

"Atoms for Peace and Development"

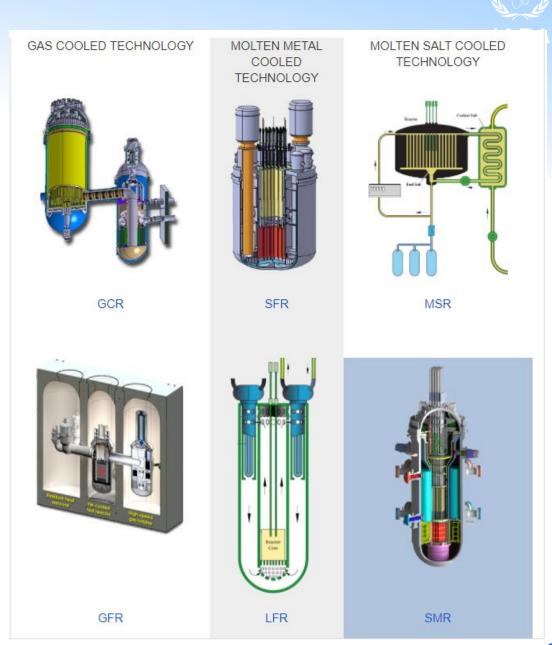
3rd Joint ICTP-IAEA Workshop on Physics and Technology of Innovative Nuclear Energy Systems 12 – 16 December 2022, Trieste, Italy

Overview of Innovative Reactor Designs

Vladimir Kriventsev

Fast Reactor Technology Development Team Nuclear Power technology Development Section Division of Nuclear Power Department of Nuclear Energy International Atomic Energy Agency https://www.iaea.org/topics/fast-reactors

email: FR@IAEA.ORG

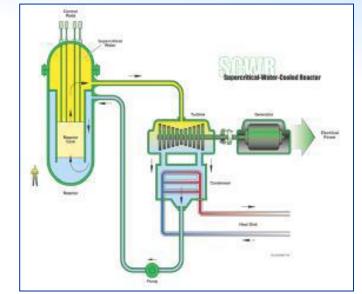

Outline

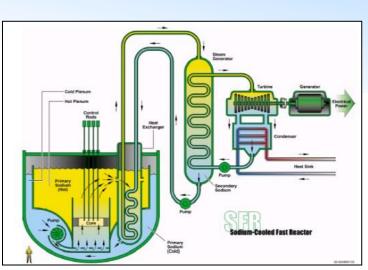
- Reactor Classification and Innovative Fast Neutron Systems
- GIF Systems and IAEA Terminology
- Comparison of Coolant Physical Properties
- Six GIF Gen-IV reactor concepts and other innovative systems
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Gas cooled Fast Reactor (GFR)
 - Very High Temperature Reactor (VHTR)
 - Super Critical Water cooled Reactor (SCWR)
 - Molten Salt cooled Reactor (MSR)
- Fast Reactors: World Status

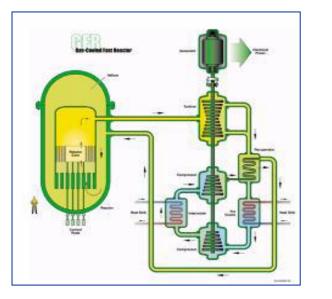
IAEA and GIF Terminology

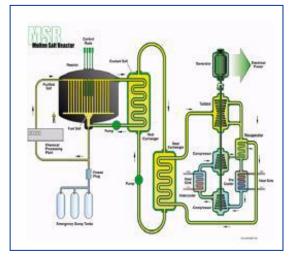
- Early Prototypes and
 Demonstration Plants Gen I
- Current Fleet Gen II-III
- Advanced Nuclear Reactors
 - Evolutionary designs Gen III and III+
 - Innovative designs Gen IV
 - SMRs can be either evolutionary or innovative
- ARIS: IAEA Advanced Reactors
 Information System:
 https://aris.iaea.org/

Generation IV Goals


Sustainability	Gen-IV nuclear energy systems (NES) will provide sustainable energy generation that meets clean air objectives and provides long-term availability of systems and effective fuel utilisation for worldwide energy production.
	Gen-IV NES will minimise and manage their nuclear waste and notably reduce the long- term stewardship burden, thereby improving protection for the public health and the environment.
Economics	Gen-IV NES will have a clear life-cycle cost advantage over other energy sources.
	Gen-IV NES will have a level of financial risk comparable to other energy projects.
Safety and Reliability	Gen-IV NES operations will excel in safety and reliability.
	Gen-IV NES will have a very low likelihood and degree of reactor core damage.
	Gen-IV NES will eliminate the need for offsite emergency response.
Proliferation Resistance and Physical Protection	Gen-IV NES will increase the assurance that they are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism.


