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Outline

• Reactor Classification and Innovative Fast Neutron Systems

• GIF Systems and IAEA Terminology 

• Comparison of Coolant Physical Properties

• Six GIF Gen-IV reactor concepts and other innovative systems

– Sodium cooled Fast Reactor (SFR)

– Lead and LBE cooled Fast Reactor (LFR)

– Gas cooled Fast Reactor (GFR)

– Very High Temperature Reactor (VHTR) 

– Super Critical Water cooled Reactor (SCWR)

– Molten Salt cooled Reactor (MSR)

• Fast Reactors: World Status
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IAEA and GIF Terminology

• Early Prototypes and 

Demonstration Plants Gen I 

• Current Fleet  Gen II-III

• Advanced Nuclear Reactors 

– Evolutionary designs Gen III and III+

– Innovative designs Gen IV

– SMRs can be either evolutionary or 

innovative

• ARIS: IAEA Advanced Reactors 

Information System:

https://aris.iaea.org/
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Generation IV Goals www.gen-4.org

Sustainability Gen-IV nuclear energy systems (NES) will provide sustainable energy generation that 

meets clean air objectives and provides long-term availability of systems and effective 

fuel utilisation for worldwide energy production.

Gen-IV NES will minimise and manage their nuclear waste and notably reduce the long-

term stewardship burden, thereby improving protection for the public health and the 

environment.

Economics Gen-IV NES will have a clear life-cycle cost advantage over other energy sources.

Gen-IV NES will have a level of financial risk comparable to other energy projects.

Safety and Reliability Gen-IV NES operations will excel in safety and reliability.

Gen-IV NES will have a very low likelihood and degree of reactor core damage.

Gen-IV NES will eliminate the need for offsite emergency response.

Proliferation Resistance

and Physical Protection

Gen-IV NES will increase the assurance that they are very unattractive and the least 

desirable route for diversion or theft of weapons-usable materials, and provide 

increased physical protection against acts of terrorism.
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General Reactor Classification
• Moderator

– Water / Heavy Water

– Graphite

– None (fast neutron systems)

• Coolant
– Water/Heavy Water

– Liquid Metal

• Sodium / Lead / Lead-Bismuth Eutectic (LBE)

– Gas

• Air / CO2 / Helium

– Molten Salt

• Fuel
– UO2

– MOX (UO2 + PuO2)

– Metallic

– U/Pu nitride

– Molten Salt 

• Purpose
– Electricity/Non-Electric Application

• Power
– Low/Middle/High

GEN-IV Reactors (GIF)
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Six GIF Technology Systems www.gen-4.org

System Neutron

spectrum

Coolant Outlet 

Temperature 

°C

Fuel

cycle

Power (MWe)

VHTR

(Very-high-temperature reactor)

Thermal Helium 900-1000 Open 250-300

SFR

(Sodium-cooled fast reactor)

Fast Sodium 500-550 Closed 50-150

300-1500

600-1500

SCWR

(Supercritical-water-cooled reactor)

Thermal/fast Water 510-625 Open/closed 300-700

1000-1500

GFR

(Gas-cooled fast reactor)

Fast Helium 850 Closed 1 200

LFR

(Lead-cooled fast reactor)

Fast Lead 480-570 Closed 20-180

300-1200

600-1000

MSR

(Molten salt reactor)

Thermal/fast Fluoride salts 700-800 Closed 1000
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Sodium cooled Fast Reactor (SFR) Lead cooled Fast Reactor (LFR) Very-High-Temperature Reactor (VHTR) 

Supercritical Water cooled Reactor (SCWR) 
Gas cooled Fast Reactor (GFR) Molten Salt Reactor (MSR)

Six Generation-IV Reactor systems GIF website: www.gen-4.org



ICTP–IAEA WS on Innovative NES, 12 Dec 2022

Vladimir Kriventsev, IAEA 8

Coolants: key physical properties (1/3)

➢ Melting temperature: impact on the reactor’s cold shutdown temperature
for fuel handling

➢ Boiling point and liquid phase temperature range

➢ Thermal characteristics: Cp, , Prandtl number

➢ Thermal stability: decomposition close to high temperature, safety margin

➢ Density: impact on power pumping required, internal dynamic pressures,
seismic behavior

➢ Interaction with structural materials: Dissolution (solubility of metal
elements), corrosion, embrittlement and potential mass transfer

➢ Chemical reactivity with surrounding fluids (air, water, organic products,
etc) and impact on operating safety
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➢ Interaction with primary coolant when used as different intermediate

coolant: corrosion, contamination.

