |v extends to Qv. There are two cases:

• v =∞. Then Qv = Q∞ = R.
• v = p is a prime. Then Qv = Qp is the field of p-adic numbers.

We define Zp = {x ∈ Qp : |x|p ≤ 1}; this is the bordered unit ball in Qp. The proof of
the following simple fact is left as an exercise (in case the reader does not already know it).

Lemma 3.4. The set Zp is a sub-ring of Qp, it contains Z and, in fact, Z is dense in Zp.
The ring Zp is a complete DVR and its only maximal ideal is pZp = {x ∈ Qp : |x|p < 1}.

Furthermore, the distance dp(x, y) = |x− y|p makes Zp into a compact metric space.

The next example should help to get some familiarity p-adic numbers.

Example. The equation x2 + 1 = 0 does not have solutions in Q∞ = R.
Let v = p be a prime p ≡ 1 mod 4. It is an exercise in elementary number theory to

check that for all n ≥ 1, the congruence x2 + 1 ≡ 0 mod pn has a solution an ∈ Z (recall that
(Z/pnZ)× is cyclic.) The sequence an in Z ⊆ Zp has a convergent subsequence bj = anj

by
compactness of Zp where nj ≥ j; let b = lim bj ∈ Zp. From b2j + 1 ≡ 0 mod pj we get

|b2j + 1|p = p−ordp(b
2
j+1) ≤ p−j → 0

so, b2 + 1 = 0 in Zp. This means that Qp contains a root of x2 + 1 when p ≡ 1 mod 4.
We leave it as an exercise to check that x2 +1 = 0 does not have solutions in Qv for v = 2

and for v = p ≡ 3 mod 4 (Hint: prove that if such a solution b exists, it must be in Zp. As
Z is dense in Zp, approximate b by b′ ∈ Z and reduce b′ modulo 4 or modulo p accordingly.)
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4. The Chabauty-Coleman method

Mordell [25] formulated the following celebrated conjecture

Conjecture 3.5 (Mordell’s conjecture). Let C be a smooth projective curve of genus
g ≥ 2 over Q. The set of rational points C(Q) is finite.

Obviously, the condition g ≥ 2 is necessary in general. Mordell’s conjecture was proved
by Faltings in 1983 —we’ll say more about Faltings’s work in the next lecture.

In 1941, more than 40 years before Faltings’s proof of Mordell’s conjecture, Chabauty
proved the following remarkable result in the direction of Mordell’s conjecture:

Theorem 3.6 (Chabauty). Let C be a smooth projective curve over Q of genus g ≥ 2.
Let J be the jacobian of C and assume that rk J(Q) ≤ g − 1. Then C(Q) is finite.

Sketch of proof. If C(Q) is empty, we are done. Otherwise, embed C into J using a
base point x0 ∈ C(Q) via the Abel-Jacobi map

C → J, x 7→ [x− x0].
Choose a prime p. There is a nice p-adic logarithm

Log : J(Qp)→ Te := Qg
p

which is a p-adic analytic group morphism with finite kernel. Let Γ be the p-adic closure of
J(Q) in J(Qp), then using Log one sees

dim Γ = dim Log(Γ) = dim LogJ(Q) ≤ rk J(Q) ≤ g − 1 < dim J(Qp).

The p-adic analytic group Γ is important because

C(Q) = C(Qp) ∩ J(Q) ⊆ C(Qp) ∩ Γ.

The curve C generates J but Γ is an analytic subgroup of positive codimension, so, the
p-adic manifolds C(Qp) and Γ intersect properly.

Using the identity principle for p-adic analytic functions, a compactness argument shows
that C(Qp) ∩ Γ is finite, hence C(Q) is finite. �

In 1985, Coleman [7] discovered a way to make Chabauty’s theorem more precise:

Theorem 3.7 (Coleman). Let C be a smooth projective curve of genus g ≥ 2 over Q
and let p > 2g be a prime of good reduction for C. Suppose that rk JC(Q) ≤ g − 1. Then

#C(Q) ≤ #C(Fp) + 2g − 2.

This bound is quite small and in some cases it is attained. When that occurs, one knows
that all the rational points of C have been found.

Nowadays, the Chabauty-Coleman method and its non-abelian extensions (after Kim
[20]) are the most powerful tools for computing the set of all rational points of a curve.

Very recently, Caro and yours truly extended the Chabauty-Coleman method to surfaces,
obtaining explicit bounds for the number of rational points. See [5] for details.
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LECTURE 4

The theorems of Faltings

1. Faltings’s theorem for curves

We have the following fundamental finiteness result by Faltings [12] which proves a
conjecture formulated by Mordell [25] in 1922.

Theorem 4.1 (Faltings’s theorem; conjectured by Mordell). Let X be a smooth, projec-
tive, geometrically irreducible curve over a number field K (e.g. K = Q) of genus g ≥ 2.
Then X(K) is finite.

