

Design and operation of accelerator chain and storage rings

S. Di Mitri,

Elettra Sincrotrone Trieste Univ. Trieste, Dept. Physics

School on Synchrotron Light Sources and their Applications., ICTP Trieste (remote), Dec. 2021

simone.dimitri@elettra.eu

- 1. How does a synchrotron light source look like ?
- 2. What are the main physical processes ?
- 3. How does it work ?

Synchrotron radiation – recap Single particle linear motion

- Longitudinal phase stability, synchrotron oscillations
- Transverse dispersion, betatron tunes, emittance

Perturbations to linear dynamics

- Equilibrium distribution
- Chromaticity, resonances, dynamic aperture
- Beam lifetime

Operation

- Beam injection and storage.
- Brilliance, diffraction limit.

Why do we need x-ray sources?

X-rays are ideal probes of chemical bonds, where most of science is rooted.

They can be used to visualize proteins structure, molecular dynamics, atomic levels and orbitals...

Serving as a Microscope

Synchrotron radiation

Synchrotron radiation is e.m. energy de-coupled from a charge by centripetal acceleration. For example, an ultra-relativistic electron in a magnetic dipole field.

v << c:
$$P'_{SR} \propto |\mathbf{S}'| \propto |E'_{x}|^{2} \propto \left(\frac{F'_{x}}{m_{e}}\right)^{2} \propto a'_{x}^{2}$$

Lorentz-transform to Lab frame:

Strong increase with particle total energy

 $\begin{cases} t' \to t/\gamma \\ x' \to x \end{cases} \Longrightarrow a'_{x}^{2} \to \gamma^{4} a_{x}^{2}$

"Light" particles (e.g., leptons) radiate more *than "heavy"* ones (e.g., hadrons).

frame:

CERTIFIED

ERTIOUAL UNI EN ISO 9001:2015 UNI ISO 45001:2018

Angular distribution

Spectrum

Dipole emission is a *short* flash light of duration Δt_{sr} .

The spectral bandwidth, of the order of $\Delta \omega \approx 1/\Delta t_{sr}$, is **broad** $\Delta \omega / \omega_c \approx 1$.

$$\Rightarrow \omega_c \approx \Delta \omega \approx \frac{1}{\Delta t_{sr}} \approx \frac{c\gamma^3}{R}$$

<mark>Elettra</mark> Sincrotrone Trieste

UNI EN ISO 9001:2015 UNI ISO 45001:2018

Evolution of SRLS

• First observation:

1947, General Electric, 70 MeV synchrotron

First user experiments:

1956, Cornell, 320 MeV synchrotron

• 1st generation light sources: machine built for High Energy Physics or other purposes used parasitically for synchrotron radiation

• 2nd generation light sources: purpose built synchrotron light sources, SRS at Daresbury was the first dedicated machine (1981 – 2008)

• **3rd generation light sources**: optimised for high brilliance with low emittance and Insertion Devices; ESRF, Diamond,

Dipole magnet

Energy-dispersion function powerful collimated

High energy electrons on a circular path

$$\frac{mv_z^2}{R} = F_{L,x} = ev_z B_y;$$
$$p_z = eB_y R$$
$$E \longrightarrow E - E_{sr} + \dots$$

RF cavities replenish the beam by the energy lost every turn \Rightarrow beam energy per turn is constant (on average).

Longitudinal electric field:

$$E_z \approx E_{z,0}\cos(\omega t + \phi_0)$$

E.M. field in a Pill-box

$$\begin{pmatrix} \vec{\nabla} \wedge \vec{E} \end{pmatrix}_{\phi} = -\frac{\partial B_{\phi}}{\partial t} \\ \left(\vec{\nabla} \wedge \vec{B} \right)_{z} = -\frac{1}{c^{2}} \frac{\partial E_{z}}{\partial t}$$

$$\begin{cases} \frac{\partial E_r}{\partial 2} - \frac{\partial E_z}{\partial r} = -\frac{\partial B_{\phi}}{\partial t} \quad \cdot \partial_r \\ \frac{1}{r} \left[\frac{\partial (rB_{\phi})}{\partial r} - \frac{\partial F_r}{\partial \phi} \right] = -\frac{1}{c^2} \frac{\partial E_z}{\partial t} \quad \cdot \partial_r \end{cases}$$

$$\frac{\partial^2 B_{\phi}}{\partial r \partial t} \implies \frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r}$$
$$\frac{\partial^2 B_{\phi}}{\partial r \partial t} = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2}$$

$$A(r) = a_0 J_0\left(\frac{\omega r}{c}\right)$$

$$J_0(r \approx 0) \approx 1 \implies E_z \approx E_{z,0} \cos(\omega t + \phi_0)$$