➢ Interaction with ECS coolants (water, SC CO2, etc) when used as

different intermediate coolant: corrosion, contamination

➢ Transparency/opacity: special in-service inspection methods

➢ Vapor pressure: impact on aerosols production and deposition

➢ Ability to “block” the Tritium produced in the primary system (Tritium

is the only radioactive contaminant capable to cross metal walls)

➢ Capability to be purified and meet quality standards

Coolants: key physical properties (2/3)
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Coolants: key physical properties (3/3)

➢ Potential structures wetting: impact on fluid-material interactions,

instrumentation, quality of ultra-sound transmission, maintenance

➢ Toxicity: need to confine the coolant during handling and repair

➢ Possibility of processing during dismantling, including specific

systems like cold trapping

➢ Production of wastes and their processing during operation and

dismantling

➢ Availability in nature

➢ Cost
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Fast Reactor Coolants: 

Neutronic Considerations

➢ Neutrons interact with the atoms of the coolant 

➢ The strength of the overall effect is governed by the probability of a particular 

interaction (absorption or scattering) and the number density of the coolant 

atoms

➢ Absorption removes neutrons from the system

➢ Scattering causes the neutrons to “bleed” energy thus slowing them down 

(moderation)

➢ Both of these mechanisms add negative reactivity

➢ If the coolant is removed (lost or “voided”), the loss of negative reactivity is 

equivalent to an insertion of positive reactivity: 

Void Reactivity effect
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Coolant Thermal-Physical Properties

H2O Na Pb LBE He
LiF-BeF2-
ThF4-UF4

Atomic Weight 18 23 207 208 4

Melting Point °C 0 97.8 327.4 123.5 ~500

Boiling Point °C 100/ 350 892 1737 1670 -267 ~1700

Density kg/m3 1000 832 10460 10080

0.178

8.491 ~3200

Vol. Heat 

Capacity
MJ/m3/K 4.18 1.05 1.53 1.47

0.00093
0.044

~4.5

Specific Heat 

Capacity
J/kg/K

4180

5682
1264 147 146 5200 ~1400

Thermal 

Conductivity
W/m/K 0.6 70 18 15

0.152

0.238
~0.01

Kinematic 
Viscosity

m2/s x 106 1

0.12
0.28 0.11 0.13

0.15

0.71
~2.3

cold 20 °C
water at 17Mpa
hot water 300 °C
hot LM, 500 °C, 
hot He 850 °C, 20 MPa
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Sodium Cooled Fast Reactor (SFR)
GIF website: www.gen-4.org

Pool type Loop type

✓ Relatively low melting point; relative high boiling point:

97.8°..  881.5°C at 1 bar

✓ Low density and viscosity

✓ Very high thermal conductivity and good heat capacity

✓ Excellent electrical conductivity

✓ Low activation and no alpha emitters

✓ Cheap and largely available

✓ Perfectly compatible with steels

⎯ Aggressive chemical reaction with water

⎯ Reaction with air: self-ignited sodium fires

⎯ Void reactivity effect

⎯ Not transparent: Need special equipment

for control and inspections
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SFR: Sodium Cooled Fast Reactor (History)
France

Rapsodie 25-40 MW(th) 1967 - 1982 

Phenix 250 MW(e) 1973 - 2009

Superphenix 1240 MW(e) 1985 - 1998

Germany

KNK-1/2 60 MW(th) 1977 - 1991

SNR-300 327 Mw(e) Construction started in 1972 
but abandoned in 1991 

Russia/Kazahstan

BOR-60 12 MW(e) 1968 -

BN-350 135 MW(e) 1964 - 1973

BN-600 625 MW(e) 1980 -

BN-800 880 MW(e) 2015 -

BN-1200 1200 MW(e) design

MBIR 60 MW(e) construction

Japan

Joyo 150 (th) 1971 -

Monju 260 MW(e) 1995 - 1995

U.S.A.