The original proof by Faltings uses the method of moduli spaces : To each P ∈ X(K)
one associates an abelian variety AP and finiteness is proved by studying the moduli space
of such abelian varieties as well as their `-adic Galois representations. The details go far
beyond the modest goals of these lecture notes and we refer the interested reader to [8] for
a full account of the proof and the necessary background.

There is another proof by Vojta [34] which uses the method of Diophantine approximation
in the language of Arakelov geometry. It was later simplified and presented in classical terms
by Bombieri [3]. This approach to Mordell’s conjecture was generalized by Faltings [13, 14]
to study rational points in subvarieties of abelian varieties; see [11] for an exposition.

There is yet another more recent proof of Mordell’s conjecture by Lawrence and Venkatesh
[22] which is inspired by Faltings’s original proof, but which directly works with Galois
representations attached to points of X(K), not with the abelian varieties AP mentioned
above.

2. Examples

Example 4.2. Let f(x) ∈ Z[x] be a squarefree polynomial of degree r ≥ 5. Then
{f(t) : t ∈ Q} can only contain finitely many squares.

Indeed, the equation y2 = f(x) defines a hyperelliptic curve of genus g = b(r−1)/2c ≥ 2.

Example 4.3. Let n ≥ 4. The Fermat equation xn + yn = zn has finitely many coprime
integer solutions.
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Indeed, the equation defines a smooth plane curve Xn in the projective plane P2 in the
homogeneous coordinates [x : y : z]. The genus of this curve is

g =
(n− 1)(n− 2)

2
≥ 3.

Example 4.4. This example comes from complex analysis. A uniqueness polynomial
P (x) ∈ C[x] is one with the following property: If f, g ∈ M are non-constant complex
meromorphic functions on C with P (f) = P (g), then f = g.

For instance, P (x) = xn − x is a uniqueness polynomial for each integer n ≥ 5 (cf.
Theorem 2 in [19]).

Proposition 4.5. If P (x) ∈ Q[x] is a uniqueness polynomial, then the map P : Q→ Q
is injective, up to finitely many points.

Proof. Let X be the affine plane curve P (x) = P (y) and let C be an irreducible
component of X over C of geometric genus g ≤ 1. Then there is a complex holomorphic
map f : C → C where C is the projective closure of C. Concretely, f = (f1, f2) with fj
non-constant meromorphic on C. Since C ⊆ X we have P (f1) = P (f2), so in fact f1 = f2
because P is a uniqueness polynomial. Therefore, C = {x = y}.

Thus, the only geometric component of X with geometric genus g ≤ 1 is the diagonal,
and Faltings’s theorem gives that all but finitely many rational points of X satisfy x = y. �

3. Faltings’s “big” theorem

The aforementioned result of Faltings for subvarieties of abelian varieties is the following
(stated over Q for simplicity):

Theorem 4.6. Let A be an abelian variety over Q and let X ⊆ A be a subvariety defined
over Q. Let Z ⊆ X be the Zariski closure of X(Q). Then Z is the union of finitely many
translates of abelian subvarieties of A.

For instance, if X ⊆ A contains no abelian variety of positive dimension, then X(Q) is
finite. For the sake of exposition, let us discuss one of many possible applications:

Theorem 4.7 (cf [28]). Let E be an elliptic curve over Q of positive rank. There is a
non-empty affine Zariski open set U ⊆ E × E and a polynomial function F on the surface
U such that the map F : U(Q)→ Q is injective.

Idea of proof. Upon a suitable construction of f , one needs to consider the variety
X defined by F (x) = F (y) in U × U ⊆ A = E4. It turns out that dimX = 3 and one has
to apply Faltings’s theorem to it. This is not enough: one has to explicitly find the abelian
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varieties contained in X. The computation is simplified by the choice of F . The basic idea
is to use uniqueness functions as in Example 4.4 to construct F . See the details in [28]. �

In applications, its is often useful to have the following more precise version due to
Rémond [30]

Theorem 4.8 (Rémond). Let A be an abelian variety of dimension n defined over Qalg,
and let L be a symmetric ample invertible sheaf on A. There is an effectively computable
number c(A,L ) > 0 such that the following holds:

Let X be a closed subvariety of A of dimension m, and let Λ be a subgroup of A(Qalg)
such that its rank r = dimQ(Λ⊗Z Q) is finite. There is a non-negative integer

R ≤ (c(A,L ) degL X)(r+1)n5(m+1)2

and there exist points x1, . . . , xR in X(Qalg) ∩ Λ and abelian subvarieties T1, . . . , TR of A
satisfying that xi + Ti ⊆ X for each 1 ≤ i ≤ R, and

X(Qalg) ∩ Λ =
R⋃
i=1

(xi + Ti)(Qalg) ∩ Λ.