General Reactor Classification

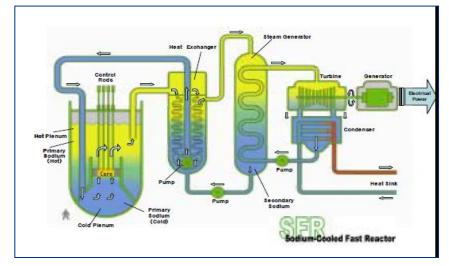

• Moderator

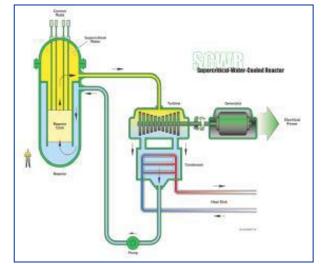

- Water / Heavy Water
- Graphite
- None (fast neutron systems)
- Coolant
 - Water/Heavy Water
 - Liquid Metal
 - Sodium / Lead / Lead-Bismuth Eutectic (LBE)
 - Gas
 - Air / CO₂ / Helium
 - Molten Salt
- Fuel
 - UO2
 - MOX $(UO_2 + PuO_2)$
 - Metallic
 - U/Pu nitride
 - Molten Salt
- Purpose
 - Electricity/Non-Electric Application
- Power
 - Low/Middle/High

GEN-IV Reactors (GIF)

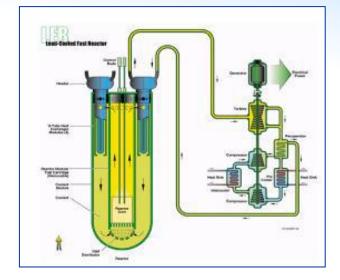
Six GIF Technology Systems

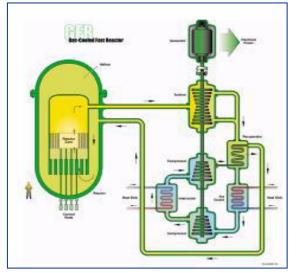
www.gen-4.org


System	Neutron spectrum	Coolant	Outlet Temperature °C	Fuel cycle	Power (MWe)
VHTR (Very-high-temperature reactor)	Thermal	Helium	900-1000	Open	250-300
SFR (Sodium-cooled fast reactor)	Fast	Sodium	500-550	Closed	50-150 300-1500 600-1500
SCWR (Supercritical-water-cooled reactor)	Thermal/fast	Water	510-625	Open/closed	300-700 1000-1500
GFR (Gas-cooled fast reactor)	Fast	Helium	850	Closed	1 200
LFR (Lead-cooled fast reactor)	Fast	Lead	480-570	Closed	20-180 300-1200 600-1000
MSR (Molten salt reactor)	Thermal/fast	Fluoride salts	700-800	Closed	1000

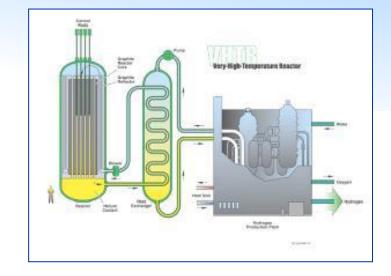

Six Generation-IV Reactor systems

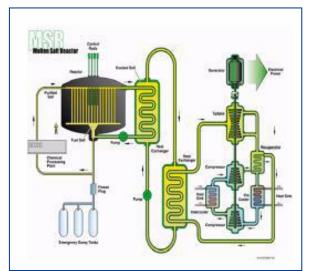
GIF website: www.gen-4.org


Sodium cooled Fast Reactor (SFR)



Supercritical Water cooled Reactor (SCWR)


Lead cooled Fast Reactor (LFR)



Gas cooled Fast Reactor (GFR)

Very-High-Temperature Reactor (VHTR)

Molten Salt Reactor (MSR)

ICTP–IAEA WS on Innovative NES, 12 Dec 2022 Vladimir Kriventsev, IAEA

Coolants: key physical properties (1/3)

- Melting temperature: impact on the reactor's cold shutdown temperature for fuel handling
- Boiling point and liquid phase temperature range
- > Thermal characteristics: Cp, λ , Prandtl number
- > Thermal stability: decomposition close to high temperature, safety margin
- Density: impact on power pumping required, internal dynamic pressures, seismic behavior
- Interaction with structural materials: Dissolution (solubility of metal elements), corrosion, embrittlement and potential mass transfer
- Chemical reactivity with surrounding fluids (air, water, organic products, etc) and impact on operating safety

Coolants: key physical properties (2/3)

- Interaction with primary coolant when used as different intermediate coolant: corrosion, contamination.
- Interaction with ECS coolants (water, SC CO2, etc) when used as different intermediate coolant: corrosion, contamination
- Transparency/opacity: special in-service inspection methods
- Vapor pressure: impact on aerosols production and deposition
- Ability to "block" the Tritium produced in the primary system (Tritium is the only radioactive contaminant capable to cross metal walls)
- Capability to be purified and meet quality standards

Coolants: key physical properties (3/3)

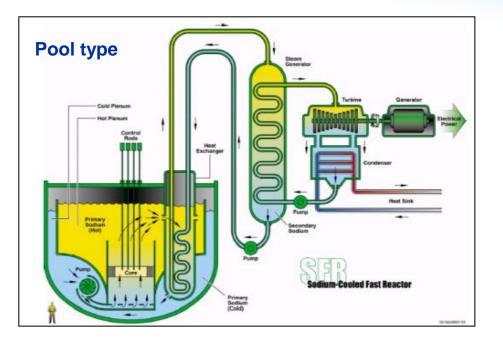
- Potential structures wetting: impact on fluid-material interactions, instrumentation, quality of ultra-sound transmission, maintenance
- > Toxicity: need to confine the coolant during handling and repair
- Possibility of processing during dismantling, including specific systems like cold trapping
- Production of wastes and their processing during operation and dismantling
- Availability in nature
- Cost