EBR-I (Na-K) 200 kW(e) 1951 - 1964

Fermi-1 69 Mw(e) 1956 - 1972

EBR-II 20 MW(e) 1965 - 1994

FFTF 400 MW(th) 1982-1992

VTR 300 Mw(th) design

India

FBTR 30-40 MW(th) 1985 -

PFBR 500 MW(e) commissioning, 2021?

FBR 1&2 600 MW(e) design

MFBR 1000 MW(e) concept

China

CEFR 20 MW(e) 2011 -

CFR600 600 MW(e) construction (2 units)

CFR1000 600 MW(e) Design

UK

PFR 250 MW(e) 1975 - 1994
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SFR: Sodium Cooled Fast Reactor (In Operation)

FBTR, 30-40 MW(th)

India, 1985

3D-экскурсия по Белоярской АЭС

BN-600

Russia, 1980

BN-800

Russia, 2015
CEFR, 20 MW(e) 

China, 2011
PFBR, 500 MW(e)

India, 2023?

https://youtu.be/H29gx9xrluc
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SFR: New Innovative Designs (Gen-IV?)

BN-1200

Russia

ESFR, 1500 MW(e)

EUCFR600

China
CFR1000

China

150 MW(e) PGSFR

Rep. of Korea

50 MW(e) SMFR

Japan

300 MW(e) SFR

Japan
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SFR: Existing Fleet > Evolutionary  > Innovative 

BN-600  >>>  BN-800

Similar:
• sodium circuits design
• Basic safety systems
• I&C systems including 

• reactor monitoring systems
New:

• safety systems
• including passive: hydraulically 

suspended control rods 
• numerous other improvements

BN-800  >>>  BN-1200

• Proven technologies based on BN-600/800 
experience 

• Safety: accidents that require public evacuation 
are practically eliminated
• Additional passive high temperature 

actuated control rods system 
• Fuel: uranium-plutonium nitride 
• Lower power density
• Passive DHR systems
• Competitive with other advanced nuclear power 

plants and with power plants using fossil fuel
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Control of reactivity: example of ESFR (EU Gen-IV SFR) 

In case of accident:

1. Scram activation by one of the signals or by 

operator 

2. Curie-point devices on safety control rod 

drivelines for passive scram at temperature 

increase

3. Sodium plenum to avoid power run-away

4. Corium discharge tubes to avoid re-criticality in 

the core

5. Core catcher designed to guarantee subcriticality

of corium

5

1

2

3

4

1 1 1

Courtesy of K. Mikityuk, PSI, 

lecture at Joint IAEA-ICTP Workshop on Physics and Technology of Innovative Nuclear Energy Systems, 2018, Italy
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Corium Discharge in ESFR (EU Gen-IV SFR) 

Courtesy of K. Mikityuk, PSI, 

53rd Meeting of the IAEA Technical Working Group on Fast Reactors, 2021
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• High boiling point (1749/1670 °C at 1 bar)

• Very low vapor pressure

• High thermal capacity

• Good heat transfer properties

• Chemically inert, in particular with water and air (allows 

elimination of intermediate circuit)

• Effective gamma-rays shielding

• Cheap and largely available (lead but not bismuth) 

Lead/LBE Properties: advantages and challenges

• Material compatibility: erosion, corrosion
– Low coolant velocity

– Requires strict oxygen control

– New steels, Coatings

• High density (also an advantage due to reduced risk of re-criticality in 

case of core melting) 

• Not transparent : Need special equipment for control and inspections

• Very limited operational experience (submarines)
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Lead/LBE cooled Fast Reactors