-1

0

-2

 $\partial^2 E_z$

 $_1\,\partial B_\phi$

____ ωr/c 2

1

Synchronization

accelerating Cu chamber beam field

Synchronization of particle arrival time and RF field:

$$\omega = h\omega_{riv}, \ h \in \dot{\mathbb{N}} (\gg 1)$$

• How many consecutive bunches can be stored in a ring ("train")?

$$dR = \frac{C_2 - C_1}{\theta_b} = \frac{1}{\theta_b} \left(\oint ds_2 - \oint ds_1 \right) = \frac{1}{\theta_b} \oint d\theta \left[(R_1 + x) - R_1 \right] = \frac{1}{\theta_b} \oint x d\theta = \langle x \rangle_\theta$$

Orbit difference per unit of energy deviation ("momentum compaction"):

$$\alpha_{c} = \frac{dR/R}{\delta} = \frac{1}{R} \frac{\langle x \rangle_{\theta}}{\delta} = \frac{\langle D_{x} \rangle_{\theta}}{R} = \frac{1}{R\theta_{b}} \int d\theta D_{x} = \frac{1}{C} \int ds \frac{D_{x}(s)}{R(s)}$$

Slip factor

Revolution frequency difference per unit of energy deviation ("slip factor"):

$$\eta := \frac{d\omega/\omega_s}{dp_z/p_{z,s}} = \frac{1}{\gamma^2} - \alpha_c \xrightarrow{} - \alpha_c$$

GeV energies

Phase stability

CERTIFIED MANAGEMENT SYSTEM CERTIQUALITY UNIEN ISO 9001:2015 UNIEN SO 9001:2015

Bending and Focusing

Vacuum chamber (Al, Cu, Steel) at ultra-low pressure (< 10⁻⁹ mbar), to avoid gas-scattering

Particle beam must be kept in! ---> *external focusing* 300 MV/m !

$$rac{q|ec{E}|}{q|ec{v}\wedgeec{B}|} = rac{E}{vB} \equiv 1 \ \Rightarrow rac{|ec{E}|}{|ec{B}|} = eta c$$

School on Synchrotron Light Sources and their Applications., ICTP Trieste (remote), Dec. 2021

 $\frac{F_{e}}{\vec{F_{m}}}$

1 Tesla ...

Quadrupole magnet

 $(\mu_r \gg \mu_0)$:

$$\oint \vec{H} d\vec{s} = \int_1 \vec{H} d\vec{s} + \int_2 \vec{H} d\vec{s} \int_3 \vec{H} d\vec{s} = \int_0^{R_b} H(r) dr + \int_1^2 \vec{H} d\vec{s} + \int_2^3 H_y dx =$$

Normalized quadrupole strength:

$$k[m^{-2}] = 0.2998 \frac{g[T/m]}{p_z[GeV/c]}$$

CERTIFIED MANAGEMENT SYSTEM CERTIQUALITY UNI EN ISO 9001:2015 UNI ISO 45001:2015

School on Synchrotron Light Sources and their Applications., ICTP Trieste (remote), Dec. 2021

Х

Sincrotrone

Transverse motion (linear approx.)

$$x(s) = x_{\beta}(s) + x_{\epsilon}(s) =$$

$$= x_{\beta}(s) + D_{\chi}(s)\delta$$

Alternated gradient strengths (Hill's eq. assumes linear motion & no frictional forces):

$$\ddot{y}(s) - k(s)(1 - \delta)y(s) = 0$$

$$\ddot{x}(s) + \begin{bmatrix} k(s)(1 - \delta) \\ 0 \end{bmatrix} x(s) = 0$$

"Strong" Relative "Weak"
focusing energy focusing
deviation

Phase space

$$u(s) = \sqrt{2J_u\beta_u} \cos \Delta \mu_u$$
$$u'(s) = -\sqrt{\frac{2J_u}{\beta_u}} \left(\alpha_u \cos \Delta \mu_u + \sin \Delta \mu\right)$$