Fast Reactor Coolants: Neutronic Considerations

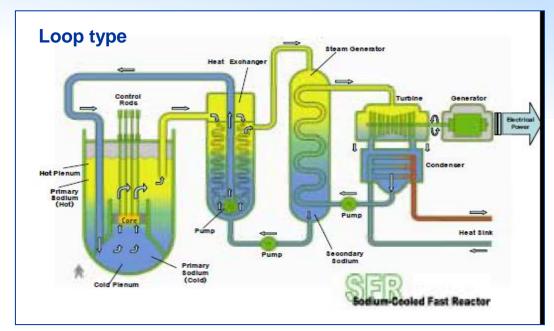
- Neutrons interact with the atoms of the coolant
- The strength of the overall effect is governed by the probability of a particular interaction (absorption or scattering) and the number density of the coolant atoms
- Absorption removes neutrons from the system
- Scattering causes the neutrons to "bleed" energy thus slowing them down (moderation)
- Both of these mechanisms add negative reactivity
- If the coolant is removed (lost or "voided"), the loss of negative reactivity is equivalent to an insertion of positive reactivity:

Void Reactivity effect

Coolant Thermal-Physical Properties


		H ₂ O	Na	Pb	LBE	Не	LiF-BeF₂ - ThF ₄ -UF ₄
Atomic Weight		18	23	207	208	4	
Melting Point	°C	0	97.8	327.4	123.5		~500
Boiling Point	°C	100/ 350	892	1737	1670	-267	~1700
Density	kg/m3	1000	832	10460	10080	0.178 8.491	~3200
Vol. Heat Capacity	MJ/m3/K	4.18	1.05	1.53	1.47	0.00093 0.044	~4.5
Specific Heat Capacity	J/kg/K	4180 5682	1264	147	146	5200	~1400
Thermal Conductivity	W/m/K	0.6	70	18	15	0.152 0.238	~0.01
Kinematic Viscosity	m²/s x 106	1 0.12	0.28	0.11	0.13	0.15 0.71	~2.3

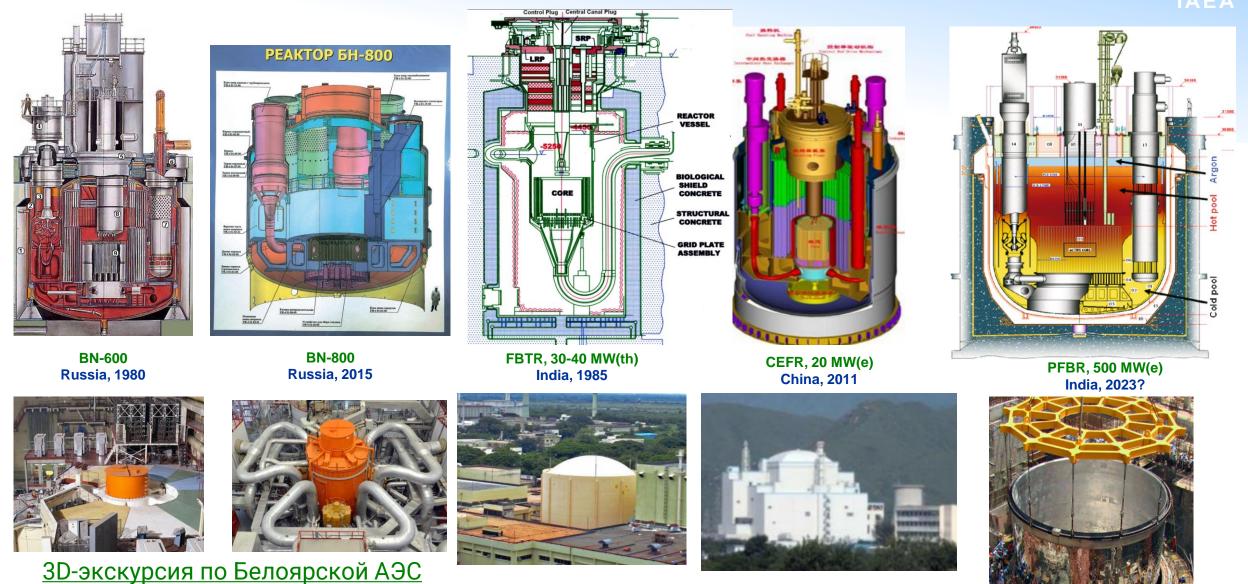
cold 20 °C water at 17Mpa hot water 300 °C hot LM, 500 °C, hot He 850 °C, 20 MPa


Sodium Cooled Fast Reactor (SFR)