The statement is complicated but the important lesson is that there is aversion of Falt-
ings’s big theorem with control on the number of rational points, although it is not as sharp
as what one can get from the Chabauty-Coleman approach (when it applies).

4. Hyperbolicity

Let M be a complex compact manifold. M is hyperbolic if every complex holomorphic
map f : C→M is constant. For instance:

• Hyperbolic curves are precisely those of genus g ≥ 2 (Picard)
• Products of hyperbolic manifolds are hyperbolic.
• Abelian varieties of positive dimension are not hyperbolic: over C they are of the

form Cg/Λ for a suitable lattice Λ so, they admit holomorphic maps from C.

We immediately deduce the following from Faltings’s theorem

Corollary 4.9. Let A be an abelian variety over Q and let X ⊆ A be a subvariety
defined over Q. If X(C) is a hyperbolic manifold, then X(Q) is finite.

This can be seen as strong evidence for the following conjecture of Lang, which is a higher
dimensional generalization of Mordell’s conjecture (thanks to Picard’s theorem):

Conjecture 4.10 (Lang). Let X over Q be a smooth projective variety. If X(C) is
hyperbolic, then X(Q) is finite.
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LECTURE 5

Conjectures of Bombieri and Lang

1. Kodaira-Iitaka dimension

Let k be a field and let X be a smooth, irreducible, projective variety over k.
Given a line sheaf L on X, its semigroup is N(L ) = {m ≥ 0 : h0(L ⊗m) > 0}. This

is indeed an additive semigroup because 0 ∈ N(L ) since L ⊗0 = OX , and we also have the
maps of multiplication of sections H0(X,L ⊗a)⊗H0(X,L ⊗b)→ H0(X,L ⊗(a+b)).

It is a standard fact that if N(L ) is non-trivial, there is an integer κ(L ) ∈ {0, 1, ..., dim(X)}
and some constants A > a > 0 such that for all large enough m ∈ N(L ) we have

a ·mκ(L ) < h0(L ⊗m) < A ·mκ(L ).

Furthermore, if N(L ) = {0} we define κ(L ) = −∞. The quantity κ(L ) is called the
Kodaira-Iitaka dimension of L .

2. Big line sheaves

A line sheaf L is called big if there is some N ≥ 1 such that L ⊗N is effective (i.e.
h0(L ⊗N) ≥ 1) and the rational map φL ⊗N : X 99K Pdk (with d+ 1 = h0(L ⊗N)) is birational
onto its image. This extends to divisors via the construction OX(D). Note that if L is
ample, then it is big. We have the following classical characterization of bigness:

Lemma 5.1. Let L be a line sheaf on X. The following are equivalent:

(i) L is big.
(ii) κ(L ) = dim(X).
(iii) (Kodaira’s lemma) There are an ample line sheaf A and an effective line sheaf E

on X with L ⊗N ' A ⊗ E for certain integer N > 0.

Let KX = Ω
dim(X)
X/k be the canonical sheaf of X, which is invertible since X is smooth. The

Kodaira dimension of X is κ(X) := κ(KX). A smooth, irreducible, projective variety X
is of general type if κ(X) = dim(X), i.e. when KX is big. In particular, if KX is ample
then X is of general type. The following example is left as an exercise.

Lemma 5.2. Let X be a smooth, projective, geometrically irreducible curve of genus g
over a perfect field k. Then X is of general type if and only if g ≥ 2. More precisely:

κ(X) =


−∞ if g = 0,

0 if g = 1,

1 if g ≥ 2.

The Enriques-Kodaira classification of complex projective surfaces (see for instance [2])
gives a full description of smooth, projective, irreducible surfaces X over C up to birational
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equivalence in the cases of Kodaira dimension −∞, 0, and 1. However, the classification of
surfaces of general type is not yet fully understood.

3. Mordell, Bombieri, and Lang

The question is how to generalize Mordell’s conjecture to higher dimensional varieties. A
first hint is given by Lemma 5.2. During a lecture in 1980, Bombieri asked [26] the following:

Question 5.3 (Bombieri). Let X be a smooth, projective variety of general type defined
over Q. Is there a non-empty Zariski-open set U ⊆ X such that U(Q) = ∅ ?

Motivated by the Enriques-Kodaira classification and by a theorem of Bogomolov regard-
ing curves of bounded genus in surfaces of general type, Bombieri expects a positive answer
when X is a surface. Lang [21] proposed the following daring conjecture often referred to
as the Bombieri-Lang conjecture to distinguish it from other conjectures of Lang:

Conjecture 5.4 (Lang’s conjecture; “Bombieri-Lang”). Let X be a smooth, projective
variety of general type defined over Q. There is a proper Zariski closed subset Z ⊆ X such
that (X − Z)(Q) is finite.