55 MW(e) SEALER-UK

Sweden

СВБР-100 (LBE)

Russia

LFR-AS-200 MW(e)

Luxembourg Transportable LFR-TL-5 MW(e)

Luxembourg

ALFRED

125-250 MW(e)

EU

3-10 MW(e) SEALER

Sweden

CLFR-300

China

14 MW(e) CLEAR-

M10d

China

Reactor designs presented at TM on Fast SMRs in Milan in 2019

550MW(e) USA

MYRRHA (LBE)

70MW(th) Belgium

BREST-OD-300

Russia
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Gas (He) Properties: advantages

➢ Completely transparent to neutron (very hard 
neutron spectrum)

➢ Low reactivity insertion due to voiding of the 
coolant 

➢ Chemically inert

➢ Single phase behavior

➢ Optical transparency

➢ Electrically non-conducting

➢ Possibility to adopt direct gas turbine cycle

➢ Very high temperature applications

22

~850°C, 5-20 MPa
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Gas (He) Properties: four main disadvantages

➢ Low density creating requirement for pressurization
✓ Likelihood and severity of a LOCA

➢ Inability to adopt a pool configuration 
✓ Core remains uncovered in case of breached primary circuit

➢ Non-condensable 
✓ Pressure loading the containment building in case of LOCA

➢ Low-thermal inertia 
✓ The reactor core heat up rapidly if forced cooling is lost

No operational experience
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GFR - ALLEGRO

• 2400 MW(th) power output

• Advantages of chemically
inert coolant, no risk of
coolant boiling, high
temperature operation

• Disadvantage of the small
coolant thermal inertial

Fast Reactors Programmes in Europe
ESNII - The European Sustainable Nuclear Industrial Initiative
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GEN-IV Molten Salt Reactor (MSR)

www.gen-4.org

700  800℃ ⚫ High temperature system

– High temperature enables 

non-electric applications

⚫ On-line waste management

⚫ Design Options

– Solid fuel with molten salt 

coolant

– Fuel dissolved in molten

salt coolant (MSFR)
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Different reactor concepts using molten salt are 

discussed in GIF

26

– Molten Salt Fuelled Reactors (the circulating salt is the fuel + coolant)
» MSR MOU Signatories France EU and Switzerland work on Th-U MSFR (Molten
Salt Fast Reactor). Switzerland joined MOU in 2015.

» Russian Federation works on MOSART (Molten Salt Actinide Recycler &
Transmuter) with and without Th-U support. RF joined the MOU in 2013

» China, Japan and South Korea work on Th-U TMSR with graphite moderator
– Molten Salt Cooled Reactors (solid fuelled )

» USA and China work on FHR (fluoride-salt-cooled high-temperature reactor)
concepts and are Observers to the PSSC

» Australia works with China on materials development for MSR and FHR
Australia is joining the MOU in 2016
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NATRIUM: SFR with Molten Salt Storage System

www.gen-4.org

• 345 MW(e) SFR combined with

• 1GW(th) Energy molten salt-based storage 

system

• Pick power can reach 500-600 MW(e)

• Can be used for non-electrical applications

• Can work with renewables

Announced by Terrapower
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GEN-IV Supercritical-Water-Cooled Reactor (SCWR)

www.gen-4.org

• Advantages
– Either thermal or a fast-neutron spectrum

– High thermal efficiency 44%

– No steam generator, single loop

– Higher steam enthalpy allows to smaller 

turbine size

• Challenges
– High pressure

– Passive safety systems to be 

demonstrated

– Heat transfer near critical point

CP: 374°C, 22.1 MPa

Usually, outlet T> 500°C
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From Gen-III to Gen-IV: GIF View

Courtesy of K. Mikityuk, PSI, 

lecture at Joint IAEA-ICTP Workshop on Physics and Technology of Innovative Nuclear Energy Systems, 2018, Italy
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➢ At present, there is a wide convergence on the choice of sodium as coolant, with oxide, metal (e.g.

for high conversion ratio) or nitride fuel.