Quasi-harmonic oscillator in (x,x') and (y,y') ----> the oscillation amplitude depends on s: $\beta_u(s), \alpha_u(s)$

Oscillations:

UNI EN ISO 9001:2015

$$\begin{split} \varepsilon(t) &= A_{\varepsilon}(t)\cos(\Omega_{s}\frac{\Delta z}{c} + \phi_{0}) \equiv A_{\varepsilon}(t)\cos\phi \\ \tau(t) &= -\left(\frac{\alpha_{c}}{E_{0}\Omega_{s}}\right)A_{\varepsilon}(t)\sin\phi \end{split} \Rightarrow \begin{cases} A_{\varepsilon}^{2} &= \varepsilon^{2} + \tau^{2}\left(\frac{E_{0}\Omega_{s}}{\alpha_{c}}\right) \\ \langle \varepsilon^{2}(t) \rangle_{\phi} &= \frac{A_{\varepsilon}^{2}(t)}{2} \end{cases}$$

$$\langle \delta A_{\epsilon}^2 \rangle_{\phi} = \langle \delta \epsilon^2 \rangle + \langle \delta \epsilon \rangle \left(\frac{E_0 \Omega_s}{\alpha_c} \right)^2 = 2 \langle \epsilon \delta \epsilon \rangle + \frac{1}{2} \langle (2\delta \epsilon) \delta \epsilon \rangle = -2 \langle \epsilon u \rangle + \langle u^2 \rangle \cong$$

$$\approx -2\langle \epsilon \frac{du}{d\epsilon} \epsilon \rangle + \langle u^2 \rangle = -A \frac{du}{\epsilon d\epsilon} + \langle u^2 \rangle$$

"damping" "excitation"

dl K R H H

Characteristic **damping time** to reach **equilibrium** Gaussian

distribution:

Equilibrium distribution

$$\frac{d}{dt}\langle \delta A_{\epsilon}^2 \rangle_{\phi} \rangle_R \simeq \frac{d\langle A_{\epsilon}^2 \rangle_R}{dt} = -\langle A_{\epsilon}^2 \rangle_R \langle \frac{d}{dt} \frac{du}{d\epsilon} \rangle_R + \langle \frac{d}{dt} \langle u^2 \rangle_{\phi} \rangle_R = 0$$

 $\tau \approx T_0 \frac{E_0}{U_0}$

Beam size and emittance

Remind:
$$u(s) = \sqrt{2J_u\beta_u} \cos \Delta\mu_u$$

 $\sigma_x = \sqrt{\varepsilon_x\beta_x}$ depends or strength or

depends on quads strength only; varies through the lattice

constant through the lattice ("equilibrium")

$$\varepsilon_{x,eq} = C_e \frac{\gamma^2}{L_e} \frac{\langle H_x \rangle_R}{R}$$

$$\frac{\langle H_x \rangle_R}{R} \approx \frac{1}{R} \left(\frac{1}{\beta_x} \langle D_x^2 \rangle + \beta_x \langle D_x'^2 \rangle \right) \propto \frac{\theta_b}{l_b} \left[\frac{l_b^2 \theta_b^2}{4\beta_x} + \beta_x \theta_b^2 \right] \propto \theta_b^3 \left(\frac{l_b}{\beta_x} + \frac{\beta_x}{l_b} \right) \propto \left(\frac{2\pi}{N_b} \right)^3$$

CERTIFIE

UNI EN ISO 9001:2018

This is driving world-wide upgrades to multi-bend lattices. Radiation is far more collimated and more intense – higher "brilliance"!

Scaling laws

School on Synchrotron Light Sources and their Applications., ICTP Trieste (remote), Dec. 2021

24

Resonances

Remind:

The error sum coherently if the particles goes back to it with same amplitude and phase (position and angle) every r-turns

Chromaticity

Particles at (slightly) different energies are focused differently:

• Would more quads help to "zeroing" chromaticity?