There is yet another way to generalize Mordell’s conjecture. A compact complex manifold
M is called hyperbolic if every complex holomorphic map f : C → M is constant. For
instance, it is a theorem of Picard that the hyperbolic compact Riemann surfaces are precisely
those of genus g ≥ 2. In view of Mordell’s conjecture, this suggests:

Conjecture 5.5 (Lang [21]). Let X be a smooth projective irreducible variety over Q.
Suppose that X(C) is hyperbolic. Then for every number field L we have that X(L) is finite.

The aforementioned results of Faltings [13, 14] prove Conjectures 5.4 and 5.5 when X
is contained in an abelian variety. Up to cases that can be reduced to this one, Faltings’s
results are all we know unconditionally about these conjectures as of today.

While we are enthusiastic about sparsity of rational points, in all fairness, we must
point out that there are some doubts about the Bombieri-Lang conjecture for varieties of
higher dimension. First, even the geometric picture is unclear and, at present, there is no
analogue of the Enriques-Kodaira classification for higher dimensional varieties. Moreover,
the Bombieri-Lang conjecture applied to higher dimensional varieties has rather strong and
surprising consequences, such as the following uniform version of Mordell’s conjecture:

Theorem 5.6 (cf. [4]). If Conjecture 5.4 holds, then for each g ≥ 2 there is a constant
M(g) such that for every smooth, projective, geometrically irreducible curve X of genus g ≥ 2
over Q we have #X(Q) ≤M(g).

4. Büchi’s problem

We would like to conclude by discussing a concrete and classical-looking problem which
has been very useful for testing the results and conjectures we have presented so far.

Notice that for a sequence of squares of consecutive integers, the second differences are
always 2, 2, ..., 2. For instance

1 0 1 4 9
−1 1 3 5

2 2 2
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Examples of this sort will be called trivial. Are there examples with non-trivial sequences
of squares with second differences equal to 2, ..., 2? Yes, such as

0 49 100
49 51

2
and

62 232 322 392

493 495 497
2 2

Motivated by a problem in logic, Büchi proposed the following problem in the early 70’s:

Problem 5.7 (Büchi’s problem). Is there some constant M such that every sequence of
integer squares x21, ..., x

2
M having second differences equal to 2, ..., 2 is necessarily trivial?

In fact, Büchi asked for the value M = 5, but any uniform value of M would suffice for
the intended applications in logic. More precisely, Büchi proved the following (see [23, 24]):

Theorem 5.8. If Büchi’s Problem 5.7 has a positive answer for some M , then there
is no algorithm for deciding existence of integer solutions for systems of diagonal quadratic
equations of the form a1x

2
1 + ...+ amx

2
m = b with aj, b ∈ Z.

In the 90’s, Vojta proved (cf. [24, 35]) that a positive solution to Büchi’s problem would
follow from the Bombieri-Lang conjecture for surfaces.

Basically, Vojta considers certain algebraic surfaces Xn attached to the problem, and
upon invoking the Bombieri-Lang conjecture, the problem becomes that of computing the
exceptional Zariski closed set Z ⊆ Xn containing all but finitely many rational points. Since
Xn is a surface, Z consists of finitely many curves. Vojta’s computation of Z involved a study
of symmetric differentials on surfaces. This approach originates in ideas of Bogomolov [10]
and it has been generalized and applied to other elementary-looking Diophantine problems
by Garcia-Fritz [15, 16, 17], such as the Perfect Cuboid Problem and Mohanty’s conjecture.

The result we would like to prove is

Theorem 5.9. Suppose that there is a bound B such that every smooth projective curve
C over Q of genus g = 2 has #C(Q) ≤ B (in particular, this would hold if the Bombieri-
Lang conjecture holds, see Theorem 5.6). Then Büchi’s Problem 5.7 has a positive answer
with M = (B + 1)3 + 1.

Proof. It suffices to show that given a, b ∈ Z with a 6= 0, not all the integers (j+b)2−a
for j = 1, ...,M are squares. For the sake of contradiction, assume they are.

The polynomials f1(x) = (x3 + b)2 − a and f2(x) = (x3 + 1 + b)2 − a have discriminants
46656a3(a − b2)2 and 46656a3(a − (b + 1)2)2 respectively. As a 6= 0, at least one of them is
non-zero. Thus, at least one of the two equations

y2 = f1(x), y2 = f2(x)

defines a smooth hyperelliptic curve; let us call it C. It has genus g = b(6−1)/2c = 2. Thus,
#C(Q) ≤ B.

Choosing j = x3 or j = x3+1 accordingly, with x = 1, 2, ..., B+1 we obtain at least B+1
rational points on C because (j+b)2−a is a square for each j = 1, ...,M . Contradiction. �

For a more general application of these ideas, see [29]. Büchi’s problem would also follow
from the abc conjecture, see [27].
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