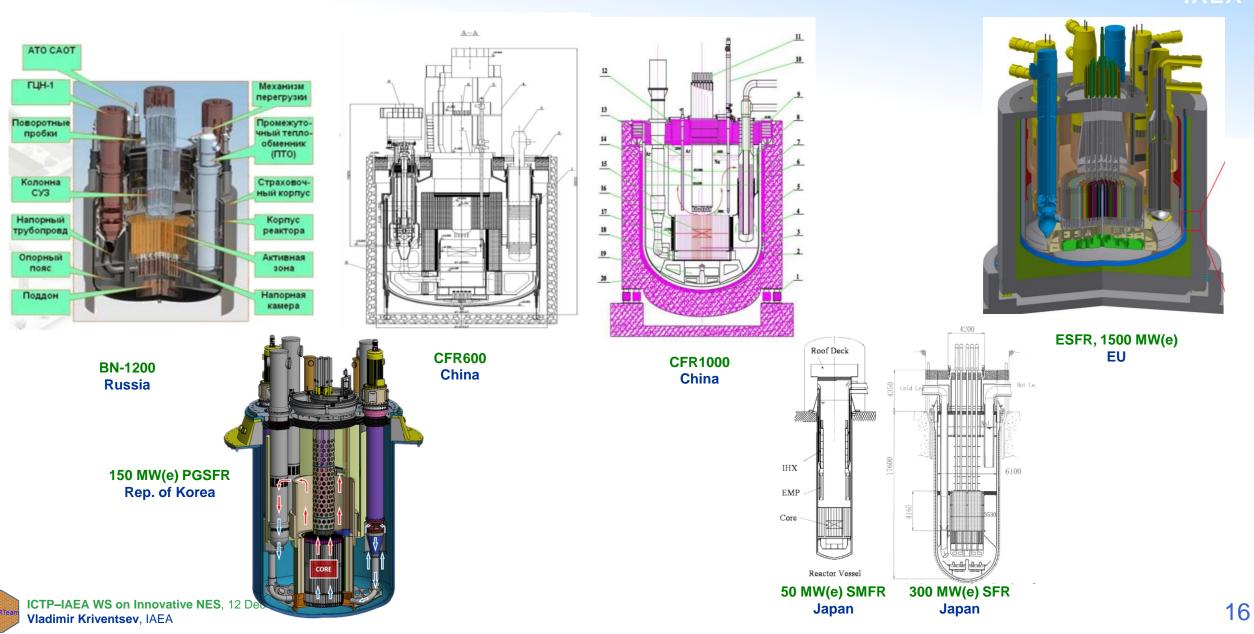
GIF website: www.gen-4.org

- Relatively low melting point; relative high boiling point:
 97.8° ... 881.5° C at 1 bar
- Low density and viscosity
- \checkmark Very high thermal conductivity and good heat capacity
- ✓ Excellent electrical conductivity
- Low activation and no alpha emitters
- ✓ Cheap and largely available
- Perfectly compatible with steels

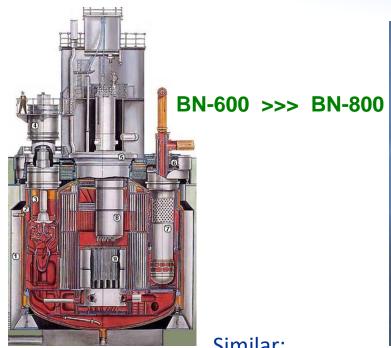
- Aggressive chemical **reaction with water**
- Reaction with air: self-ignited sodium fires
- Void reactivity effect
- Not transparent: Need special equipment for control and inspections


SFR: Sodium Cooled Fast Reactor (History)

25-40 MW(th)	1967 - 1982
250 MW(e)	1973 - 2009
1240 MW(e)	1985 - 1998
60 MW(th)	1977 - 1991
327 Mw(e)	Construction started in 1972 but abandoned in 1991
12 MW(e)	1968 -
135 MW(e)	1964 - 1973
625 MW(e)	1980 -
880 MW(e)	2015 -
1200 MW(e)	design
60 MW(e)	construction
150 (th)	1971 -
260 MW(e)	1995 - 1995
	250 MW(e) 1240 MW(e) 60 MW(th) 327 Mw(e) 12 MW(e) 135 MW(e) 625 MW(e) 880 MW(e) 1200 MW(e) 60 MW(e)

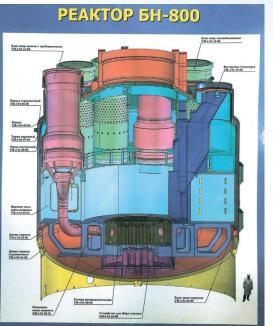

U.S.A.				
EBR-I (Na-K)	200 kW(e)	1951 - 1964		
Fermi-1	69 Mw(e)	1956 - 1972		
EBR-II	20 MW(e)	1965 - 1994		
FFTF	400 MW(th)	1982-1992		
VTR	300 Mw(th)	design		
India				
FBTR	30-40 MW(th)	1985 -		
PFBR	500 MW(e)	commissioning, 2021?		
FBR 1&2	600 MW(e)	design		
MFBR	1000 MW(e)	concept		
China				
CEFR	20 MW(e)	2011 -		
CFR600	600 MW(e)	construction (2 units)		
CFR1000	600 MW(e)	Design		
UK				
PFR	250 MW(e)	1975 - 1994		

SFR: Sodium Cooled Fast Reactor (In Operation)

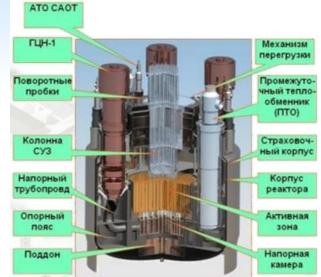


SFR: New Innovative Designs (Gen-IV?)