- 1. Phase advance $\tan(\Delta \mu_u) \approx -\beta_u \frac{u'}{u}$ 2. Small phase variation by error kick: $d(\tan(\Delta \mu_u)) \approx d(\Delta \mu_u) \approx -\beta_u \frac{du'}{u}$
- 3. Quad error kick: $\Delta u' \approx \mathbf{k} \boldsymbol{\delta} \cdot ds \cdot u$
- 4. Local tune change:

$$\mathrm{d} Q_u = \frac{d(\Delta \mu_u)}{2\pi} \approx -\frac{1}{2\pi} \beta_u \; k \delta ds$$

5. Global tune change (chromaticity): $\xi_{u}^{nat} := \frac{\Delta Q_{u}}{\delta} = -\frac{1}{4\pi} \oint ds \beta_{u}(s) k(s)$

Sextupole magnet

$$\xi_x^{cor} = \frac{\Delta Q_x}{\delta} = -\frac{1}{4\pi} \oint \beta_x(s) \left[k(s) + m(s)\eta_x(s)\right] ds$$
$$\xi_y^{cor} = \frac{\Delta Q_y}{\delta} = -\frac{1}{4\pi} \oint \beta_y(s) \left[-k(s) + m(s)\eta_x(s)\right] ds$$

Sextupoles acts as a quadrupole of normalized gradient proportional to the dispersion function.

• How many sextupole "families" would we need to correct the chromaticity in both x- and y- plane?

Dynamic aperture

CERTIQUALITY

Nonlinear dynamics

Lifetime

$$\left(\frac{dN}{dt}\right)_{W_c} = \left(\frac{dN}{dW}\frac{dW}{dt}\right)_{W_c}$$
 , where

$$\left(\frac{dN}{dt}\right)_{W_c} = -\frac{2N}{\tau} \frac{W_c}{\langle W \rangle} e^{-\frac{W_c}{\langle W \rangle}} \Rightarrow \begin{cases} N(t) = N_0 e^{-\frac{t}{\tau_q}} \\ \\ \tau_q = \frac{\tau}{2} \frac{\langle W \rangle}{W_c} e^{\frac{W_c}{\langle W \rangle}} = \frac{\tau}{2} \frac{e^{\xi}}{\xi} \end{cases}$$

Due to physical (apertures) or dynamic boundaries (transverse and longitudinal acceptance), the beam current decreases exponentially.

simone.dimitri@elettra.eu

Particle Scattering

Touschek scattering:

single, large angle event

If two particles collide in the c.m. frame transferring their (transverse) momentum $\vec{p}'_i = (p'_x, 0)$ into (longitudinal) momentum $\vec{p}'_f = (0, p'_z) = (0, p'_x)$, $\Delta p_z = p_{z,f} - p_{z,i} = \gamma (p'_{z,f} + \frac{\beta}{c}E'_f) - \gamma (p'_{z,i} + \frac{\beta}{c}E'_i) = \gamma \Delta p'_z + \gamma \frac{\beta}{c}\Delta E' =$

$$=\gamma(p'_{z,f}-p'_{z,i})=\gamma p'_{x}=\gamma p_{x}=\gamma p_{z}\sigma_{u'}$$

$$\Rightarrow \frac{\Delta p_z}{p_z} \approx \gamma \sqrt{\frac{\epsilon_u}{\beta_u}}, \ u = x, y$$
 must be << long. acceptance

Intrabeam scattering:

multiple small angle events (diffusion)

Injection chain - LINAC

DC thermo-ionic Gun + "buncher" + RF

UNI EN ISO 9001:2015 UNI ISO 45001:2018

Injection chain - BOOSTER

Energy ramp ---> magnetic field ramp, frequency shift

$$(\Delta E)_{turn} = (\Delta p_z)_{turn} \beta c = e \dot{B}_y r T_0 \beta c = 2\pi R_s r q \dot{B}_y \equiv q V_0 cos(\psi_s - \psi_0)$$

$$\psi_s(t) = \psi_0 + \arccos\left(2\pi R_s r \frac{B_y}{V_0}\right)$$

UNLEN ISO 9001-201

Injection chain - BUMP

Multi-turn beam accumulation (e.g., off-axis injection)

Injection efficiency.