➢ However, it seems important to explore/develop a viable backup option, such as lead (or lead-

bismuth) coolant with oxide or nitride fuel, or gas coolant with carbide fuel.

➢ In this context, an innovative sodium-cooled prototype and a demo/experimental plant for exploring

a backup option should/could be the focus of international initiatives.

➢ Other internationally recognized major challenges are:

✓ The very limited availability of fast spectrum irradiation facilities, in particular to test and qualify advanced materials,

fuels and targets (currently only operating are BOR-60 in Russia and FBTR in India; soon MBIR in Russia and maybe

VTR in the US);

✓ The industrial demonstration of a fully closed fuel cycle with fast reactors, including the multi-recycling of the fuel as

well as the (homogenous or heterogeneous) partitioning and transmutation of minor actinides (Am, Cm and Np).

Challenges for Innovative fast reactors
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Fast Reactors in Operation, and

under Construction and Decommissioning

Country
Typ

e
coolant Purpose

Power 
(th/e)
MW

Year
(Op.)

Status

Russia

BOR-60 SFR sodium experimental 60/10 1969 operating

BN-600 SFR sodium prototype 1470/600 1980 operating

BN-800 SFR sodium industrial 2100/880 2015 operating

MBIR SFR sodium experimental 150/50 ~2028 construction

BREST-OD-300 LFR lead Gen-IV, demonstrator 700/300 ~2026 construction

China
CEFR SFR sodium prototype 80/20 2011 operating

CFR600 x2 SFR sodium prototype 1500/600 ~2025 construction (2 units)

India
FBTR SFR sodium experimental 40/- 1985 operating

PFBR SFR sodium demonstrator 1250/500 ?2022 comissioning

Japan
MONJU SFR sodium prototype 714/280 1994 decomissioning

JOYO SFR sodium experimental 140/-- 1978 license renew
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Fast Reactors under Developing and Design 
Country Name Type coolant Purpose Power (th/e), MW Status

Russia
BN-1200 SFR sodium Gen-IV, industrial 2900/1220 design
SVBR-100 LFR LBE prototype 280/100 design
MOSART MSR molten salt prototype 2400/ concept

China

CFR1000 SFR sodium Gen-IV, industrial 2512/1000 design
CLFR-300 LFR LBE/lead demonstrator 740/300 concept
CLEAR-M10a LFR LBE experimental 10/1-3 concept
CLEAR-I LFR LBE experimental 10/- design
CLEAR-M10d LFR lead demonstrator 25/10 concept

EU
ALFRED LFR lead Gen-IV, prototype 300/120 design
ALLEGRO GFR helium Gen-IV, demonstrator 75/- design
MSFR MSR molten salt (LiF-AFn) Gen-IV, prototype 3000/ concept

Belgium MYRRHA LFR ADS LBE experimental 100/- design
France ASTRID SFR sodium demonstrator 1500/600 suspended
Italy newcleo LFR-AS-30/200 LFR lead experimental/prototype /30 or /200 concept

R. of Korea
KALIMER-600 SFR sodium GEN-IV, prototype 1523/600 design
PGSFR SFR sodium GEN-IV, demonstrator 400/150 suspended

Sweden SEALER-55 LFR lead demonstrator 140/55 design
UK Westinghouse LFR LFR lead demonstrator 950/450 design

USA

Westinghouse LFR LFR lead demonstrator 950/450 design
NATRIUM SFR sodium demonstrator 1000/345-500 design
VTR SFR sodium experimental 300/- design
SSTAR LFR lead experimental 45/20 supended
MCFR MSR chloride salt experimental 1800/800 design
EM2 GFR helium demonstrator 500/265 concept
KP-FHR MSR fluoride salt demonstrator 310/140 concept
PRISM SFR sodium demonstrator 840/311 concept
LLC ARC-100 SFR sodium demonstrator 260/110 concept
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Atoms for peace and Development…

Thank You!
email: FR@IAEA.ORG