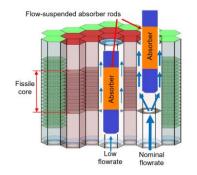
SFR: Existing Fleet > Evolutionary > Innovative



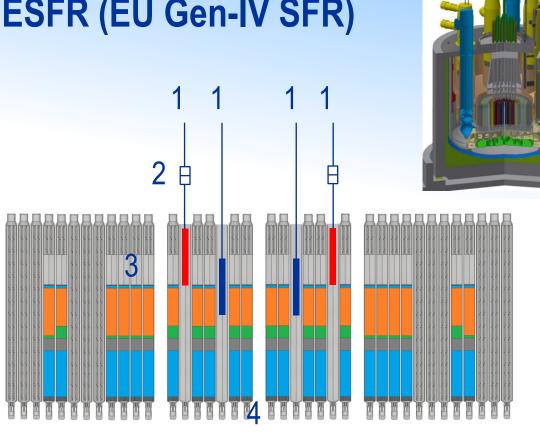
Similar:


New:

- sodium circuits design
- **Basic safety systems** •
- I&C systems including •
 - reactor monitoring systems
- safety systems
 - including passive: hydraulically suspended control rods


ICTP-IAEA WS on Innovative NES, 12 Dec 2022 numerous other improvements Vladimir Kriventsev, IAEA

BN-800 >>> BN-1200


- Proven technologies based on BN-600/800 experience
- Safety: accidents that require public evacuation are practically eliminated
 - Additional passive high temperature actuated control rods system
- Fuel: uranium-plutonium nitride
- Lower power density
- Passive DHR systems
- Competitive with other advanced nuclear power plants and with power plants using fossil fuel

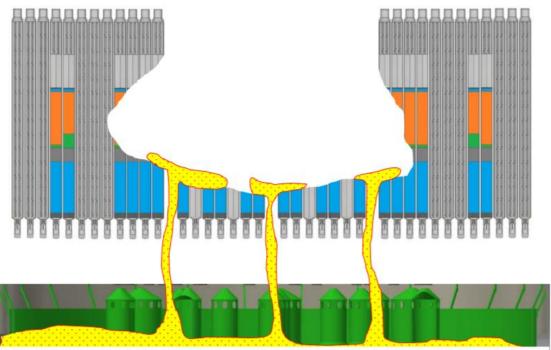
Control of reactivity: example of ESFR (EU Gen-IV SFR)

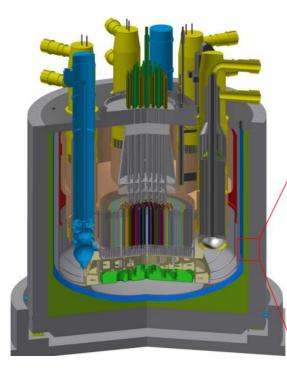
In case of accident:

- 1. Scram activation by one of the signals or by operator
- 2. Curie-point devices on safety control rod drivelines for passive scram at temperature increase
- 3. Sodium plenum to avoid power run-away
- 4. Corium discharge tubes to avoid re-criticality in the core
- 5. Core catcher designed to guarantee subcriticality of corium

Courtesy of K. Mikityuk, PSI, lecture at Joint IAEA-ICTP Workshop on Physics and Technology of Innovative Nuclear Energy Systems, 2018, Italy

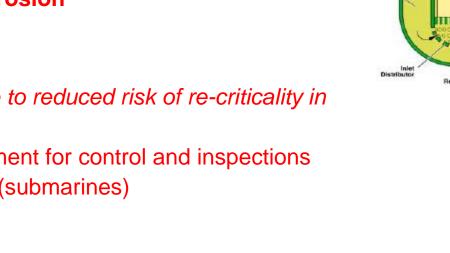
Corium Discharge in ESFR (EU Gen-IV SFR)