Transparency to stored beam (users)

New schemes: single-kicker, on-axis (swapout), longitudinal injection, linac,...

UNLEN ISO 9001-201

Insertion devices

 $B_{\gamma} =$

MAN

UNI EN ISO 9001:2015 UNI ISO 45001:2018

Brilliance

Brilliance = 6-D photon density:

 $\frac{dN_{\gamma}/dt}{4\pi^{2}\Sigma_{x}\Sigma_{x'}\Sigma_{y}\Sigma_{y'}\Delta\omega/\omega}$

Effective radiation size (at the source)

$$\Sigma_{u} = \sqrt{\sigma_{u,s}^{2} + \sigma_{u,R}^{2}} \cong \sqrt{(\beta \varepsilon)_{u,s} + (\beta \varepsilon)_{u,R}}$$
$$\Sigma_{u'} = \sqrt{\sigma_{u',s}^{2} + \sigma_{u',R}^{2}} \cong \sqrt{(\varepsilon/\beta)_{u,s} + (\varepsilon/\beta)_{u,R}}$$

• It is maximized by **source-radiation matching:** $\beta_{u.s} = \beta_{u.R}$

$$B_{\gamma} = \frac{dN_{\gamma}/dt}{4\pi^{2} \Delta \omega/\omega} \frac{1}{(\varepsilon_{x,s} + \varepsilon_{R})(\varepsilon_{y,s} + \varepsilon_{R})}$$
• and by a **diffraction limited source:**

$$B_{\gamma} = \frac{dN_{\gamma}/dt}{\Delta \omega/\omega} \frac{1}{(\lambda^{2}/2)(\kappa + 1)}$$

$$\varepsilon_{x,s} = \varepsilon_{R} = \frac{\lambda}{4\pi}$$

$$\kappa = \frac{\varepsilon_{y,s}}{\varepsilon_{x,s}}$$
Coupling coefficient
$$\kappa = \frac{\varepsilon_{y,s}}{\varepsilon_{x,s}}$$
Coupling coefficient
$$\kappa = \frac{\varepsilon_{y,s}}{\varepsilon_{x,s}}$$
School on Synchrotron Light Sources and their Applications., ICTP Trieste (remote), Dec. 2021
$$\kappa = \frac{\delta N_{\gamma}}{\delta \omega}$$

 $\frac{dN_{\gamma}/dt}{\Sigma_{x}\Sigma_{x},\Sigma_{y}\Sigma_{y'}}$ is a **conserved quantity** in a *perfect* optical system. However, a **real**

beamline includes slits, mirrors, gratings, etc. for manipulation of the pulse. They show geometrical and surface **imperfections** ---> **optical aberrations, wavefront**

distortion, absorption, scattering.

Flux is maximized. Smaller and higher quality mirrors. Higher degree of transverse coherence.

CERTIFIED MANAGEMENT SYSTEM CERTIQUALITY UNI EN ISO 9001:2015 UNI ISO 45001:2018

- Synchrotrons provide light up to tens of beamlines simultaneously, each beamline receiving light from its own insertion device (undulators allow independent tuning).
- Large flexibility in tuning or selecting radiation wavelength and intensity. Spectrum from IR to hard x-rays.
- High average radiation power at the expense of low peak power (incoherent emission) and long pulses (several 10's ps).

Extremely stable.

Reduction in the **source emittance**, thus **increase in brilliance**, will lead to:

- significant gain in the emitted or transmitted signals from the samples;
- reduced acquisition time for all types of spectroscopies and x-ray scattering techniques;
- implementation of *photon-hungry techniques* such as: high pressure experiments with anvil cells and dilute samples, and spin-resolved ARPES;
- improvement of the *lateral resolution* with focusing optics down to a few-nm scale (e.g. nano-PES, nano-ARPES)

Higher degree of transverse **coherence** will open unique opportunities for:

- Coherent Diffraction Imaging (CDI) with chemical specificity
- Ptychography

X-ray photon correlation spectroscopy (XPCS)

EU initiative

A new consortium of excellence in Europe devising a transformative level of coordination and integration

13 European Synchrotron Radiation and 6 FEL Facilities are joining forces to master the challenges of the next decades.

simone.dimitri@elettra.eu