



## DARK MATTER SEARCHING THE INVISIBLE -ATLAS







Sonam Sherpa, Parlat Gurung, Nidup Lhamo, and Tshewang Choden [Sherubtse College 2021]

- INTRODUCTION

  Dark matter is an invisible matter that do not interact with the electromagnetic force
- Example: Gravitational lensing.
- Though they are common across the universe, it's effect is observable yet difficult to create and observe even using the ATLAS detector.
- So, what we can do to detect dark matter???
- In LHC, we collide protons and observe those collisions producing dark matter particles.
- Higgs could decay 'invisibly' that is dark matter
- Several types of experiments are searching for signal from Dark matter and to understand its nature.
- No experiment has the answer for dark matter.



## **ATLAS detactor**





- data\_all['DM\_300']['sublead\_lep\_pt'] pt, Length: 491, dtype: float64
- Stack graph of sublead\_lep\_pt of all the data signal such as Non-resonant, Z+jets, WZ, ZZ and DM\_300
- The background with maximum weighted events are below 50Gev
- By applying cut we will be able to get better result that has more significance than three.
- In particle physics, we figure out the evidences for dark matter if the significance with more than 3 value



sublead lep\_pt[GeV]

- Above data is for DM\_300 with column sublead\_lept\_pt.
- The sublead\_lept\_pt of various signal such as Non-resonant\_II, Z+jets, WZ, ZZ and DM\_300
- The main signsl we use is DM\_300



- The graph on the left is new stack graph of sublead\_lep\_pt of all the signal after applying cut.
- The value of signal weight is 31 and total background is 65
- Where we get the significance above three.

## Result

- The significance number after applying the cut is 3.845
- Hence, we conclude that we have evidence for process such as Dark matter in DM\_300 signal