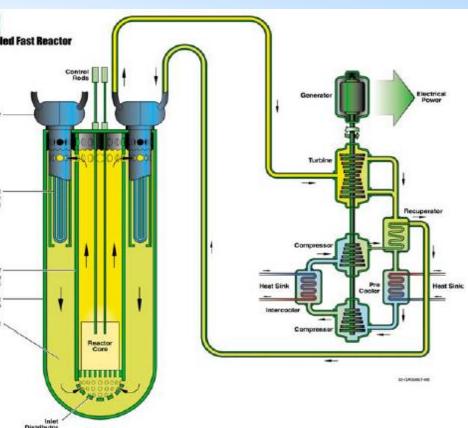

New core design: path for corium


IAEA

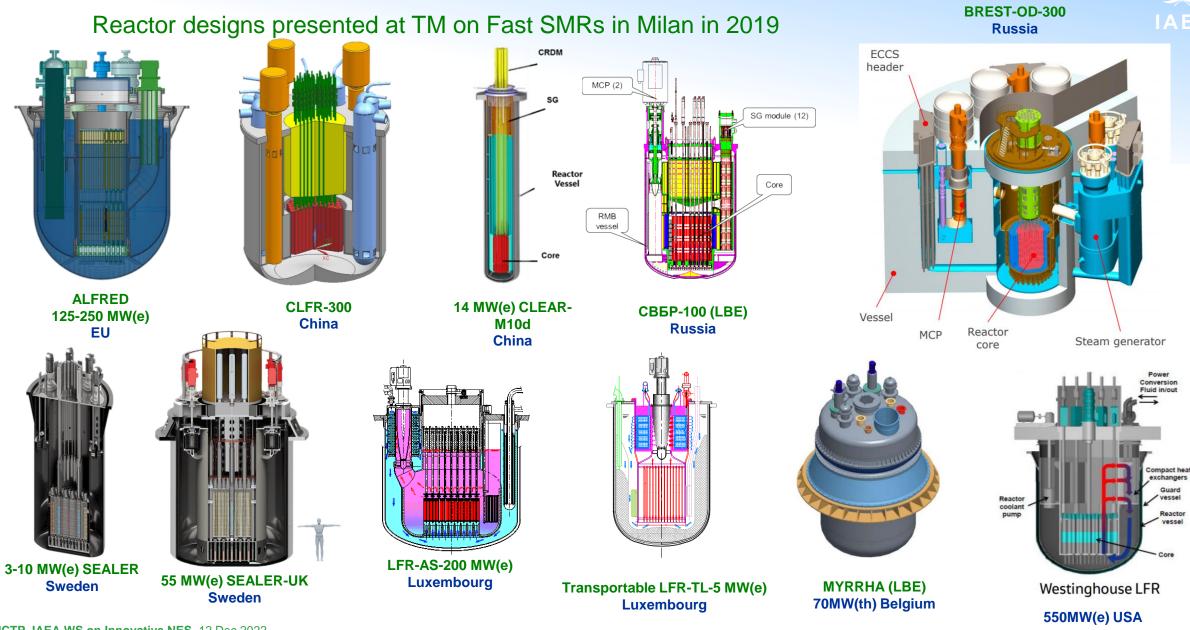
53rd Meeting of the IAEA Technical Working Group on Fast Reactors, 2021

In case of very low probability core meltdown event, the corium discharge channel helps


- To avoid re-criticality
- To promote transfer of the corium to the core catcher
- To efficiently remove decay heat

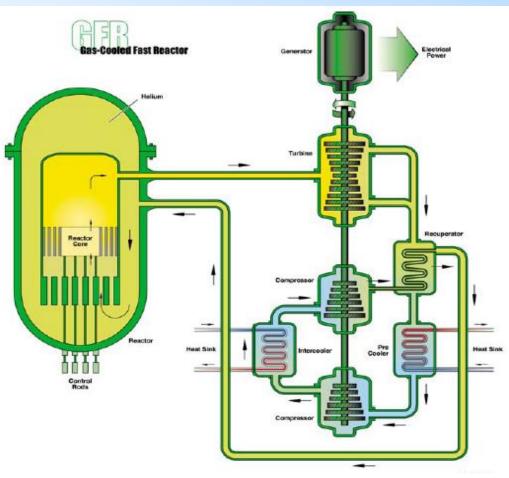


Lead/LBE Properties: advantages and challenges


- High boiling point (1749/1670 °C at 1 bar)
- Very low vapor pressure
- High thermal capacity
- Good heat transfer properties
- Chemically inert, in particular with water and air (allows elimination of intermediate circuit)
- Effective gamma-rays shielding
- Cheap and largely available (lead but not bismuth)
- Material compatibility: erosion, corrosion
 - Low coolant velocity
 - Requires strict oxygen control
 - New steels, Coatings
- High density (also an advantage due to reduced risk of re-criticality in case of core melting)
- Not transparent : Need special equipment for control and inspections
- Very limited operational experience (submarines)

Exchange

Lead/LBE cooled Fast Reactors



Gas (He) Properties: advantages

- Low reactivity insertion due to voiding of the coolant
- Chemically inert
- Single phase behavior
- Optical transparency
- Electrically non-conducting
- Possibility to adopt direct gas turbine cycle
- Very high temperature applications

~850°C, 5-20 MPa

Gas (He) Properties: four main disadvantages

Low density creating requirement for pressurization

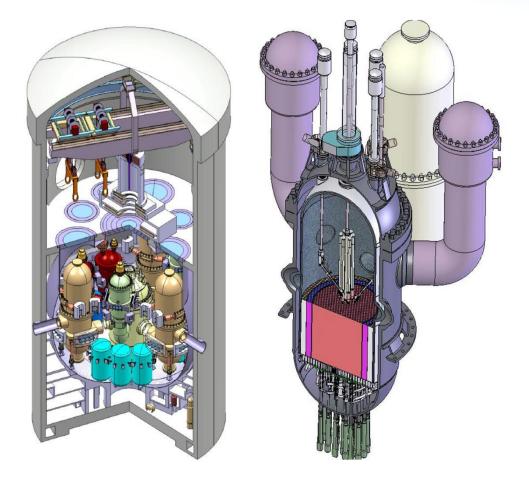
✓ Likelihood and severity of a LOCA

Inability to adopt a pool configuration

✓ Core remains uncovered in case of breached primary circuit

Non-condensable

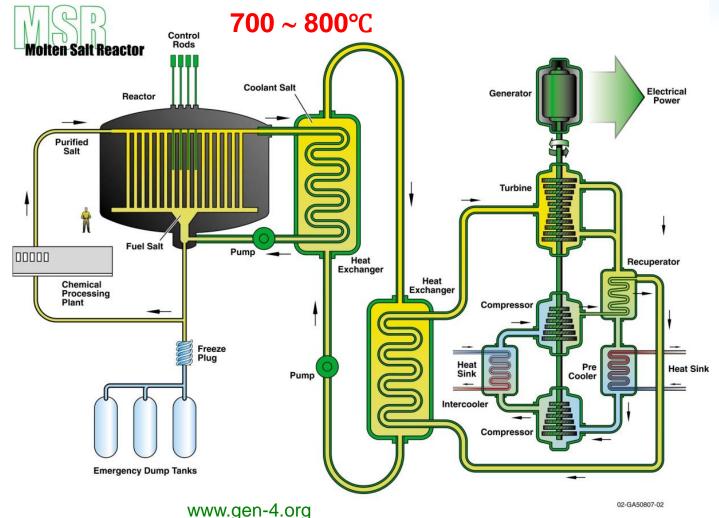
✓ Pressure loading the containment building in case of LOCA


Low-thermal inertia

 \checkmark The reactor core heat up rapidly if forced cooling is lost

No operational experience

Fast Reactors Programmes in Europe ESNII - The European Sustainable Nuclear Industrial Initiative



GFR - ALLEGRO

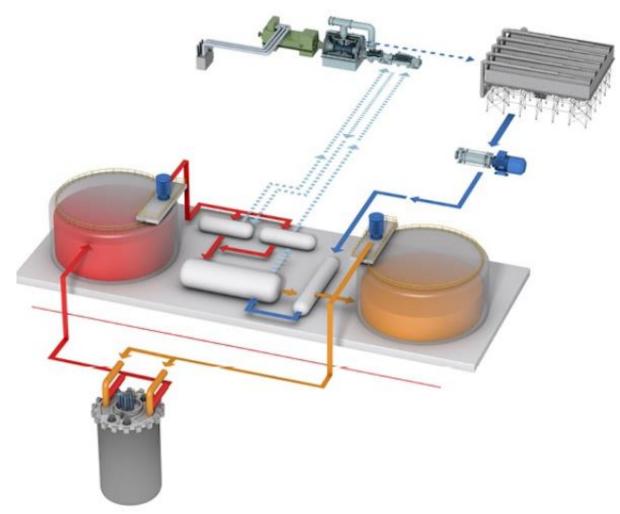
- 2400 MW(th) power output
- Advantages of chemically inert coolant, no risk of coolant boiling, high temperature operation
- Disadvantage of the small coolant thermal inertial

GEN-IV Molten Salt Reactor (MSR)

• High temperature system

- High temperature enables non-electric applications
- On-line waste management
- Design Options
 - Solid fuel with molten salt coolant
 - Fuel dissolved in molten salt coolant (MSFR)

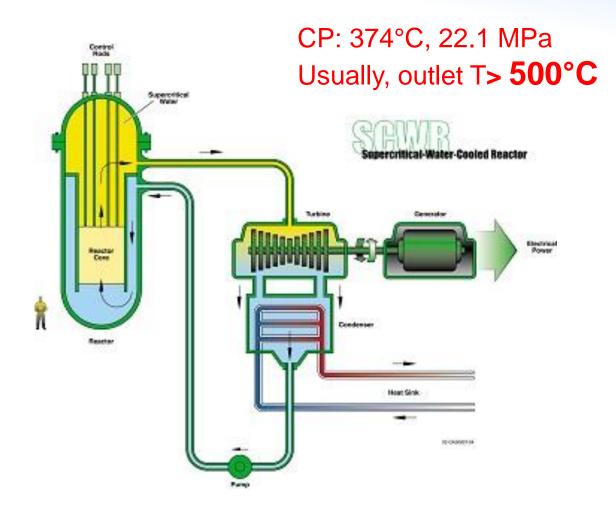
Different reactor concepts using molten salt are discussed in GIF


- Molten Salt Fuelled Reactors (the circulating salt is the fuel + coolant)

- » MSR MOU Signatories France EU and Switzerland work on Th-U MSFR (Molten Salt Fast Reactor). Switzerland joined MOU in 2015.
- » Russian Federation works on MOSART (Molten Salt Actinide Recycler & Transmuter) with and without Th-U support. RF joined the MOU in 2013
- » China, Japan and South Korea work on Th-U TMSR with graphite moderator
- Molten Salt Cooled Reactors (solid fuelled)
 - » USA and China work on FHR (fluoride-salt-cooled high-temperature reactor) concepts and are <u>Observers</u> to the PSSC
 - » Australia works with China on materials development for MSR and FHR Australia is joining the MOU in 2016

26

NATRIUM: SFR with Molten Salt Storage System Announced by Terrapower



- 345 MW(e) SFR combined with
- 1GW(th) Energy molten salt-based storage system
- Pick power can reach 500-600 MW(e)
- Can be used for non-electrical applications
- Can work with renewables

GEN-IV Supercritical-Water-Cooled Reactor (SCWR)

- Advantages
 - Either thermal or a fast-neutron spectrum
 - High thermal efficiency 44%
 - No steam generator, single loop
 - Higher steam enthalpy allows to smaller turbine size
- Challenges
 - High pressure
 - Passive safety systems to be demonstrated
 - Heat transfer near critical point

From Gen-III to Gen-IV: GIF View

Concept	PV	VR	R SCWR		(V)H	ITR	GFR		S	FR	L	R	MSR		
Specific design*	EF	PR	HPL	WR	HTR	R-PM	GCFR		ESFR		ALFRED		MSFR		
Thermal power (MW)	43	00	2300		45	458 24		400 3600		300		3000			
Efficiency (%)	37		~44		~45		~45		~42		~42		~43		
Primary coolant	H ₂	20	H₂O		He		He			la	Pb		LiF-ThF ₄ - (Pu-MA)F ₃		
Inlet/outlet temp. (C)	296	327	280	500	250	750	4	00	780	3 95	545	400	480	600	800
Pressure (MPa)	~	16	~25		~	7	~7		~0.2		~0.5		~0.2		
Moderator	H	2 <mark>0</mark>	H ₂	0	(2	None		None		None		None		
Neutron spectrum	The	rmal	Ther	mal	The	nermal Fast		F	ast	Fast		Fast			
Breeding gain	<<	< 0	<<	0	<< 0		~ 0		~ 0		~ 0		~ 0		
Reference	[1]	[2]		[3]		[3] [4		[4] [5]		[6]		[7]		
G1: Sustainability	Po	oor	\leftrightarrow		?		? ↑		↑ ↑		↑		1		
G2: Safety & reliability	Go	bod	Ļ		1		Ļ		↓↑		↓↑		?	?	
G3: Economics	Go	bod	1			1		?		↓ ↓		?		7	?

Courtesy of K. Mikityuk, PSI,

ICTP–IAEA WS on Innovative NES, 12 Dec 2022 Vladimir Kriventsev, IAEA

lecture at Joint IAEA-ICTP Workshop on Physics and Technology of Innovative Nuclear Energy Systems, 2018, Italy

Challenges for Innovative fast reactors

- At present, there is a wide convergence on the choice of sodium as coolant, with oxide, metal (e.g. for high conversion ratio) or nitride fuel.
- However, it seems important to explore/develop a viable backup option, such as lead (or leadbismuth) coolant with oxide or nitride fuel, or gas coolant with carbide fuel.
- In this context, an innovative sodium-cooled prototype and a demo/experimental plant for exploring a backup option should/could be the focus of international initiatives.
- > Other internationally recognized major challenges are:
 - The very limited availability of fast spectrum irradiation facilities, in particular to test and qualify advanced materials, fuels and targets (currently only operating are BOR-60 in Russia and FBTR in India; soon MBIR in Russia and maybe VTR in the US);
 - The industrial demonstration of a fully closed fuel cycle with fast reactors, including the multi-recycling of the fuel as well as the (homogenous or heterogeneous) partitioning and transmutation of minor actinides (Am, Cm and Np).

Fast Reactors in Operation, and under Construction and Decommissioning

Country		Typ e	coolant	Purpose	Power (th/e) MW	Year (Op.)	Status
	BOR-60	SFR	sodium	experimental	60/10	1969	operating
	BN-600	SFR	sodium	prototype	1470/600	1980	operating
Russia	BN-800	SFR	sodium	industrial	2100/880	2015	operating
	MBIR	SFR	sodium	experimental	150/50	~2028	construction
	BREST-OD-300	LFR	lead	Gen-IV, demonstrator	700/300	~2026	construction
China	CEFR	SFR	sodium	prototype	80/20	2011	operating
Clilla	CFR600 x2	SFR	sodium	prototype	1500/600	~2025	construction (2 units)
India	FBTR	SFR	sodium	experimental	40/-	1985	operating
IIIula	PFBR	SFR	sodium	demonstrator	1250/500	?2022	comissioning
lanan	MONJU	SFR	sodium	prototype	714/280	1994	decomissioning
Japan	JOYO	SFR	sodium	experimental	140/	1978	license renew

Fast Reactors under Developing and Design

Country	Name	Туре	coolant	Purpose	Power (th/e), MW	Status
	BN-1200	SFR	sodium	Gen-IV, industrial	2900/1220	design
Russia	SVBR-100	LFR	LBE	prototype	280/100	design
	MOSART	MSR	molten salt	prototype	2400/	concept
	CFR1000	SFR	sodium	Gen-IV, industrial	2512/1000	design
	CLFR-300	LFR	LBE/lead	demonstrator	740/300	concept
China	CLEAR-M10a	LFR	LBE	experimental	10/1-3	concept
	CLEAR-I	LFR	LBE	experimental	10/-	design
	CLEAR-M10d	LFR	lead	demonstrator	25/10	concept
	ALFRED	LFR	lead	Gen-IV, prototype	300/120	design
EU	ALLEGRO	GFR	helium	Gen-IV, demonstrator	75/-	design
	MSFR	MSR	molten salt (LiF-AFn)	Gen-IV, prototype	3000/	concept
Belgium	MYRRHA	LFR ADS	LBE	experimental	100/-	design
France	ASTRID	SFR	sodium	demonstrator	1500/600	suspended
Italy	newcleo LFR-AS-30/200	LFR	lead	experimental/prototype	/30 or /200	concept
	KALIMER-600	SFR	sodium	GEN-IV, prototype	1523/600	design
R. of Korea	PGSFR	SFR	sodium	GEN-IV, demonstrator	400/150	suspended
Sweden	SEALER-55	LFR	lead	demonstrator	140/55	design
UK	Westinghouse LFR	LFR	lead	demonstrator	950/450	design
	Westinghouse LFR	LFR	lead	demonstrator	950/450	design
	NATRIUM	SFR	sodium	demonstrator	1000/345-500	design
	VTR	SFR	sodium	experimental	300/-	design
	SSTAR	LFR	lead	experimental	45/20	supended
USA	MCFR	MSR	chloride salt	experimental	1800/800	design
	EM2	GFR	helium	demonstrator	500/265	concept
	KP-FHR	MSR	fluoride salt	demonstrator	310/140	concept
	PRISM	SFR	sodium	demonstrator	840/311	concept
	LLC ARC-100	SFR	sodium	demonstrator	260/110	concept

Atoms for peace and Development...

Thank You!

email: FR@IAEA.ORG